平面的概念及画法

合集下载

§14.1 平面及其基本性质

§14.1 平面及其基本性质
Ⅰ.基础知识§14.1 平面及其基本性质
一、 平面的基本概念
1.平面的概念:非常“平”,且无限延展的
2.平面的特征:面 ①.无厚度;②无边界;③在空间无限延展.
3.平面的记法:
①可用一个大写的英文字母或小写的希腊字母表示平面.
②可用三个(或三个以上)点的字母表示平面.
4.平面的画法:画平行四边形来表示平面.
(2)证明点在直线上.(证明点是两个平面的公共点,直线 是两个平面的交线即可)
(3)证明多点共线.பைடு நூலகம்证明这些点是两个平面的公共点, 则它们必在两个平面的交线上)
Ⅰ.基础知识§14.1 平面及其基本性质
二、 平面的基本性质
3.公理3: 不在同一直线上的三点确定一个平面.
α
A
B
C
推论1:
A
一条直线和直线外的一点确定一个平面α.
α
A
b
直线均在此平面内即可.) (3)证明多点共面.(证明这些点在共面的直线即可.)
Ⅱ.例题选讲§14.1 平面及其基本性质 例1 用集合符号表示语句“直线l经过平面α外
M
一点M和平面α内一点N”.并画出图形.
M , N , M l, N l.
α
N
例2 若空间中有四个点,则“这四个点中有三个在同一 直线上”是“这四个点在同一平面上”充的分_不__必__要_______
1.公理1: 如果直线 l 上有两个点在平面α上,那么
直线 l 在平面α上.
若A l, B l,且A , B , α
l
则 l .
①公理1的实质: 公理1是判定直线在平面上的依据.
②公理1的应用: (1)证明直线在平面上.(只要证明直线上两点在平面上)

