数学建模的一般知识

合集下载

数学建模知识点

数学建模知识点

数学建模知识点
以下是 7 条关于数学建模知识点:
1. 什么是函数呀?就像汽车的速度和行驶距离的关系,你给它一个速度,它就能通过时间算出跑了多远,这就是函数在发挥作用。

比如咱们做成本和利润的分析,不就是找出那个能告诉我们怎么赚钱的函数嘛!
2. 线性规划可太重要啦!想象一下,你要安排很多事情,怎么才能让资源利用最大化呢?就像搭积木,得找个最稳最好的方式去摆。

比如说要安排生产任务,怎么分配人力和时间,才能达到最高效率呢!
3. 概率这东西很神奇哦!就好比抽奖,你永远不知道下一次会不会中,但可以算出大概的可能性。

像是判断明天会不会下雨的概率,难道不有趣吗?
4. 统计可真是个好帮手!它就像个细心的记录员,把各种数据整理得清清楚楚。

就像统计一个班级里同学们的成绩分布,这样不就能看出大家的学习情况啦?
5. 模型检验呀,那可不能马虎!这就像你买了个新东西,得试试它好不好用。

比如我们建了个预测销量的模型,得看看预测得准不准呀!
6. 微分方程也很有意思哟!就像研究事物变化的规律。

比如传染病的传播,通过微分方程就可以模拟它怎么扩散的。

哇,是不是很神奇?
7. 建模的思路那得清晰呀!不能乱了阵脚。

就像你要去一个陌生地方,得先规划好路线。

比如碰到一个实际问题,得想清楚从哪里开始,怎么一步一步解决,这就是好的思路的重要性!
我的观点结论是:数学建模知识点丰富有趣又实用,学会了能解决好多实际问题呢!。

