概率论论文
概率论论文10篇

《概率论论文》概率论论文(一):《概率论与数理统计》论文摘要概率论的发展具有很长的历史,多位数学家对概率论的构成做出了巨大贡献。
纵观其发展史,在实际生活中具有很强的应用好处。
正是有了前人的努力,才有了现代的概率论体系。
本文将从概率论的研究好处、定义,以及发展历程进行叙述。
概率论的发展与起源1.1概率论的定义概率论是研究随机现象数量规律的数学分支。
随机现象是相对于决定性现象而言的,随机现象是指在基本条件不变的状况下,一系列或观察会得到不同结果的现象。
每一次实验或观察前,不能肯定会出现哪种结果,呈现出偶然性。
例如,抛一枚硬币,可能会出现正面或者反面;在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。
随机现象的实现和对它的观察称为随机试验。
随机试验的每一可能结果称为一个基本事件,一个或者一组基本事件统称为随机事件,或者简称为事件。
事件的概率则是衡量该事件发生的可能性的量度。
虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下超多重复的随机实验却往往呈现出明显的数量规律。
例如,连续多次抛一枚硬币,出现正面的频率随着抛次数的增加逐渐趋近于1/2;犹如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且测量值大多落在此常数的附近,其分布状况呈现中间多,两头少及某种程度的对称性。
大数定律和中心极限定律就是描述和论证这些规律的。
在实际生活中,人们往往还需要研究某一特定随机现象的演变状况。
例如,微小粒子在液体中受周围分子的随机碰撞而构成不规则的运动,即布朗运动,这就是随机过程。
随机过程的统计特征、计算与随机过程有关的某些事件的概率,个性是研究与随机过程样本轨道(及过程的一次实现)有关的问题,是现代概率论的主要课题。
在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和统计理论两大部分的广义概率论已经成为一门应用十分广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。
概率论结课论文

概率论学习带给我的启示进过这么久对概率论的学习,在基础知识的积累之上,在高等数学工具的应用之下,我对这门课程有了更为深入的认识。
一、概率论定义的变迁与意义概率论是研究随机现象数量规律的数学分支。
和数理统计一起,是研究随机现象及其规律的一门数学学科。
传统概率(拉普拉斯概率)的定义是由法国数学家拉普拉斯(Laplace)提出的。
如果一个随机试验所包含的单位事件是有限的,且每个单位事件发生的可能性均相等,则这个随机试验叫做拉普拉斯试验。
传统概率在实践中被广泛应用于确定事件的概率值,其理论根据是:如果没有足够的论据来证明一个事件的概率大于另一个事件的概率,那么可以认为这两个事件的概率值相等。
如果仔细观察这个定义会发现拉普拉斯用概率解释了概率,定义中用了"相同的可能性"一词,其实指的就是"相同的概率"。
这个定义也并没有说出,到底什么是概率,以及如何用数字来确定概率。
因此,如何定义概率,如何把概率论建立在严格的逻辑基础上,是概率理论发展的困难所在,对这一问题的探索一直持续了3个世纪。
20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。
在这种背景下,苏联数学家柯尔莫哥洛夫1933年在他的《概率论基础》一书中第一次给出了概率的测度论的定义和一套严密的公理体系。
他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支,对概率论的迅速发展起了积极的作用。
概率的公理化定义:设随机实验E的样本空间为Ω。
若按照某种方法,对E的每一事件A赋于一个实数P(A),且满足以下公理:1°非负性:P(A)≥0;2°规范性:P(Ω)=1;3°可列(完全)可加性:对于两两互不相容的可列无穷多个事件A1,A2,A3,A4……有P(A1∪A2∪……∪An∪……)=P(A1)+P(A2)+……P(An)+……,则称实数P(A)为事件A的概率。
哈工大概率论小论文

浅谈概率论姓名航天学院电子信息科学与技术学号【摘要】:概率论与数理统计课程是工科大学的一门应用性很强的必修基础课程。
