哈工大概率论小论文

合集下载

哈工大概率论与数理统计第三版

哈工大概率论与数理统计第三版

哈工大概率论与数理统计第三版《哈工大概率论与数理统计第三版》是一本深入浅出的数学基础教材,它囊括了概率论和数理统计的相关概念、原理和应用。

本书内容丰富,涵盖了多个重要的概念和定理,对于深入理解和掌握概率论和数理统计的知识具有重要意义。

在接下来的文章中,我将以从简到繁的方式,逐步深入探讨《哈工大概率论与数理统计第三版》中的一些重要内容和理论,帮助读者更好地理解这本教材,并对概率论和数理统计有一个全面、深刻的认识。

一、概率论的基本概念和原理在《哈工大概率论与数理统计第三版》中,概率论的基本概念和原理是学习的重点之一。

概率论作为一门独立的数学学科,是研究随机现象的规律性和统计规律的一门学科,其理论和方法对于解决实际问题具有重要的应用价值。

教材中介绍了概率的定义、性质和常见的概率分布,如离散型随机变量和连续型随机变量的概率分布,以及它们的性质和应用。

通过对这些基本概念和原理的学习,读者可以建立起对概率论的基本认识和理解。

二、数理统计的基本概念和方法除了概率论,数理统计是另一个重要的学习内容。

数理统计是利用数学的方法对统计数据进行分析和推断的一门学科,是概率论的一种应用。

在《哈工大概率论与数理统计第三版》中,数理统计的基本概念和方法也得到了详细的介绍和阐述。

教材中介绍了样本和总体的概念,以及常见的统计推断方法,如点估计、区间估计和假设检验等。

通过对这些内容的深入学习,读者可以了解数理统计的基本原理和方法,有助于他们更好地应用数理统计的知识进行实际问题的分析和解决。

三、概率论与数理统计的应用除了学习概率论和数理统计的基本概念和原理,教材中还介绍了概率论和数理统计在实际问题中的应用。

在金融、医学、工程等领域,概率论和数理统计的方法被广泛应用于数据分析、风险评估、质量控制等方面。

通过学习这些应用实例,读者可以更好地理解概率论和数理统计的实际应用,并将理论知识转化为实际工作中的技能。

总结回顾通过本文的阐述,我希望读者对《哈工大概率论与数理统计第三版》有了更深入的了解和认识。

2024年哈工大概率论与数理统计学习心得(2篇)

2024年哈工大概率论与数理统计学习心得(2篇)