数学建模重要知识点总结

数学建模重要知识点总结

数学建模重要知识点总结一、微积分微积分是数学建模中最重要的数学工具之一,它包括微分和积分两大部分。

微分是求函数的导数,用于描述函数的变化率和曲线的切线。

而积分则是求函数的不定积分或定积分,用于描述函数的面积、体积等性质。

在数学建模中,微积分可以用于建立问题的数学模型,求解微分方程和积分方程,对函数进行优化等。

例如,在物理建模中,我们经常会用到微积分来描述物体的运动、速度和加速度等。

在经济学建模中,微积分可以用来描述供求关系、利润最大化等问题。

二、线性代数线性代数是研究向量空间、线性映射和矩阵等数学对象的学科。

在数学建模中,线性代数可以用于描述多维空间中的几何关系、解线性方程组、求解最小二乘问题等。

例如,在计算机图形学中,线性代数可以用来描述和变换三维物体的位置和姿态。

在统计学建模中,线性代数可以用来对数据进行降维、拟合线性模型等。

三、概率论与数理统计概率论与数理统计是研究随机现象的规律性和统计规律的学科。

在数学建模中,概率论与数理统计可以用于描述随机现象的概率分布、推断总体参数、假设检验等。

例如,在风险管理建模中,我们经常会用到概率论与数理统计来描述风险的分布和进行风险评估。

在机器学习建模中,概率论与数理统计可以用来对数据进行建模和推断。

四、数学优化数学优化是研究如何在给定约束条件下,找到使目标函数取得极值的方法和理论。

在数学建模中,数学优化可以用来对问题进行建模和求解。

例如,在生产调度问题中,我们可以用数学优化来寻找最优的生产计划;在投资组合优化中,我们可以用数学优化来构建最优的资产配置。

五、微分方程微分方程是研究未知函数及其导数之间关系的方程。

在数学建模中,微分方程可以用来描述系统的动力学行为、生物种群的增长规律、热传导过程等。

我们可以通过对微分方程进行数值求解、解析求解或者定性分析,来获得系统的行为特征。

六、离散数学离散数学是研究离散结构及其性质的数学学科,包括集合论、图论、逻辑和代数等内容。

数学建模基础知识

数学建模基础知识

数学建模基础知识引言:数学建模是一门以数学为工具、以实际问题为研究对象、以模型为核心的学科。

它通过将实际问题抽象为数学模型,并利用数学方法对模型进行分析和求解,从而得到问题的解决方案。

在数学建模中,有一些基础知识是必不可少的,本文将介绍数学建模的基础知识,包括概率与统计、线性代数、微积分和优化算法。

一、概率与统计概率与统计是数学建模的基础。

概率论用于描述随机现象的规律性,统计学则用于从观测数据中推断总体的特征。

在数学建模中,需要根据实际问题的特点选择合适的概率模型,并利用统计方法对模型进行参数估计。

1.1 概率模型概率模型是概率论的基础,在数学建模中常用的概率模型包括离散型随机变量模型和连续型随机变量模型。

离散型随机变量模型适用于描述离散型随机事件,如投硬币的结果、掷骰子的点数等;连续型随机变量模型适用于描述连续型随机事件,如身高、体重等。

在选择概率模型时,需要根据实际问题的特点进行合理选择。

1.2 统计方法统计方法用于从观测数据中推断总体的特征。

在数学建模中,经常需要根据样本数据对总体参数进行估计。

常用的统计方法包括点估计和区间估计。

点估计用于估计总体参数的具体值,如均值、方差等;区间估计则用于给出总体参数的估计范围。

另外,假设检验和方差分析也是数学建模中常用的统计方法。

二、线性代数线性代数是数学建模的重要工具之一。

它研究线性方程组的解法、向量空间与线性变换等概念。

在线性方程组的求解过程中,常用的方法包括高斯消元法、矩阵的逆和特征值分解等。

线性代数还广泛应用于图论、网络分析等领域。

2.1 线性方程组线性方程组是线性代数的基础,它可以用矩阵和向量的形式来表示。

求解线性方程组的常用方法有高斯消元法、矩阵的逆矩阵和克拉默法则等。

高斯消元法通过矩阵的初等行变换将线性方程组转化为简化行阶梯形式,从而求得方程组的解。

2.2 向量空间与线性变换向量空间是线性代数的核心概念,它由若干个向量组成,并满足一定的运算规则。

数学建模常用知识点总结

数学建模常用知识点总结

数学建模常用知识点总结1.1 矩阵及其运算矩阵是一个矩形的数组,由行和列组成。

可以进行加法、减法和数乘运算。

1.2 矩阵的转置对矩阵进行转置就是把矩阵的行和列互换得到的新矩阵。

1.3 矩阵乘法矩阵A和矩阵B相乘得到矩阵C,要求A的列数等于B的行数,C的行数是A的行数,列数是B的列数。

1.4 矩阵的逆只有方阵才有逆矩阵,对于矩阵A,如果存在矩阵B,使得AB=BA=I,那么B就是A的逆矩阵。

1.5 行列式行列式是一个标量,是一个方阵所表示的几何体积的无向量。

1.6 特征值和特征向量对于矩阵A,如果存在标量λ和非零向量x,使得Ax=λx,那么λ就是A的特征值,x就是对应的特征向量。

1.7 线性相关和线性无关对于一组向量,如果存在一组不全为零的系数,使得它们的线性组合等于零向量,那么这组向量就是线性相关的。

1.8 空间与子空间空间是向量的集合,子空间是一个向量空间的子集,并且本身也是一个向量空间。

1.9 线性变换对于向量空间V和W,如果满足T(v+u)=T(v)+T(u)和T(kv)=kT(v),那么T就是一个线性变换。

1.10 最小二乘法对于一个线性方程组,如果方程个数大于未知数个数,可以使用最小二乘法来求得最优解。

1.11 奇异值分解矩阵分解的方法之一,将一个任意的矩阵分解为三个矩阵的乘积。

1.12 特征分解对于一个对称矩阵,可以将其分解为特征向量和特征值的乘积。

1.13 线性代数在建模中的应用在数学建模中,线性代数是非常重要的基础知识,它可以用来表示和分析问题中的数据,解决矩阵方程组、优化问题、回归分析等。

二、微积分2.1 极限和连续性极限是指一个函数在某一点上的局部性质,连续性则是函数在某一点上的全局性质。

2.2 导数和微分对于一个函数y=f(x),它的导数可以表示为f’(x),其微分可以表示为dy=f’(x)dx。

2.3 泰勒级数泰勒级数是一种用多项式逼近函数的方法,在建模中可以用来进行函数的近似计算。

数学建模基础

数学建模基础

数学建模基础
数学建模是指利用数学方法和技巧对实际问题进行抽象和
描述,并通过建立数学模型来研究问题的方法。

数学建模
基础主要包括以下几个方面:
1. 数学知识:数学建模需要掌握一定的数学知识,包括数
学分析、线性代数、概率论与数理统计、微分方程等。