通过近一个学期的学习,我对概率论也有了一些粗浅的认识,本文将从概率论的历史和发展讲起,接着对二项分布、泊松分布和正态分布之间的关系进行一个简单的论述,然后将概率论的一些概念与以往学过的概念进行类比,最后对概率论在工科数学分析中的几个巧用进行说明,并附加了几个实例。
【关键词】:二项分布;泊松分布;正态分布;类比;级数;广义积分1 概率论的起源和发展概率论不仅是当代科学的重要数学基础之一,而且还是当代社会和人类日常生活最必需的知识之一。
正如十九世纪法国著名数学家拉普拉斯所说:“对于生活中的大部分, 最重要的问题实际上只是概率问题。
你可以说几乎我们所掌握的所有知识都是不确定的, 只有一小部分我们能确定地了解。
甚至数学科学本身, 归纳法、类推法和发现真理的首要手段都是建立在概率论的基础之上的。
因此,整个的人类知识系统是与这一理论相联系的。
”然而, 饶有趣味的是, 这门被拉普拉斯称为“人类知识的最重要的一部分”的数学却直接地起源于一种相当独特的人类行为的探索: 人们对于机会性游戏的研究思考。
所谓机会性游戏就是靠运气取胜一些游戏, 如赌博等。
这种游戏不是哪一个民族的单独发明, 它几乎出现在世界各地的许多地方, 如埃及、印度、中国等。
著名的希腊历史学家希罗多德在他的巨著《历史》中写道: 早在公元前1500年, 埃及人为了忘却饥饿的困扰, 经常聚集在一起掷骰子和紫云英,这是一种叫做“猎犬与胡狼”的游戏, 照一定规则,根据掷出各种不同的紫云英而移动筹码。
大约从公元前1200年起, 人们把纯天然的骨骼(如脚上的距骨) 改进成了立方体的骰子。
[1]二十世纪以来, 概率论逐渐渗入到自然科学、社会科学、以及人们的日常生活等几乎无所不在的领域中去.无论在研究领域, 还是教育领域, 它愈来愈成为一门当今最重要的学科之一。
概率论研究方法毕业论文

概率论研究方法毕业论文概论:概率论作为数学的一个分支,研究的是随机现象的规律性和统计规律。
概率论研究方法是概率论研究过程中所运用的方法,旨在帮助研究者进行科学地、系统地研究和分析概率论问题。
一、概率论研究方法的基本原理1.随机试验与样本空间:概率论研究方法首先要建立合适的数学模型,用来描述相应随机现象。
随机试验是概率论研究的基本方法之一,通过随机试验来研究事件的概率。
样本空间是随机试验中所有可能的结果的集合,对于每个结果都可以进行概率分析。
2.事件与概率:事件是样本空间的子集,是随机试验中我们关心的某些结果的集合。
事件的概率是衡量这个事件发生可能性大小的数值,它是从样本空间到实数集合的映射,满足一些基本性质,如非负性、规范化等。
3.概率公理与概率计算:概率公理是概率论的基础,包括可数可加性、非负性、规范性等。
通过概率计算方法,我们可以根据已知信息计算出事件的概率。
二、概率论研究方法的具体应用1.概率分布:概率分布是描述随机变量取值的概率规律的函数。
常见的概率分布有离散型概率分布和连续型概率分布。
概率分布的研究方法包括概率密度函数、累积分布函数、期望、方差等统计性质的计算和分析。
2.随机变量的分类与性质:随机变量是在一次随机试验中依赖于试验结果而取不同值的变量。
根据随机变量的性质和取值范围的不同,可以分为离散型随机变量和连续型随机变量。
对不同类型的随机变量进行分类和性质的研究是概率论研究方法的重要内容。
3.多维概率分析:多维概率分析研究的是多个随机变量之间的相互关系。
通过多维概率分析可以研究多个随机变量的联合分布、边缘分布、条件分布等。
多维概率分析在金融、统计建模等领域有广泛应用。
三、概率论研究方法的实例以投掷硬币为例,说明概率论研究方法的应用过程:1.确定样本空间:投掷硬币一次的结果可能为正面或反面,所以样本空间为S={正,反}。
2.确定事件与概率:事件可以是“出现正面”和“出现反面”,对应的概率分别为P(正)=0.5和P(反)=0.5。
概率论总结论文

概率论总结论文第一篇:概率论总结论文概率论与数理统计在生活中的应用摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。
生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。
数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。
关键字:概率、保险、彩票、统计、数据、应用概率论与数理统计是研究随机现象统计规律的一门数学学科,是对随机现象的统计规律进行演绎和归纳的科学。