2024年哈工大概率论与数理统计学习心得学完《概率论与数理统计》这门课程,了解掌握了一些相关的基础知识与方法,并对该学科有了更加深刻的认识,实在是获益匪浅。

本文围绕概率论发展、对本课程学习的一些想法、个人感悟与收获等方面对本课程学习过程中的一些心得体会进行了简单的总结。

一、概率论与数理统计发展简史概率是与人们的日常生产生活联系十分紧密的一门学科。

因此自人类文明发端以来,概率这个概念就已被人们有意无意地渗透到了日常生活中。

人们常说估计如何如何,这里的“估计”包含着概率的含义,只不过在大多数人那里“概率”没有形成独立的知识体系,人们只是根据生活经验对他进行简单地应用而已。

随着技术革____带来的科技的飞速发展,概率论才逐渐形成一套完备的知识体系。

数理统计是在概率论的基础上发展起来的,因此发展时间也稍微晚些。

顾名思义,概率论是一门研究事情发生的可能性大小的学问。

对概率论的研究始于意大利的文艺复兴的____中人们要求找到掷骰子决定胜负的规则。

随着18、____世纪科学的进步,游戏起源的概率论被应用到这些领域中,这也极大推动了概率论本身的发展。

后来,瑞士数学家伯努利建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。

这标志着概率论成为了数学的一个分支。

随后法国数学家棣莫弗和拉普拉斯又导出了中心极限定理的原始形式。

之后,拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。

____世纪末,俄国数学家切比雪夫、马尔可夫、李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了____实际中遇到的许多随机变量近似服从正态分布。

____世纪初在物理学的刺激下,人们开始研究随机过程。

这方面柯尔莫哥洛夫、马尔可夫、辛钦、莱维及费勒等人作了杰出的贡献。

数理统计是伴随着概率论的发展而发展起来的一个数学分支,其发展大致可分为古典时期、近代时期和现代时期三个阶段。

哈工大概率论小论文

哈工大概率论小论文

浅谈概率论姓名航天学院电子信息科学与技术学号【摘要】:概率论与数理统计课程是工科大学的一门应用性很强的必修基础课程。

通过近一个学期的学习,我对概率论也有了一些粗浅的认识,本文将从概率论的历史和发展讲起,接着对二项分布、泊松分布和正态分布之间的关系进行一个简单的论述,然后将概率论的一些概念与以往学过的概念进行类比,最后对概率论在工科数学分析中的几个巧用进行说明,并附加了几个实例。

【关键词】:二项分布;泊松分布;正态分布;类比;级数;广义积分1 概率论的起源和发展概率论不仅是当代科学的重要数学基础之一,而且还是当代社会和人类日常生活最必需的知识之一。

正如十九世纪法国著名数学家拉普拉斯所说:“对于生活中的大部分, 最重要的问题实际上只是概率问题。

你可以说几乎我们所掌握的所有知识都是不确定的, 只有一小部分我们能确定地了解。

甚至数学科学本身, 归纳法、类推法和发现真理的首要手段都是建立在概率论的基础之上的。

因此,整个的人类知识系统是与这一理论相联系的。

”然而, 饶有趣味的是, 这门被拉普拉斯称为“人类知识的最重要的一部分”的数学却直接地起源于一种相当独特的人类行为的探索: 人们对于机会性游戏的研究思考。

所谓机会性游戏就是靠运气取胜一些游戏, 如赌博等。

这种游戏不是哪一个民族的单独发明, 它几乎出现在世界各地的许多地方, 如埃及、印度、中国等。

著名的希腊历史学家希罗多德在他的巨著《历史》中写道: 早在公元前1500年, 埃及人为了忘却饥饿的困扰, 经常聚集在一起掷骰子和紫云英,这是一种叫做“猎犬与胡狼”的游戏, 照一定规则,根据掷出各种不同的紫云英而移动筹码。

大约从公元前1200年起, 人们把纯天然的骨骼(如脚上的距骨) 改进成了立方体的骰子。

[1]二十世纪以来, 概率论逐渐渗入到自然科学、社会科学、以及人们的日常生活等几乎无所不在的领域中去.无论在研究领域, 还是教育领域, 它愈来愈成为一门当今最重要的学科之一。

从递推概率问题到概率型动态规划-哈工大《概率论与数理统计》小论文

从递推概率问题到概率型动态规划-哈工大《概率论与数理统计》小论文

授课教师:⺩王勇概率论与数理统计2014年12⽉月16⽇日从递推概率问题到概率型动态规划计算机科学与技术学院 1336101班杨志⻜飞学号:1130310217在《概率论与数理统计》课上,曾讲过这样⼀一道考试题:在x 轴上有⼀一个质点可以在整个数轴的整数点上游动,记X n 表⽰示时刻n 时质点的位置。

该质点移动的规则是:每隔单位时间,分别以概率p 及概率q =1 -p (0 < p < 1) 向正的及负的⽅方向移动⼀一个单位。

假设质点在时刻t = 0时,位于a,即X0= a (a > 0),⽽而在0和a + b (b > 0)处各有⼀一个吸收壁(即质点移动到0和a + b时,将不能再移动)。

求质点的初始位置为a⽽而最终在a +b被吸收的概率u a .(提⽰示: u n = pu n+1 + qu n-1, n = 1,2,…,a + b - 1. u0 = 0, u a+b = 1)这是⼀一道递推求解的概率问题。