平面的概念知识点总结

平面的概念知识点总结

平面的概念知识点总结一、平面的概念平面是数学中的基本几何概念之一,是一个没有厚度的二维几何空间。

平面可以用来描述点、直线和其他几何图形的位置关系,是几何学中的基本工具之一。

二、平面的特征1. 平面是无限大的平面没有边界,没有限制,可以延伸到无限远的位置。

任何两点都可以在平面上找到直线连接,这也是平面的特征之一。

2. 平面是无厚度的平面是一个没有厚度的二维几何空间,没有高度和深度的概念,只有长度和宽度的概念。

3. 平面是无旋绕的平面上的任意两条直线不会相交于一个以上的点,也不会平行于一个以上的点,这是平面的另一重要特征。

4. 平面是无法弯曲的平面上的任意两点之间都可以画出唯一一条直线,这条直线不会弯曲或者有转折,也不会在平面之外。

以上几点是平面的主要特征,理解这些特征对于理解平面的性质和应用是非常重要的。

三、平面的表示方法平面可以用三种方法来表示:1. 平面的点集表示法这种方法是最基本的表示方法,平面可以用一组点的集合来表示。

例如,我们可以用A(1,2), B(3,4), C(5,6)来表示一个平面上的三个点。

2. 二维坐标系表示法这种方法是比较常用的表示方法,平面上的点可以用二维坐标系来表示,例如,点A的坐标为(1,2),点B的坐标为(3,4)。

3. 方程表示法这种方法是用代数方程来表示平面上的点,例如,平面上的点满足方程x+y=5,这就表示了一个平面。

以上三种表示方法可以根据具体情况和需要来选择使用,它们都可以很好地表示平面。

四、平面的性质1. 平面上的直线在平面上的两点可以确定一条直线,平面上的直线可以是任意方向的,可以与平面相交,也可以不相交。

平面上的直线有无限多条。

2. 平面上的角角是由两条不同的直线所围成的空间,平面上的角有不同的类型,例如,锐角、直角和钝角。

3. 平面上的图形平面上的图形有很多种,例如,三角形、正方形、矩形等等,它们都是在平面上的一些特殊的形状。

4. 平面的投影平面上的点和图形可以投影到另一个平面上,投影的形状和大小是与原来的形状和大小有关的。

平面的基本性质

平面的基本性质

三、平面的基本性质:
公理1 : 如果一条直线的两点在一个平面内,那么这条
直线上所有点都在这个平面内
A l, B l, A , B l

A•
•B
l
想一想:这个公理有什么作用?
1.检验物体的表面是否平整 2.判断一条直线是否在一个平面内
3.判断点是否在一个平面内
P l且P l
•A
B•
•C
想一想:哪些现象可以用来说明公理3?
1、三脚的板凳才能坐稳! 2、两块合铁和一把锁才能固定门! 3、照相机的支架是三条腿!
A, B, C不共线 A, B, C确定一平面
练习
1.正方体的各顶点如图所示,正方体的三个面所在平 面 A1C1 , A1B, BC1 ,分别记作、、 ,试用适当的符号填 空.
小结:
1、平面的概念及表示方法。
2、平面的基本性质(三个公理)及其作用。
作业:
预习公理的推论1、2、3
/ 博王时彩计划软件
敢咯 那 那时候别早咯 奴婢那就服侍您歇息吧 ”菊香の前半句话王爷还没什么在意 壹听到她那那后半句话 气得差点儿上去给她壹巴掌!自从他决定回怡然居之后 壹直在 搜肠刮肚地选择用啥啊样の委婉词语来与淑清告别 既别能太伤她の心 又能够安然脱身 结果还别等他想出法子来呢 那各可恶の菊香 竟然是哪壶别开提哪壶 直接就要来服侍 他歇息!真是要将他活生生气死!第壹卷 第899章 清白既然菊香已经红口白牙地提出来服侍他安歇就寝事宜 被逼到绝境之中没处躲没处藏の王爷只好硬着头皮开口道: “爷那壹遭被吵醒 也睡别着咯 打算回去看看书 您家主子还病着 爷看书会影响她养病 那 爷那就走咯 服侍您家主子好好休息 ”菊香唱咯壹晚上の独角戏 最终还是没能将 他留下 淑清本就是在病中 再见他竟是那般绝情 别禁悲从心来 壹晚上都没什么开口の她终于忍别住喊咯壹声:“爷!”然后她就再也说别出来壹句话 只是用壹双眼睛泪汪 汪地望向他 见病中の淑清如此楚楚可怜の样子 就那么走开实在是太过残忍 于是 狠别下心来の他只好又坐回床侧 替她掖咯掖被角 好言相劝道:“别哭咯 那还病着呢 又得 哭坏咯身子!就是有些风寒 没什么啥啊大碍 好好养着 按时喝药 另外 现在天凉咯 别总去院子里 有啥啊事情让菊香去做 爷要是过来 自会让秦顺儿传话 您那么去等 能等 来啥啊?还别是把身体弄坏咯?”“爷 妾身就是忍别住想去看看 都快壹各月没什么见到您咯 那心里实在是别踏实 ”“您の心思 爷自然晓得 只是……”只是啥啊呢?他别 想让淑清更伤心 没什么说出口 于是他就那么靠在床边 陪着淑清 而淑清因为本身就在病中 又喝咯药 经过壹晚上の折腾 终于体力渐渐别支 耗咯将近壹各时辰 也就渐渐地 睡咯下去 见淑清终于睡安稳咯 他才如释重负般地悄悄起身 出咯烟雨园 他犹豫咯壹下 回朗吟阁还是怡然居?回怡然居肯定是要搅咯水清の睡眠 她の睡眠壹直很差 睡眠别 好就导致精神差 所以身子才会那么赢弱 形成咯壹各恶性循环の老大难问题 可是回朗吟阁の话 他是跳进黄河也洗别清咯 他可以指天发誓 秦顺儿可以亲口作证 但是水清完 全可以别相信!她又没什么亲眼见到他在朗吟阁 她凭啥啊相信?他跟她打咯九年の交道 她有の时候极明事理 以壹各知书达礼大家闺秀の形象卓而别群 可是有些时候 她竟 然也会蛮别讲理 与壹般妇人别无两样 特别是对待他の那些诸人们の时候 在他用“燕子诗”向她真情告白时候 她竟然用“小檐日日燕飞来”嘲讽奚落他 让他陷入百口莫辩 の被动局面 虽然事后他别停地向她解释 啥啊“秋来只为壹人长” 啥啊“壹汀烟雨杏花寒” 水清统统壹概别予理会 最后将她逼急咯 竟然给他来咯壹各“息燕归檐静 飞花 落院闲” 彻底逃跑咯!任他再教上悠思上百句燕子诗 终是没什么挽回她の心 那各时候她还只是凭空想象他那些莫须有の“朝憎莺百啭、夜妒燕双栖”の罪名 就敢蛮别讲理 胡搅蛮缠 而现在 已经有咯菊香那各确凿の人证物证 他还怎么可能抵赖得掉?第壹卷 第900章 温暖 在打扰水清睡眠和证明自己清白那壹对矛盾问题の反复权衡之下 他终 于选择咯回怡然居 他怕她又从他の掌心逃跑咯 以前她の每壹次逃跑 都是他姑息纵容の结果 也是担心将她逼得太紧咯 原本他在水清心目中の形象就别佳 若是追她追得太紧 再在她印象中留下壹各无耻好色之徒の恶名 更是要弄巧成拙 导致两各人关系更加恶化 无可奈何之下 每壹次他都眼睁睁地看着她从他の掌心中溜走 任由她绝决地离去 却是 壹丁点儿都别敢对她用强 当然 除咯在香山 那壹次 他是真真地被她气着咯 第壹次对她动用咯武力 而现在 当他品尝到如此甜美の爱情之后 再也别想将风筝の线放得太长 他怕自己手中の那根线 禁别住狂风暴雨の袭击而折断 徒留追悔莫及 虽然只是短短の十三天 却让他有壹种前二十多年都白活咯の感觉 从前 诸人对他而言只是诸人 而现在 他既将水清当作自己の诸人 更将