随着社会的不断发展,概率论与数理统计的知识越来越重要,运用抽样数据进行推断已经成为现代社会一种普遍适用并且强有力的思考方式。
目前,概率论与数理统计的很多原理方法已被越来越多地应用到交通、经济、医学、气象等各种与人们生活息息相关的领域。
本文将就概率论与数理统计的方法与思想,在日常生活中的应用展开一些讨论,,推导出某些表面上并非直观的结论,从中可以看出概率方法与数理统计的思想在解决问题中的高效性、简捷性和实用性。
一、彩票问题“下一个赢家就是你!”这句响亮的具有极大蛊惑性的话是大英帝国彩票的广告词。
买一张大英帝国彩票的诱惑有多大呢?只要你花上1英镑,就有可能获得2200万英镑!一点小小的投资竟然可能得到天文数字般的奖金,这没办法不让人动心,很多人都会想:也许真如广告所说,下一个赢家就是我呢!因此,自从1994年9月开始发行到现在,英国已有超过90%的成年人购买过这种彩票,并且也真的有数以百计的人成为百万富翁。
如今在世界各地都流行着类似的游戏,在我国各省各市也发行了各种福利彩票、体育彩票,各地充满诱惑的广告满天飞,而报纸、电视上关于中大奖的幸运儿的报道也热闹非凡,因此吸引了不计其数的人踊跃购买。
概率论毕业论文:概率论起源_毕业论文范文_

概率论毕业论文:概率论起源概率论是一门应用非常广泛的学科。
在数学史上,它的产生是以帕斯卡和费马在1654 年的七封通信为标志的。
由于这些信件中所解决的问题多是与赌博有关的点数问题,因此人们总是把概率论的产生归功于赌博这项机遇游戏。
但考古学发现告诉我们,赌博游戏早在文明初期就已经存在了,迄今已有几千年的历史,而概率论从诞生至今不过三百余年,这说明赌博并不是概率论产生的决定性条件。
在从赌博出现到概率论产生之间的这段“空白”期,必定还有一些十分关键的因素正在孕育之中。
那么这些因素是什么? 换句话说,需要具备哪些先决条件,概率论才能得以形成?一独立随机过程的出现对概率论而言,两个最主要的概念就是独立性和随机性[1 ] 。
概率论是从研究古典概型开始的,它所涉及的研究对象是大量的独立随机过程。
通过对这些过程中出现的问题的解决,概率理论体系才逐渐地建立起来。
因此要考察概率论的产生条件,我们首先应当对独立随机过程的产生有充分的了解。
事实上,这种过程的雏形早在原始社会就已经存在了,那时的占卜师们使用动物的趾骨作为占卜工具,将一个或多个趾骨投掷出去,趾骨落地后的不同形状指示神对人事的不同意见。
由于投掷趾骨这个过程所产生的结果具有不可预测性,而每次投掷的结果也互不影响,这与我们今天投掷骰子的基本原理相当,因此趾骨可以被看作是骰子的雏形。
但是由于趾骨形状的规则性较差,各种结果出现的机率不完全相同(即不具备等可能性) ,所以趾骨产生的随机过程还不是我们今天意义上的独立随机过程。
加之趾骨作为一种占卜工具,其本身具有神圣的地位,普通人不可能轻易使用,这也在某种程度上阻碍了人们对随机过程的认识。
随着社会的进步和文明的发展,骰子变得越来越普遍,不仅数量增多,规则性也日益精良,此时它已不再是一件神圣的器具而逐渐成为普通大众的日常用具。
从原理上看,只要一枚骰子是质地均匀的,它就可以产生一系列标准的独立随机过程。
这些过程具备良好的性质(独立性、随机性、等可能性) ,是进行概率研究的理想对象。
概率论与数理统计论文(优秀3篇)

概率论与数理统计论文(优秀3篇)【摘要】针对近年来医学院校招生规模不断扩大,学生基础知识和学习能力参差不齐的实际状况,探讨了概率论与数理统计分层次教学的必要性,提出了医学院校概率论与数理统计课程分层教学模式,总结了在概率与统计教学中利用现代化信息技术进行分层次教学的实践经验。
【关键词】因材施教;素质教育;概率论与数理统计;分层次教学早在2500年以前,儒家代表人物孔子把教育内容分为德行、言语、政事、文学四科,其中以德行为根本。
而德育方法由不同层次的方法构成的,特别是方法论层次上的德育方法,如因材施教法。
既然不同的学生自身的特点不同,那么在教学中就应采用不同的教育,我们所提出的分层次教学思想,就源于孔子的因材施教。
近年来,随着教育的深入,本科教育从精英化向大众化进行转变,高等院校招生规模大幅度地增加,医科院校入校学生的数学基础和学习能力参差不齐。
而大学生由于其专业对概率与数理统计知识的要求不同,其学习目标和态度不尽相同,这就使得大学生对该课程的需求有了进一步的分化;同时由于不同学生的数学基础和对数学的兴趣爱好也不尽相同,对数学学习的重视程度和投入有很大差别。