其解法,是写出u n、u n+1和u n-1的关系式(提⽰示中已经给出),利⽤用p + q =1,将u n写成(p + q)u n,推出p(u n+1 - u n)= q(u n - u n-1)。

然后,分别讨论p = q = 1/2和p ≠ q两种情况下的表达式,从⽽而求得u a 。

因为这道题是⼀一道概率论课程的期末考试题,重点在于由给定的递推关系解出要求的概率,所以在“提⽰示”中直接给出了递推⽅方程。

但是实际上,还有很多看起来⽐比较类似的递推概率问题,其递推⽅方程并不是那么容易推导出来的,⽽而且就算推导出来,想要的结果也不是仅凭数学推导就能计算出来的。

好在我们有⽅方法可以⽤用计算机来解决⼀一部分这样的递推式概率问题。

当问题包含重叠⼦子问题并且⽆无后效性时,就可以利⽤用动态规划的⽅方法,通过计算机编程来解决。

从计算机科学中算法设计与分析的⾓角度来看,解决这类问题的重点和难点,其实就是如何列出递推⽅方程并确定边界值了。

哈工大-概率论与数理统计大作业(论文)

哈工大-概率论与数理统计大作业(论文)

————————————————————————————————概率论与数理统计大作业xxxxxxxxxxxxxxxxxxxxxxx2012年12月8日概率论与数理统计一点小结1.简介:概率论(probability theory):研究随机现象数量规律的数学分支。

随机现象是相对于决定性现象而言的。

在一定条件下必然发生某一结果的现象称为决定性现象。

例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。

随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。

每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。

例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。

随机现象的实现和对它的观察称为随机试验。

随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。

事件的概率则是衡量该事件发生的可能性的量度。

虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。

例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2。

又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性。

大数定律及中心极限定理就是描述和论证这些规律的。

在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程。

例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程。

随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题。

数理统计:数理统计是数学系各专业的一门重要课程。

随着研究随机现象规律性的科学—概率论的发展,应用概率论的结果更深入地分析研究统计资料,通过对某些现象的频率的观察来发现该现象的内在规律性,并作出一定精确程度的判断和预测;将这些研究的某些结果加以归纳整理,逐步形成一定的数学概型,这些组成了数理统计的内容。

2024年哈工大概率论与数理统计学习心得(二篇)

2024年哈工大概率论与数理统计学习心得(二篇)