些数学知识可以帮助建模者理清问题的结构和逻辑关系,
从而构建合理的数学模型。

2. 数据分析能力:数学建模过程中需要处理和分析大量的
实际数据,包括收集数据、整理数据、统计分析数据等。

因此,建模者需要具备一定的数据分析能力,如数据挖掘、统计分析等。

3. 系统思维能力:数学建模需要从整体上把握问题的本质
和复杂性,涉及到系统思维能力。

建模者需要能够将问题
拆解成多个子问题,并对它们进行分类、分析和优化,最
终求解整个问题。

4. 编程能力:在数学建模中,常常需要使用计算机编程来实现数学模型的求解。

因此,建模者需要具备一定的编程能力,如使用MATLAB、Python等编程语言进行算法实现和数据处理。

5. 创新能力:数学建模是解决实际问题的方法,需要建模者拥有一定的创新能力。

建模者需要能够运用已有的数学理论和方法,创造性地将其应用于实际问题,并提出新的解决方案。

综上所述,数学建模基础包括数学知识、数据分析能力、系统思维能力、编程能力和创新能力等方面。

这些基础能力是进行有效数学建模的必备条件。

数学建模课程内容

数学建模课程内容
■用Matlab解微分方程
2
微分 3. 运用这些规律列出方程和定解条件。 HOW? 方程 建模 采用如下一种或多种方法进行微分方程建模:
(i)按规律直接列方程 —— 在数学、力学、物理、化学等学科
中许多自然现象所满足的规律已为人们所熟悉,并直接由微分方程所描述。
(ii)微元分析法与任意区域上取积分的方法——自然
假设
建模
区分已感染者(病人)和未感染者(健康人)
1)总人数N不变,病人和健康
人的 比例分别为 i(t), s(t)
SI 模型
2)每个病人每天有效接触人数
为, 且使接触的健康人致病 ~ 日接触率
N[i(t t) i(t)] [s(t)]Ni(t)t
di si
dt
s(t) i(t) 1
di dt
传染病蔓延 1/σ ~
传染病不蔓延 阈值
14
模型4 SIR模型 预防传染病蔓延的手段
传染病不蔓延的条件——s0<1/ • 提高阈值 1/ 降低 (=/)
,
(日接触率) 卫生水平
(日治愈率) 医疗水平
• 降低 s0
的估计
提高 r0
s0 i0 r0 1
s0
i0
s
1
ln s s0
27
上图中,共有三条曲线,代表三个 状态参数随时间变化的图形
上图中只出现一条曲线,此曲线代表以 三个状态参数为坐标、以时间为参数的 一条三维空间中的曲线
28
小提示: 要观看Lorenz 混沌方程随时间而变的动画, 可在MATLAB 命令窗口下执行"lorenz"命令。
29
界中也有许多现象所满足的规律是通过变量的微元之间的关系式来表达的。 可是通过微元分析法,利用已知的规律建立一些变量(自变量与未知函数) 的微元之间的关系式,然后再通过取极限的方法得到微分方程,或等价地 通过任意区域上取积分的方法来建立微分方程。

数学建模知识

数学建模知识

数学建模知识——之新手上路一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。

不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。

”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达式。

一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。

例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。

今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。

特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。

因此数学建模被时代赋予更为重要的意义。

二、建立数学模型的方法和步骤1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。

如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。

3. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。

这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。

不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。

数学建模基础

数学建模基础

数学建模基础引言数学建模是一种将现实中的问题转化为数学形式,通过数学模型来研究和解决问题的方法。

在现代科学和工程领域中,数学建模被广泛应用于各种领域,例如经济学、物理学、生物学、工程学等等。

本文将介绍数学建模的基础知识,包括数学建模的步骤、数学模型的分类、以及常用的数学建模方法和技巧。

数学建模的步骤数学建模的步骤通常分为以下几个阶段:1.理解问题:首先需要明确问题的背景和目标,了解问题的约束条件和限制,确保对问题的理解准确和全面。

2.建立数学模型:根据问题的特点和所需求解的内容,选择合适的数学模型来描述问题。

常见的数学模型包括方程模型、优化模型、概率模型等等。

3.分析模型:对建立的数学模型进行分析,探索模型的性质和特点。

可以通过数学理论、数值方法、计算机模拟等手段来进行模型的分析。

4.模型求解:根据所选的模型和分析的结果,求解模型并得到问题的解答。

求解方法可以是解析求解、数值求解或者结合两者的混合求解方法。

5.模型验证和评估:验证所建立的数学模型是否合理和可信,并评估模型的准确性和可用性。

可以通过实际数据的比对、模型的稳定性测试等手段来验证和评估模型。

6.结果解释和应用:根据所得的模型解答,解释结果的意义和影响,并探讨解答对实际问题的应用价值。

重要的是将数学模型的结果与实际问题相对应,确保解答的可行性和可操作性。

数学模型的分类数学模型可以按照多种方式进行分类。

常见的分类方式包括:1.静态模型和动态模型:静态模型是对问题在一个特定时刻或时间段内进行分析,不考虑时间的变化;动态模型则对问题随时间的变化进行建模和分析。

2.离散模型和连续模型:离散模型是对问题中离散事件或对象进行建模,通常使用离散数学工具进行分析;连续模型则对问题中连续的变量或对象进行建模,通常使用微积分和微分方程等连续数学工具进行分析。