在长期的教学实践中我们深刻地体会到,为了在有限的课堂教学时间内尽可能地满足各层次学生学习的需要,满足各专业后续课程学习的前提下,最大程度地调动学生的学习积极性,必须推行分层次教学,提高数学教学的质量[1,2]。
1概率论与数理统计分层次教学研究的背景自1995年国家教委立项研究“面向21世纪非数学类专业数学课程教学内容与课程体系”以来,对于数学教育在大学教育中应有的作用,国内数学教育界逐渐认识到,我国高等院校的规模水平、专业设置、地区差异、师资力量、生源优劣都相去甚远。
而随着我国高等教育大众化趋势的步伐加快,这些差距到21世纪更加凸显,分层次教学法的提出必然是大学数学教学的规律。
这也是我们在进行大学数学分层次教学研究时的一个基本出发点。
我校在概率论与数理统计的教学实践中提出分层次教学,是在原有的师资力量和学生水平的条件下,通过分层次教学,充分满足各专业各水平不同层次学生的数学素质的要求,最大限度地挖掘学生的潜能,引导学生发挥其优势,使每个学生都能获得所需的概率统计知识,同时能够充分实现学校的教育功能和服务功能,达到教书、育人的和谐统一[3]。
梅晓靖 概率论小论文

梅晓靖概率论小论文对概率论的认识对于概率论的学习已经过了大半个学期了,虽然现在对概率论的学习也仅仅是皮毛而已。
但是,通过这半个学期的学习以及自己通过上网学习,让我了解到了许关于概率论的知识,认识到概率在我们生活中随处可见。
概率论严格意义上来说就是研究随即现象数量规律的数学分支。
随机现象是相对于决定性现象而言的。
在一定条件下必然发生某一结果的现象称为决定性现象。
例如在标准大气压下,纯水加热到100?时水必然会沸腾等。
随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。
每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。
随机现象的实现和对它的观察称为随即试验。
随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。
事件的概率则是衡量该事件发生的可能性的量度。
虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。
例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1,2。
又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性。
大数定律及中心极限定理就是描述和论证这些规律的。
在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程。
例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程。
随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题。
关于概率论的起源据说是赌博问题有关。
16世纪,意大利的学者吉罗拉莫开始研究掷骰子等赌博中的一些简单问题。
17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则是玩家连续掷 4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家(相当于现在的赌场)赢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈尔滨工业大学
《概率论与数理统计》论文
正态分布的重要意义及应用
班级:1226103
姓名:***
学号:**********
哈尔滨工业大学数学系 2013 年 11 月 26日
正态分布的重要意义及应用
摘要:正态分布是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
它概率论中最重要的一种分布,也是自然界最常见的一种分布。
高斯(Gauss)在研究误差理论时首先用它来刻画误差的分布,故正态分布又称为高斯分布。
经验表明,生产与科学实验中很多随机变量的概率分布都近似地用正态分布来描述。
在实际中,许多随机变量都服从或近似服从这种“中间大,两头小”的正态分布。
例如,测量一个零件长度的测量误差,向一中心点射击的横向偏差或纵向偏差,等等,正态分布不仅在实际应用中有重要意义,而且在理论上也有很重要的意义。