2024年哈工大概率论与数理统计学习心得学习概率论与数理统计是作为一个工科学生, 在大学时期必修的一门课程。

在2024年, 我有幸能够在哈尔滨工业大学学习这门课程, 并且取得了一定的收获。

下面, 我将分享我在学习概率论与数理统计方面的一些心得体会。

首先, 在学习概率论方面, 我深刻体会到了概率的重要性和应用广泛性。

概率论主要研究随机事件的概率、随机变量及其概率分布等内容, 是计算机、统计学、金融等领域的基础。

通过学习概率论, 我了解到概率不仅仅是一个理论概念, 更是一种描述不确定性的工具。

在现实生活中, 我们所面临的很多问题都存在不确定性, 如天气预报、股市走势等。

通过概率论的学习, 我可以更准确地评估可能发生的事件, 并且能够采取合适的措施来降低风险。

其次, 在学习数理统计方面, 我学到了如何通过样本推断总体的特征。

数理统计主要研究如何收集数据、如何通过数据推断总体的特征并进行决策等。

在学习过程中, 我提高了数据分析能力, 掌握了抽样调查的原理和方法, 并学会了对数据进行描述、总结和分析。

通过统计数据, 我可以用合理的方法推断总体的特征, 并对未来的情况作出预测。

这对于很多实际问题的解决具有非常重要的意义, 如市场调查、产品质量控制等。

此外, 概率论与数理统计的学习还培养了我批判性思维和解决问题的能力。

在学习过程中, 我需要理解和运用各种概率模型和统计方法来解决现实生活中的问题。

这要求我们具备批判性思维, 能够对所学知识进行深入分析和理解, 并灵活运用于实际情况中。

同时, 我还需要通过编程和数学求解等方式, 对问题进行建模和求解。

通过这样的学习过程, 我逐渐培养了解决实际问题的能力, 提高了自己的综合素质。

在学习过程中, 我还发现了一些困难和挑战。

首先, 概率论和数理统计是一门比较抽象的学科, 其中涉及到的概念和理论较多, 需要我们进行艰苦的钻研和思考。

其次, 统计方法的运用需要借助计算机编程进行实现, 这要求我们具备一定的编程能力和统计软件的使用能力。

哈工大概率论小论文

哈工大概率论小论文

《概率论与数理统计》课程总结混沌中的统一——概率中的维度观及在与微观粒子中的应用摘要众所周知,宇宙是一个无序的混沌空间,其间的粒子似乎在无规则的运动,人们并不知道它下一个时刻会运动到哪一个位置。

但事实上,粒子运动往往遵循某种分布规律,人们可以通过观察粒子在某处出现的频率来大致推知粒子在某一时刻出现的区域,这就是概率。

而在生活中,每个事件的发生都代表着一种可能,每个事件的无数种可能就构成了更高一层的空间,这就是维度。

不同的空间,不同的维度,概率论都在其中扮演着不可或缺的重要角色。

关键词:分布规律;频率;概率;可能;维度。

第一部分概率论与微观粒子的运动规律引言:长久以来,人们对于事物的认知都处于机械论科学思维的指导下,认为一切事物的规律都是固定可预测的。

严格决定论是机械论科学思维方式的主要特点。

这种思维方式把组成物质的最终实体作为自己的考察对象,而科学所要解决的基本上是带有两个变量的问题, 确定为数不多的客体之间的因果序列。

在严格决定性理论中,所有的概念和联系都被认为是属于同一层次中的东西,都可以精确表述它们之间的关系。

大自然的规律是数学规律,上帝是几何学家。

[1]控制论创始人维纳(N orbert Wiener)认为人类科学和认知的历史历程中,严格决定论的科学思维方式早在古巴比伦时期最古老的天文学中就已经出现了。

那是的人们在这种思维的指引下,认为日食、月食等自然天象都是在可预测的周期中出现的,太阳系中的一切事件的模型,都像是轮子在转动,周而复始的出现或发生。

这在托勒密的本轮说和哥白尼的轨道说中都是如此。

天体的音乐顺唱和倒唱都是一样的。

除了初始位置和方向外, 顺转和逆转的两个太阳仪之间的运动没有任何差别, 它们都是被严格决定了的。

最后, 这一切被牛顿归结为一组抽象公设并推演出一门严格的力学。

于是,宇宙被牛顿和他的力学描写为一台结构严密,按照某种定律精确地发生的机器,未来是由过去严格决定的。

但随着人们对自然科学的认识的不断深入,人们渐渐察觉到,万物都不是永恒的,牛顿力学很大程度上只是宇宙的某一种状态。

概率论论文10篇完美版

概率论论文10篇完美版

《概率论论文》概率论论文(一):《概率论与数理统计》论文摘要概率论的发展具有很长的历史,多位数学家对概率论的构成做出了巨大贡献。

纵观其发展史,在实际生活中具有很强的应用好处。

正是有了前人的努力,才有了现代的概率论体系。

本文将从概率论的研究好处、定义,以及发展历程进行叙述。

概率论的发展与起源1.1概率论的定义概率论是研究随机现象数量规律的数学分支。

随机现象是相对于决定性现象而言的,随机现象是指在基本条件不变的状况下,一系列或观察会得到不同结果的现象。

每一次实验或观察前,不能肯定会出现哪种结果,呈现出偶然性。

例如,抛一枚硬币,可能会出现正面或者反面;在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。

随机现象的实现和对它的观察称为随机试验。

随机试验的每一可能结果称为一个基本事件,一个或者一组基本事件统称为随机事件,或者简称为事件。

事件的概率则是衡量该事件发生的可能性的量度。

虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下超多重复的随机实验却往往呈现出明显的数量规律。

例如,连续多次抛一枚硬币,出现正面的频率随着抛次数的增加逐渐趋近于1/2;犹如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且测量值大多落在此常数的附近,其分布状况呈现中间多,两头少及某种程度的对称性。

