概率论论文模板
概率论在生活中的应用 毕业论文

学号:1001114119概率论在生活中的应用学院名称:数学与信息科学学院专业名称:数学与应用数学年级班别: 10级二班姓名:指导教师:2014年3月概率论在生活中的应用摘要概率论作为数学的一个重要部分,在现实生活中的应用越来越广泛,同样也发挥着越来越重要的作用。
加强数学的应用性,让学生学用数学的知识和思维方法去看待,分析,解决实际生活的问题,在数学活动中获得生活经验。
这是当前数学课程改革的大势所趋。
加强应用概率的意识,不仅是学习的需要,更是工作生活必不可少的。
人类认识到随机现象的存在是很早的,但书上讲得都是理论知识,我们不仅仅要学习好理论知识,应用理论来实践才是重中之重。
学好概率论,并应用概率知识解决现实问题已是我们必要的一种生活素养。
(宋体,小四,1.5倍行距)关键词随机现象;条件概率;极限定理;古典概率The applyment of the theory of probability in daily life Abstract Probability theory as an important part of mathematics,in the life of the sue more and more widely, also play an increasingly important role. Strengthen mathematics applied, lets the student with mathematical knowledge andmathematical thinking method to treat, analysis, solve practical life in mathematics activity, gain life experience. This is the current trend of curriculum reform. Strengthen the consciousness of the application of probability, not only learning, but working life is indispensable. People realize the existence of random phenomenon is early, but telling the theory knowledge, we should not only study the theory knowledge well, the application of theory to practice is more important. Learn probability theory, and using probability knowledge to solve realiticl problems is already a life we necessary accomplishment.Keywords Random phenomenon; Conditional probability; Limit theorem. The classical probability前 言概率论与我的生活息息相关。
大学概率论论文

微积分在概率论与数理统计中的应用摘要: 大二概率论课程结课了,在这门课上我学到了一些关于概率论和数理统计的许多知识。
这些知识既可以对我的专业方面有很大的指导作用、强化了我相关的数理逻辑能力。
课后,在兴趣的激励下,我从课本、习题以及相关网络资源中找到了更多关于概率论与数理统计的知识。
现通过这篇论文对我学习过程中的体会,并结合以往的数学知识(重点在微积分部分)关键词:概率论与数理统计 其他数学知识 微积分概率论与数理统计是研究随机现象统计规律的一门数学学科,已在包括控制、通信、生物、物理、力学、金融、社会科学、以及其他工程技术科学等诸多领域中获得了广泛的应用。