3.硬性约束模型和软性约束模型:硬性约束模型是对问题中严格的限制条件进行建模,不允许违反;软性约束模型则对问题中某些条件进行宽松处理,允许有一定的违反程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。

不过我们可以给出如下定义:&ldquo;数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。

&rdquo;具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。

一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。

例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。

今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。

特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。

因此数学建模被时代赋予更为重要的意义。

二、建立数学模型的方法和步骤1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。

如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。

3. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。

这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。

不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。

4. 模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。

一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。

5. 模型分析对模型解答进行数学上的分析。

&ldquo;横看成岭侧成峰,远近高低各不同&rdquo;,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。

还要记住,不论那种情况都需进行误差分析,数据稳定性分析。

三、数模竞赛出题的指导思想传统的数学竞赛一般偏重理论知识,它要考查的内容单一,数据简单明确,不允许用计算器完成。

对此而言,数模竞赛题是一个&ldquo;课题&rdquo;,大部分都源于生产实际或者科学研究的过程中,它是一个综合性的问题,数据庞大,需要用计算机来完成。

其答案往往不是唯一的(数学模型是实际的模拟,是实际问题的近似表达,它的完成是在某种合理的假设下,因此其只能是较优的,不唯一的),呈报的成果是一编&ldquo;论文&rdquo;。

由此可见&ldquo;数模竞赛&rdquo;偏重于应用,它是以数学知识为引导计算机运用能力及文章的写作能力为辅的综合能力的竞赛。

四、竞赛中的常见题型赛题题型结构形式有三个基本组成部分:1. 实际问题背景涉及面宽&mdash;&mdash;有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。

一般都有一个比较确切的现实问题。

若干假设条件有如下几种情况:1)只有过程、规则等定性假设,无具体定量数据;2)给出若干实测或统计数据;3)给出若干参数或图形;4)蕴涵着某些机动、可发挥的补充假设条件,或参赛者可以根据自己收集或模拟产生数据。

要求回答的问题往往有几个问题,而且一般不是唯一答案。

一般包含以下两部分:1)比较确定性的答案(基本答案);2)更细致或更高层次的讨论结果(往往是讨论最优方案的提法和结果)。

五、提交一篇论文,基本内容和格式是什么?提交一篇论文,基本内容和格式大致分三大部分:1. 标题、摘要部分题目&mdash;&mdash;写出较确切的题目(不能只写A题、B题)。

摘要&mdash;&mdash;200-300字,包括模型的主要特点、建模方法和主要结果。

内容较多时最好有个目录。

2. 中心部分1)问题提出,问题分析。

2)模型建立:①补充假设条件,明确概念,引进参数;②模型形式(可有多个形式的模型);③模型求解;④模型性质;3)计算方法设计和计算机实现。

4)结果分析与检验。

5)讨论&mdash;&mdash;模型的优缺点,改进方向,推广新思想。

6)参考文献&mdash;&mdash;注意格式。

3. 附录部分计算程序,框图。

各种求解演算过程,计算中间结果。

各种图形、表格。

六、参加数学建模竞赛是不是需要学习很多知识?没有必要很系统的学很多数学知识,这是时间和精力不允许的。

很多优秀的论文,其高明之处并不是用了多少数学知识,而是思维比较全面、贴合实际、能解决问题或是有所创新。

有时候,在论文中可能碰见一些没有学过的知识,怎么办?现学现用,在优秀论文中用过的数学知识就是最有可能在数学建模竞赛中用到的,你当然有必要去翻一翻。

具体说来,大概有以下这三个方面:第一方面:数学知识的应用能力归结起来大体上有以下几类:1)概率与数理统计2)统筹与线轴规划3)微分方程;还有与计算机知识交叉的知识:计算机模拟。