大数定律和中心极限定律就是描述和论证这些规律的。

在实际生活中,人们往往还需要研究某一特定随机现象的演变状况。

例如,微小粒子在液体中受周围分子的随机碰撞而构成不规则的运动,即布朗运动,这就是随机过程。

随机过程的统计特征、计算与随机过程有关的某些事件的概率,个性是研究与随机过程样本轨道(及过程的一次实现)有关的问题,是现代概率论的主要课题。

在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和统计理论两大部分的广义概率论已经成为一门应用十分广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计
课程论文
课程名称:概率论与数理统计
院系:
指导教师:***
2016 年 12 月 4 日
摘要
【摘要】概率论是研究随机现象规律性的一个数学分支,它来源于实际生活,
也解决了实际生活中的许多问题。

小概率事件是概率论中的一个具有实用意义的原理,在我们的日常生活中已经有广泛的应用。

本文就小概率事件的含义、小概率原理以及小概率事件在日常生活中的实际应用进行了讨论与分析。

【关键词】小概率事件
1、引言
近日,随着手游市场的火爆,一款游戏开始在年轻人群体中流行起来,这就是当下大红大紫《阴阳师》。

而这款游戏中一个重要的玩法就是画符召唤式
神。

其中的式神分为四个档次,分别是N,R,SR与SSR,而SSR档次的式神也是其中最难以抽出的。

在概率论中,由于抽出一个SSR式神的概率极小,其便成了一件小概率事件。

在这样的背景下对于“小概率事件”的研究是大有意义的。

2.1、小概率事件的含义
概率学是专门研究随机事件规律的科学,是统计学存在、发展的基础。

概率是刻画随机事件发生的可能性大小的数量指标,事件A的概率以P(A)表示。

对于概率值很接近于1的事件,其对立事件的概率也就很接近于0。

概率很接近于0的事件即为小概率事件。

然而对于小概率事件,并没有一个绝对的标准来衡量,需要根据具体情况来确定。

对于某些特别重要的事件,当他的发生会产生严重的后果时(比如雪崩、山洪、沉船等等),我们把概率值为0.0001,甚至更小一些的数值算作小概率。

一般情况下,我们把事件发生的概率在0.01或0.005以下的事件称为小概率事件。

小概率事件理论上认为其有发生的可能性,但不一定肯定发生。

小概率事件具有三个特点:一、不管其概率值有多小,其值总是一个不确定的正数;二、概率很小的事件在一次试验中不大可能发生,如果发生了,绝不能认为是必然现象,而应该认为是有着某些偶然因素;三、一个事件发生的概率很小,在一次试验中就可以把它看成是不可能事件。