学习和掌握概率论与数理统计的基本理论和基本方法并将应用于科学研究的和工程实际中,是社会发展对高素质人才培养提出的必然要求。
----概率论与数理统计(前言) 一般认为, 概率论源于赌博问题, 创立于 1654年7 月29 日 。
考古证实骰子古而有之, 那么为何直到17 世纪概率论才诞生? 历史表明概率论的诞生和发展需要先进的数学技术和理性的思考。
众所周知, 概率论的大厦是建筑在微积分的地基之上的, 如在函数关系的对应下, 随机事件先是被简化为集合, 继之被简化为实数, 随着样本空间被简化为数集, 概率相应地由集函数约化为实函数. 以函数的观点衡量分布函数F(x),F(x)的性质是十分良好的: 单调有界、 可积、 几乎处处连续、 几乎处处可导. 因之, 微积分中有关函数的种种思想方法可以通畅无阻地进入概率论领域. 随机变量的数字特征、 概率密度与分布函数的关系、 连续型随机变量的计算等, 显然借鉴或搬运了微积分的现有成果. 又如概率论中运用微积分的基础 ) ) ) 极限论的地方也非常多, 诸如分布函数的性质、大数定律、 中心极限定理等. 总之, 微积分的思想方法渗透到了概率论的各个方面, 换言之, 没有微积分的推动, 就没有概率论的公理化与系统化, 概率论就难以形成一门独立的学科. 微积分与概率论的亲缘关系, 决定了概率论的确定论的特征. 但是作为微积分的一门后继课程, 概率论并非按微积分中的思维方法发展下去,而是另辟蹊径, 其发展路径与微积分大相径庭, 最终成为了随机数学的典型代表, 具备了与微积分相当的地位. 更因其非线性、 反因果的非理性特征, 显得比经典的微积分更具有时代精神. 而作为确定性数学典型代表的微积分对概率论的发展具有很大作用, 因此讨论微积分在概率论中的地位, 探究概率论与微积分的联系及方法的相互应用作用巨大。
概率论总结论文

概率论总结论文第一篇:概率论总结论文概率论与数理统计在生活中的应用摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。
生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。
数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。
关键字:概率、保险、彩票、统计、数据、应用概率论与数理统计是研究随机现象统计规律的一门数学学科,是对随机现象的统计规律进行演绎和归纳的科学。
随着社会的不断发展,概率论与数理统计的知识越来越重要,运用抽样数据进行推断已经成为现代社会一种普遍适用并且强有力的思考方式。
目前,概率论与数理统计的很多原理方法已被越来越多地应用到交通、经济、医学、气象等各种与人们生活息息相关的领域。
本文将就概率论与数理统计的方法与思想,在日常生活中的应用展开一些讨论,,推导出某些表面上并非直观的结论,从中可以看出概率方法与数理统计的思想在解决问题中的高效性、简捷性和实用性。
一、彩票问题“下一个赢家就是你!”这句响亮的具有极大蛊惑性的话是大英帝国彩票的广告词。
买一张大英帝国彩票的诱惑有多大呢?只要你花上1英镑,就有可能获得2200万英镑!一点小小的投资竟然可能得到天文数字般的奖金,这没办法不让人动心,很多人都会想:也许真如广告所说,下一个赢家就是我呢!因此,自从1994年9月开始发行到现在,英国已有超过90%的成年人购买过这种彩票,并且也真的有数以百计的人成为百万富翁。
如今在世界各地都流行着类似的游戏,在我国各省各市也发行了各种福利彩票、体育彩票,各地充满诱惑的广告满天飞,而报纸、电视上关于中大奖的幸运儿的报道也热闹非凡,因此吸引了不计其数的人踊跃购买。
概率论与数理统计论文(优秀3篇)