上述的内容有些同学完全没有学过,也有些同学只学过一点概率与数理统计,微分方程的知识怎么办呢?一个词&ldquo;自学&rdquo;,我曾听到过数模评卷的负责教师范毅说过&ldquo;能用最简单浅易的数学方法解决了别人用高深理论才能解决的答卷是更优秀的答卷&rdquo;。

第二方面:计算机的运用能力一般来说凡参加过数模竞赛的同学都能熟练地应用字处理软件&ldquo;Word&rdquo;,掌握电子表格&ldquo;Excel&rdquo;的使用;&ldquo;Mathematica&rdquo;软件的使用,最好还具备语言能力。

这些知识大部分都是学生自己利用课余时间学习的。

第三方面:论文的写作能力前面已经说过考卷的全文是论文式的,文章的书写有比较严格的格式。

要清楚地表达自己的想法并不容易,有时一个问题没说清楚就又说另一个问题了。

评卷的教师们有一个共识,一篇文章用10来分钟阅读仍然没有引起兴趣的话,这一遍文章就很有可能被打入冷宫了。

七、小组中应该如何分工?传统的标准答案是&mdash;&mdash;数学,编程,写作。

其实分工不用那么明确,但有个前提是大家关系很好。

不然的话,很容易产生矛盾。

分工太明确了,会让人产生依赖思想,不愿去动脑子。

理想的分工是这样的:数学建模竞赛小组中的每一个人,都能胜任其它人的工作,就算小组只剩下她(他)一个人,也照样能够搞定数学建模竞赛。

在竞赛中的分工,只是为了提高工作的效率,做出更好的结果。

具体的建议如下:一定要有一个人脑子比较活,善于思考问题,这个人勉强归于数学方面吧;一定要有一个人会编程序,能够实现一些算法。

另外需要有一个论文写的比较好,不过写不好也没关系,多看一看别人的优秀论文,多用几次word,V isio就成了。

论文写作:一、写好数模答卷的重要性1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。

2. 答卷是竞赛活动的成绩结晶的书面形式。

3. 写好答卷的训练,是科技写作的一种基本训练。

二、答卷的基本内容,需要重视的问题1.评阅原则假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。

2.答卷的文章结构1)摘要。

2)问题的叙述,问题的分析,背景的分析等。

3)模型的假设,符号说明(表)。

4)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。

5)模型的求解计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。

6)结果表示、分析与检验,误差分析,模型检验。

7)模型评价,特点,优缺点,改进方法,推广。

8)参考文献。

9)附录、计算框图、详细图表。

3. 要重视的问题1)摘要。

包括:a. 模型的数学归类(在数学上属于什么类型);b. 建模的思想(思路);c. 算法思想(求解思路);d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验…………);e. 主要结果(数值结果,结论;回答题目所问的全部&ldquo;问题&rdquo;)。

▲ 注意表述:准确、简明、条理清晰、合乎语法、字体工整漂亮;打印最好,但要求符合文章格式。

务必认真校对。

2)问题重述。

3)模型假设。

根据全国组委会确定的评阅原则,基本假设的合理性很重要。

a. 根据题目中条件作出假设b. 根据题目中要求作出假设关键性假设不能缺;假设要切合题意。

4)模型的建立。

a. 基本模型:ⅰ)首先要有数学模型:数学公式、方案等;ⅱ)基本模型,要求完整,正确,简明;b. 简化模型:ⅰ)要明确说明简化思想,依据等;ⅱ)简化后模型,尽可能完整给出;c. 模型要实用,有效,以解决问题有效为原则。

数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。

ⅰ)能用初等方法解决的、就不用高级方法;ⅱ)能用简单方法解决的,就不用复杂方法;ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。

d.鼓励创新,但要切实,不要离题搞标新立异。

数模创新可出现在:▲ 建模中,模型本身,简化的好方法、好策略等;▲ 模型求解中;▲ 结果表示、分析、检验,模型检验;▲ 推广部分。

e.在问题分析推导过程中,需要注意的问题:ⅰ)分析:中肯、确切;ⅱ)术语:专业、内行;ⅲ)原理、依据:正确、明确;ⅳ)表述:简明,关键步骤要列出;ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。

5)模型求解。

a. 需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密。

b. 需要说明计算方法或算法的原理、思想、依据、步骤。

若采用现有软件,说明采用此软件的理由,软件名称。

c. 计算过程,中间结果可要可不要的,不要列出。

d. 设法算出合理的数值结果。

6)结果分析、检验;模型检验及模型修正;结果表示。

a. 最终数值结果的正确性或合理性是第一位的;b. 对数值结果或模拟结果进行必要的检验;结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进。

相关文档
最新文档