而其中第三个特点也就是最重要的一条原理——实际推断原理。

随着社会的发展,小概率事件问题在我们的日常生活中有着越来越广泛的应用,它不仅在经济、统计学中发挥着重要作用,而且它常常就发生在我们身
边并对我们的生活产生影响。

2.2、小概率事件假设推断方法
根据大数定律,在大量重复实验中事件出现的频率接近与它们的概率。

如果事件A出现的概率很小,则它在大量重复试验中出现的频率也应该很小。

例如若P(A)=0.001,则大致上在1000次试验中事件A才出现一次。

因此概率很小的事件在一次试验中实际上不大可能出现。

这样的事件被称为实际不可能事件。

实际不可能事件是统计假设检验决定推翻还是接受假设的依据,也是人们在实践中总结出来而被广泛应用的一个原理。

小概率原理的推断方法是概率性质的反证法,指的是人们首先提出假设,继而根据一次试验的结果来进行计算,最后按照一定的概率标准做出鉴别。

若导致不合理的现象出现,即小概率事件发生,则拒绝假设;若未导致不合理的现象出现,即小概率事件未发生,则不拒绝假设。

例如用抽样样本的质量水平来判别产品整体的质量水平时,存在抽样风险。

假设某批次产品共有100000瓶,当不合格品率低于3%时方可出厂。

而实际上里面只有40瓶不合格品,不合格品率远低于3%的标准。

随机抽样50瓶,如果在50瓶中抽到了2瓶甚至更多的不合格品,并且简单地用抽到的不合格品除以50来作为整批产品的不合格品率来判断的话,就会对整批产品质量水平造成错误判断。

而假设检验的基本方法就是从抽样的样本值出发,通过观察一个“小概率事件”在一次抽样中是否发生来判断原来对总体X的某种“看法”(原假设H0是否正确。

具体做法是:为了检验某个假设H0是否成立,首先假设H0成立,如果由此导出了一个小概率事件发生,则认为是矛盾,从而应否定
H0,否则接受H0)。

2.3、小概率事件和不可能事件
小概率事件因其概率小而常常会与不可能事件混淆。

但两者从本质上来讲,是有区别的。

所谓小概率事件是指发生的可能性小,但有发生机会的事件,而不可能事件是指完全不可能发生,概率为零的事件。

不管小概率事件A的概率如何小,如果将试验不断独立的重复下去,那么事件A迟早必然会出现一次,继续重复下去,于是也必然会出现任意多次;而不可能事件是指无论将试验做多少次,事件A都不会发生,这就表明了小概率事件与不可能事件之间的差别。

但是随着社会的发展和科学技术的进步,某些被认为是不可能事件可能成为小概率事件,而某些被认为是小概率事件也可能成为不可能事件。

2.4、小概率事件的应用
小概率原理不经意地在指导人们的实际生活。

尽管在一次试验中小概率事件可以看成是不可能事件,但是有的时候人们更愿意承认小概率事件的发生。

例如,在《阴阳师》中,尽管人们知道抽到SSR式神的概率微乎其微,但人们仍然愿意不断地画符召唤,甚至花费成千上万的钱去赌SSR的极小的概率,这里就有人们期望概率很小的事件在一次试验中出现的侥幸心理。

在彩票行业中也是如此。

对于彩民来说,最具吸引力的是高等奖奖金额,因此用泊松分布对中头等奖的概率进行讨论。

例如设事件A={至少有一次中头等奖},并且单注中奖概率为p,购买的期数为a(a>1),每期购买的注数为x,则单期购买x注的中奖概率为px。


我们重点讨论的是中奖概率f(x)与单期购买注数x的关系。

购买a期,每期购买x注,就总共购买了ax注,则在ax次伯努利实验中,中了的k次奖。

则当k等于0时,就是没有中奖。

所以,购买a期,每期购买x注时,中头奖的概率:
f(x)=1−P(k=0)=1−e−apx
对f(x)进行求导,得出f(x)的变化率:
f′(x)=ape−apx
再对f′(x)进行求导,得出f′(x)的变化率:
f′′(x)=−a2p2e−apx
当f′′(x)<0时,f′′(x)是减函数,即f(x)的变化率递减。

显然,中奖概率f(x)的变化率递减,会导致虽然购买注数x的增加了,中奖概率f(x)的递增量却减少了。

由此可以得出,购买彩票的性价比在f′′(x)<0时,呈递减趋势。

3、总结
小概率事件占据生活中的方方面面,虽然不是解决所有问题的万能钥匙,但根据应用问题的实践,确实是解决很多棘手实际问题的有益思路和指导思想,可以把复杂的问题简单化,有助于抓住问题的关键,具有很强的操作性。

通过对小概率事件的分析可知,小概率事件是一个简单但是很有实用价值的原理,日常生活中常常不经意间指导着人们的实际生活,它是概率论的精髓,是统计学发展的基础,未统计推断和决策提供了严格的数学依据。

相关文档
最新文档