关键字:正态分布高斯分布连续型随机变量
正文
1.正态分布的来源
正态分布是最重要的一种概率分布。
正态分布概念是由德国的数学家和天文学家德莫佛于1733年首次提出的,德莫佛最早发现了二项分布的一个近似公式,这一公式被认为是正态分布的首次露面,但由于德国数学家高斯率先将其应用于天文学的研究,故正态分布又叫高斯分布。
在高斯刚作出这个发现之初,也许人们还只能从其理论的简化上来评价其优越性,其全部影响还不能充分看出来。
这要到20世纪正态小样本理论充分发展起来以后。
拉普拉斯在知道高斯的工作后,马上将其与他发现的中心极限定理联系起来,为此,他在即将发表的一篇文章(发表于1810年)上加上了一点补充,指出如若误差可看成许多量的叠加,根据他的中心极限定理,误差理应有高斯分布。
这是历史上第一次提到所谓“元误差学说”——误差是由大量的、由种种原因产生的元误差叠加而成。
后来到1837年,海根在一篇论文中正式提出了这个学说。
正态分布的密度函数 :)2/()(2221)(σμπσ--=
x e x f
3.正态分布的性质
服从正态分布的变量的频数分布由μ、σ完全决定。
1、集中性:正态曲线的高峰位于正中央,即均数所在的位置。
2、对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。
3、均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
4、u 变换:为了便于描述和应用,常将正态变量作数据转换。
μ是正态分布的位置参数,描述正态分布的集中趋势位置。
正态分布以X=μ为对称轴,左右完全对称。
正态分布的均数、中位数、众数相同,均等于μ。
5、正态分布有两个参数,即均数μ和标准差σ,可记作N (μ,σ):均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。
σ越小,曲线越陡峭;σ越大,曲线越扁平。
6、σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。
也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。
7. P(μ-σ<X≤μ+σ)=68.3%
P(μ-2σ<X≤μ+2σ)=95.4%
P(μ-3σ<X≤μ+3)=99.7%
4.正态分布的实际应用
正态分布有极其广泛的实际背景,生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。
例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等。
一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量x
y
具有正态分布(见中心极限定理)。
从理论上看,正态分布具有很多良好的性质 ,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t 分布、F 分布等。
其主要应用如下:
1.估计频数分布
一个服从正态分布的变量只要知道其均数与标准差就可根据公式即可估计任意取值范围内频数比例。
2. 质量控制:为了控制实验中的测量误差,常以测量最大最小值作为上、下警戒值,以标准差作为上、下控制值。
这样做的依据是:正常情况下测量(或实验)误差服从正态分布。
3.制定医学参考值范围:在一些医学现象中,例如同质群体的身高、红细胞数、血红蛋白量,以及实验中的随机误差,呈现为正态或近似正态分布;有些指标虽服从偏态分布,但经数据转换后的新变量可服从正态或近似正态分布,可按正态分布规律处理。
其中经对数转换后服从正态分布的指标,被称为服从对数正态分布。
4.统计方法的理论基础:如t 分布、F 分布、分布都是在正态分布的基础上推导出来的,u 检验也是以正态分布为基础的。
此外,t 分布、二项分布、Poisson 分布的极限为正态分布,在一定条件下,可以按正态分布原理来处理。
下面我们有一道实际问题的例题来看一下正态分布的应用
问题某公司准备考试招工300名,其中280名正式工,20名临时工,实际报考人数1657名。
考满分400名,考试不久后,通过当地新闻网络媒体得到这样的一个消息:
考试平均成绩是166分,在360分以上的有31名,某考生A 的成绩是256分。
问他能录取不?若被录取,是正式工还是临时工?