概率论与数理统计论文(优秀3篇)【摘要】针对近年来医学院校招生规模不断扩大,学生基础知识和学习能力参差不齐的实际状况,探讨了概率论与数理统计分层次教学的必要性,提出了医学院校概率论与数理统计课程分层教学模式,总结了在概率与统计教学中利用现代化信息技术进行分层次教学的实践经验。
【关键词】因材施教;素质教育;概率论与数理统计;分层次教学早在2500年以前,儒家代表人物孔子把教育内容分为德行、言语、政事、文学四科,其中以德行为根本。
而德育方法由不同层次的方法构成的,特别是方法论层次上的德育方法,如因材施教法。
既然不同的学生自身的特点不同,那么在教学中就应采用不同的教育,我们所提出的分层次教学思想,就源于孔子的因材施教。
近年来,随着教育的深入,本科教育从精英化向大众化进行转变,高等院校招生规模大幅度地增加,医科院校入校学生的数学基础和学习能力参差不齐。
而大学生由于其专业对概率与数理统计知识的要求不同,其学习目标和态度不尽相同,这就使得大学生对该课程的需求有了进一步的分化;同时由于不同学生的数学基础和对数学的兴趣爱好也不尽相同,对数学学习的重视程度和投入有很大差别。
在长期的教学实践中我们深刻地体会到,为了在有限的课堂教学时间内尽可能地满足各层次学生学习的需要,满足各专业后续课程学习的前提下,最大程度地调动学生的学习积极性,必须推行分层次教学,提高数学教学的质量[1,2]。
1概率论与数理统计分层次教学研究的背景自1995年国家教委立项研究“面向21世纪非数学类专业数学课程教学内容与课程体系”以来,对于数学教育在大学教育中应有的作用,国内数学教育界逐渐认识到,我国高等院校的规模水平、专业设置、地区差异、师资力量、生源优劣都相去甚远。
而随着我国高等教育大众化趋势的步伐加快,这些差距到21世纪更加凸显,分层次教学法的提出必然是大学数学教学的规律。
这也是我们在进行大学数学分层次教学研究时的一个基本出发点。
我校在概率论与数理统计的教学实践中提出分层次教学,是在原有的师资力量和学生水平的条件下,通过分层次教学,充分满足各专业各水平不同层次学生的数学素质的要求,最大限度地挖掘学生的潜能,引导学生发挥其优势,使每个学生都能获得所需的概率统计知识,同时能够充分实现学校的教育功能和服务功能,达到教书、育人的和谐统一[3]。
数学系概率论数理统计毕业论文

数学系概率论数理统计毕业论文概率论与数理统计是所有高等院校的理工、经济管理、金融类专业本科阶段开设的一门必修数学课程。
下文是店铺为大家整理的关于数学系概率论数理统计毕业论文的范文,欢迎大家阅读参考!数学系概率论数理统计毕业论文篇1概率论与数理统计教学浅谈摘要:随着本科院校近年来不断扩大招生规模,在一定程度上影响了生源质量。
与此同时,普通高等院校在精简课程方面也做了较大调整。
在此新形势下,作为一名的教师,针对普通高等院校概率论与数理统计课程的教学改革提出相关见解,认为目前普通高等院校,尤其是一些偏应用型的工科院校,在概率论与数理统计课程的教学中,不应该死守教师满堂讲解的教学模式,而是应该提供给学生应用的机会,设立教学实验课;教学中应突出实际应用,与数学建模相揉合,以达到更好的教学以及学习效果。
关键词:概率论与数理统计教学实验SAS软件揉合数学建模概率论与数理统计是工科院校的重要课程,但是由于课程自身的特点决定了学生在学习过程中常常会感觉概念太抽象,理解起来相当费劲。
如果不能很好地理解概念,那么后续学习就很可能会出现一系列的问题。
大多数的时候,在处理习题以及在考试中就会出现很多不必要的错误,根源在于没有很好地理解概念,思维没有得到相应地拓展。
教师在整个教学环节,包括课前备课中必须要思考的,包括如何安排教学,使得学生在学习过程中,能够愿意学习这门课程,能够接受该课程的理论体系。
通过近十年来对概率论与数理统计课程的教学,笔者认为可以从以下几个方面来把握。
1 建立良好开端概率论与数理统计作为一门数学学科,会让大多数学生在心理上产生莫名的抵触。
在以前的教学过程中,遇到过一些学生,自己认为数学就是很难,很难,太抽象,从开始上课就觉得自己肯定学不好。
很显然,这并不是一个好预兆。
我们都知道,兴趣是最好的老师。
一件事情难或者易,都是和做这件事情的人的主观意愿有很大关系。
如果愿意去做,有兴趣,那么难题会变得简单。
同样,如果不愿意去做,迫于外界压力不得不去做,即使是很简单的问题,也不见得就会得到圆满的解决。
哈工大概率论小论文

《概率论与数理统计》课程总结混沌中的统一——概率中的维度观及在与微观粒子中的应用摘要众所周知,宇宙是一个无序的混沌空间,其间的粒子似乎在无规则的运动,人们并不知道它下一个时刻会运动到哪一个位置。
但事实上,粒子运动往往遵循某种分布规律,人们可以通过观察粒子在某处出现的频率来大致推知粒子在某一时刻出现的区域,这就是概率。
而在生活中,每个事件的发生都代表着一种可能,每个事件的无数种可能就构成了更高一层的空间,这就是维度。
不同的空间,不同的维度,概率论都在其中扮演着不可或缺的重要角色。
关键词:分布规律;频率;概率;可能;维度。
第一部分概率论与微观粒子的运动规律引言:长久以来,人们对于事物的认知都处于机械论科学思维的指导下,认为一切事物的规律都是固定可预测的。
严格决定论是机械论科学思维方式的主要特点。
这种思维方式把组成物质的最终实体作为自己的考察对象,而科学所要解决的基本上是带有两个变量的问题, 确定为数不多的客体之间的因果序列。
在严格决定性理论中,所有的概念和联系都被认为是属于同一层次中的东西,都可以精确表述它们之间的关系。
大自然的规律是数学规律,上帝是几何学家。
[1]控制论创始人维纳(N orbert Wiener)认为人类科学和认知的历史历程中,严格决定论的科学思维方式早在古巴比伦时期最古老的天文学中就已经出现了。
那是的人们在这种思维的指引下,认为日食、月食等自然天象都是在可预测的周期中出现的,太阳系中的一切事件的模型,都像是轮子在转动,周而复始的出现或发生。
这在托勒密的本轮说和哥白尼的轨道说中都是如此。
天体的音乐顺唱和倒唱都是一样的。
除了初始位置和方向外, 顺转和逆转的两个太阳仪之间的运动没有任何差别, 它们都是被严格决定了的。
最后, 这一切被牛顿归结为一组抽象公设并推演出一门严格的力学。
于是,宇宙被牛顿和他的力学描写为一台结构严密,按照某种定律精确地发生的机器,未来是由过去严格决定的。
但随着人们对自然科学的认识的不断深入,人们渐渐察觉到,万物都不是永恒的,牛顿力学很大程度上只是宇宙的某一种状态。
哈工大概率论小论文

浅析足球分组过程中的概率问题最近参与组织了一次足球赛事,其中的抽签环节引起了我的一些思考。
足球比赛一般分为联赛和杯赛两种形式,其中联赛规则下,一支球队要与其他所有球队一一进行比赛,所以一个联赛中的两支球队A队和B队相遇是必然事件。
而杯赛中,不管是分组淘汰制还是单轮淘汰制都需要抽签决定对手,也就是说在一个杯赛中A队与B队相遇是随机事件,这就涉及到了概率问题。
下面我就对杯赛中两队相遇在不同淘汰规则下的概率简单谈一谈。
一、单轮淘汰制(假定32支球队参加)1.比赛规则:每轮球队两两进行比赛,单场淘汰,胜者进入到下一轮比赛,每轮比赛对手皆由抽签产生。
2.概率计算:首轮相遇的概率为1/31;第二轮相遇概率为(1/15)*两队晋级第二轮概率;第三轮概率为(1/7)*两队晋级到第三轮的概率;第四轮概率为(1/3)*两队晋级到第四轮概率;第五轮也就是决赛相遇概率为两队同时进决赛概率。
3.计算结果(假定所有比赛中双方获胜概率都为50%):第一轮相遇1/31,第二轮1/62,第三轮1/124,第四轮1/248,第五轮1/496。
由于被淘汰而不会相遇的概率是:15/16。
二、小组淘汰制(假定32支球队参加)1. 比赛规则:先进行小组抽签,每小组四支球队,小组前两名出线进行单轮淘汰。