下面我们就用正态分布来解决这个问题
例1.先预测最低分数线,设最低分数线是0χ,设考生的成绩是X ,对一次成功的考生来说,X 服从正态分布,即()2~166,X N σ
则 ()166
~0,1x Y N σ-=
有题设知 ()360160313601657
P X P Y σ-⎛⎫>=>≈ ⎪⎝⎭ 于是 3601603601603110.9811657P Y σσ--⎛⎫⎛⎫Φ=≤≈-= ⎪ ⎪⎝⎭⎝⎭
查正态分布表,得 360160
2.0893σσ-≈⇒=
所以 ()2~166,93X N
因为最低录取分数线0χ的确应使高于此线的考生的频率等于
3001657
,即 ()00166300931657x P X x P Y -⎛⎫>=>≈ ⎪⎝
⎭ 于是 001661663110.89193931657x x P Y --⎛⎫⎛⎫Φ=≤≈-= ⎪ ⎪⎝⎭⎝⎭ 001660.9125193
x x -⇒
=⇒= 即最低录取分数线为251分
下面预测考生A 的名次,其考分256=x ()()2561662560.83193P X x P X -⎛⎫≤=≤=Φ≈ ⎪⎝⎭
()2560.169P X ⇒>≈
次表示成绩高于考生A 的人数约占总人数的0016.9
16570.169282⨯≈
即考生A 大约排在283名。
结论:因为该考生靠了256分,大于录取分数线251分。
因此该考生能被录取。
但因为他是283名,排在280名之后,所以他不能被录取为正式工,只能是临时工。
5.正态分布的理论意义
20世纪前半期,概论论研究的中心课题之一,就是寻求独立随机变量和的极限分布是正态分布的条件。
因此,这一方面的定理统称为中心极限定理,较一般的中心极限定理表明:若被研究的随机变量是大量独立随机变量的和,其中每一个随机变量对于总和只起微小作用,则可认为这个随机变量近似于正态分布。
这就揭示了正态分布的重要性。
因为现实中许多随机变量都具有上述性质,例如测量误差,射击着弹点的横坐标,人的身高等都是由大量随机因素综合影响的结果,因而是近似正态分布。
独立分布的中心极限定理
如果随机变量序列x1,x…,…xn…,…独立同分布,并且具有有限的数学期
望和方差E(xi)=μ,D(xi)=σ2>0(i=1,2,…),此时X i 不关
服从什么分布,只要n 充分大,随机变量 就近似服从N (0,1),而随机变量 近似地服从N (n μ,n σ2),此时就称 渐进的服从N (0,1)
从此可以看出正态分布在理论上的重要作用,我们用一道例题对其进行讲解 例2.一部件包括10部分,每部分的长度是一随机变量,相互独立且具有同一分布,其数学期望为2 mm ,均方差为0.05 mm ,规定总长度为20mm 0.1 mm 时产
品合格,试求产品合格的概率。
已知:( 0.6 ) = 0.725;( 0.63 ) = 0.7357。
解:设每个部分的长度为Xi ( i = 1, 2,…, 10 )
E ( X
i ) = μ =2 , D( X
i
) = σ2= ( 0.05 ) 2 ,依题意,得合格品的概率为
从上面的例题可以看出正态分布其在各个方面的广范应用。
6.总结
正态分布的应用是广泛的,这里列举的只是有限的几个方面的应用。
现今德国10马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线。
这传达了一种想法:在高斯的一切科学贡献中,其对人类文明影响最大者,就是这一项--正态分布。
研究正态分布具有十分重要的意义,本文中,我仅从起源、定义、性质介绍正态分布,并对正态分布的应用及其价值等方面作了些初步的研究和探索。
正态分布的更深层面的探索还需要我们去研究。
参考文献
【1】概率论与数理统计(第三版)高等教育出版社
【2】概率论与数理统计清华大学出版社龚光鲁
【3】概率论与数理统计/王勇主编。
——北京:高等教育出版社,2007.7。