2. 概率计算:小组赛相遇概率为1/31,第一轮淘汰赛相遇概率为(1/15)*两队分别小组第一、第二出线概率,第二轮淘汰赛相遇概率为(1/7)*两队晋级第二轮淘汰赛概率,半决赛相遇的概率为两队进半决赛的概率*1/3,决赛两队必相遇,所以相遇概率为进决赛概率。
3. 计算结果(假定所有比赛中双方获胜概率都为50%):小组赛1/31,第一轮淘汰赛1/248,第二轮淘汰赛1/496,半决赛1/992,决赛1/1984,由于被淘汰不会相遇的概率为1905/1984。
三、总结分析以上两种赛制是目前所有赛制的基础,不过目前各大杯赛如:世界杯、欧冠、各大洲的杯赛等等都会加入各种抽签规则。
概率论与数理统计论文

概率论与数理统计论文•相关推荐概率论与数理统计论文(精选16篇)在学习、工作生活中,大家最不陌生的就是论文了吧,借助论文可以有效训练我们运用理论和技能解决实际问题的的能力。
那么,怎么去写论文呢?下面是小编为大家收集的概率论与数理统计论文,欢迎阅读,希望大家能够喜欢。
概率论与数理统计论文篇1摘要:在现实世界中,随着科学的发展,数学在生活中的应用越来越广,无处不在。
而概率统作为数学的一个重要分支,同样也在发挥着越来越广泛的用处。
概率统计正广泛地应用到各行各业:买保险、排队问题、患遗传病、天气预报、经济预测、交通管理、医疗诊断等问题,成为我们认识世界、了解世界和改造世界的工具,它与我们的实际生活更是息息相关,密不可分。
关键词:概率论,概率论的发展与应用正文一、概率论的起源说起概率论起源的故事,就要提到法国的两个数学家。
一个叫做帕斯卡,一个叫做费马。
帕斯卡是17世纪有名的“神童”数学家。
费马是一位业余的大数学家,许多故事都与他有关。
1651年,法国一位贵族梅累向法国数学家、物理学家帕斯卡提出了一个十分有趣的“分赌注”问题。
这两个赌徒说,他俩下赌金之后,约定谁先赢满5局,谁就获得全部赌金。
赌了半天,A赢了4局,B赢了3局,时间很晚了,他们都不想再赌下去了。
那么,这个钱应该怎么分?是不是把钱分成7份,赢了4局的就拿4份,赢了3局的就拿3份呢?或者,因为最早说的是满5局,而谁也没达到,所以就一人分一半呢?这个问题可把他难住了,他苦苦思考了两三年,到1654年才算有了点眉目。
于是他写信给的好友费马,两人讨论结果,取得了一致的意见:赌友应得64金币的。
通过这次讨论,开始形成了概率论当中一个重要的概念——数学期望。
这时有位荷兰的数学家惠更斯在巴黎听到这件新闻,也参加了他们的讨论。
讨论结果,惠更斯把它写成一本书叫《论赌博中的计算》(1657年),这就是概率论最早的一部著作。
二、概率论的发展概率论的应用在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指导教师签字:
年 月 日
概率论与数理统计
课程论文
课程名称:概率论与数理统计
院系:计算机科学与信息工程学院
学生姓名:
学号:
专业班级:
*******
2016年6月日
.
.
(给出二级目录,宋体四号,1.5倍行距)
标题
摘要:<宋体小四>
关键词:<3~4个><宋体小四,1.5倍行距>
一、生活实例
(宋体小四,1.5倍行距)
二、数学解析
三、收获与致谢
(宋体小四,1.5倍行距)
四、参考文献
(宋体五号,1.5倍行距,参考以下格式)
[1]
[2]
指导教师评语:
1、课程论文报告:
a、内容: 不完整□ 完整 □ 详细 □
b、方案设计: 较差 □ 合理 □ 非常合理□
c、实现: 未实现□ 部分实现□ 全部实现□
d、文档格式: 不规范□ 基本规范□ 规范 □
2、出勤: 全勤 □ Байду номын сангаас勤次
3、论文分析:
a、未能完全理解题目,情况较差 □
b、部分理解题目,部分问题说明正确 □
c、理解题目较清楚,问题说明基本正确 □
d、理解题目透彻,问题说明非常清晰 □
设计报告成绩:,占总成绩比例:50%
设计其它环节成绩:
环节名称:出勤,成绩:,占总成绩比例:20%
环节名称:答辩,成绩:,占总成绩比例:30%