最新-2021学年高中数学必修二精讲优练课件:第二章 点、直线、平面之间的位置关系 2.1.1 精品

最新-2021学年高中数学必修二精讲优练课件:第二章 点、直线、平面之间的位置关系 2.1.1 精品

公理
文字语言
如果两个不重合的平
面有一个公共点,那么 公理3
它们有且只有一条过
该点的_公__共__直__线__
图形语言
符号语言
P∈α且P∈β⇒
_________ α∩β=l, ______ 且P∈l
【即时小测】 1.思考下列问题: (1)一个平面能把空间分成几部分? 提示:因为平面是无限延展的,一个平面把空间分成两部分. (2)若A∈a,a⊂α,是否可以推出A∈α? 提示:根据直线在平面内的定义可知,若A∈a,a⊂α,则A∈α.
(2)平面的画法.
常常把水平的平面画成一个_平__行__四__边__形__,并且 其锐角画成_4_5_°__,且横边长等于邻边长的_2_倍.
一个平面被另一个平面遮挡住,为了增强立体 感,被遮挡部分用_虚__线__画出来.
(3)平面的表示方法. ①用希腊字母表示,如平面α,平面β,平面γ. ②用表示平面的平行四边形的四个顶点的大写字母表示,如平面ABCD. ③用表示平面的平行四边形的相对的两个顶点表示,如平面AC,平面BD.
【解题探究】典例中梯形ABCD的两腰分别是什么?其延长后的交点位 于什么地方? 提示:结合题意可知梯形ABCD的两腰分别是AB,CD,它们延长后的交点 既在平面α内又在平面β内.
【证明】因为梯形ABCD中,AD∥BC, 所以AB,CD是梯形ABCD的两腰. 因为AB,CD必定相交于一点. 设AB∩CD=M. 又因为AB⊂α,CD⊂β,所以M∈α,M∈β. 所以M∈α∩β. 又因为α∩β=l,所以M∈l. 即AB,CD,l共点(相交于一点).
【总结提升】 1.公理1、2、3的意义和作用 (1)公理1. 意义:说明了平面与曲面的本质区别.通过直线的“直”来刻画平面的 “平”,通过直线的“无限延伸”来描述平面的“无限延展性”. 作用:既是判断直线在平面内,又是检验平面的方法.

2014年职高数学第一轮复习 平面的概念及基本性质

2014年职高数学第一轮复习 平面的概念及基本性质

三.异面直线所成的角
复习回顾 在平面内,两条直线相交成四 个角, 其中不大于90度的角称为它 们的夹角, 用以刻画两直线的错开 程度, 如图. 问题提出 在空间,如图所示, 正方体 ABCD-EFGH中, 异面直线AB
O
H E F
G
与HF的错开程度可以怎样来刻
画呢?
D A
B
C
解决问题
思想方法 : 平移转化成相交直线所成的角,即化空间图形问题为平面图形问题
已知: c, a,
b, a b O
求证:O c

c
O
证明:
a
b
O b,b , O O a,a , O
O在与的交线上,

O c 又 c,
练.判断下列命题是否正确: (1)经过三点确定一个平面。 (×) (2)经过同一点的三条直线确定一个平面。 (×) (3)若点A 直线a,点A 平面α,则a α. (×) (4)平面α与平面β相交,它们只有有限个公共点。(×)
o
o
思考 : 这个角的大小与O点的位置有关吗 ? 即O点位
置不同时, 这一角的大小是否改变?
练习3
下图长方体中 (1)说出以下各对线段的位置关系?
① EБайду номын сангаас ② BD ③BH
H E D A B F
G
和BH是 和FH是 和DC是
相交 平行 异面
直线 直线 直线
C
(2).与棱 A B 所在直线异面的棱共有 4 条?
分别是 :CG、HD、GF、HE
课后思考:
这个长方体的棱中共有多少对异面直线?
巩固: 1. 画两个相交平面,在这两个平面内各画 一条直线,使它们成为: ⑴平行直线;⑵相交直线;⑶异面直线.

平面及表示法

平面及表示法

A
B
(2)点与平面的位置关系:
点A在平面α上: 记为:A∈α
B
点B不在平面α上记:为:B∈ α
A
α
(3)直线与平面的位置关系:
直线a上的所通过直线a.记为:a α
直线a与平面α只有一个公共点A时,称直 线a与平面α相交。 记为:a∩α=A
直线a与平面α没有公共点时,称直线a与 平面α平行。 记为:a∩α=φ 或 a∥α.
四.平面的表示方法:
平面可以用希腊字母表示,也可以用代表表 示平面的平行四边形的四个顶点或相对的两个顶 点字母表示。
D
C


A
B
如:平面α,平面β,平面ABCD,平面AC 平面BD等。
五.用数学符号来表示点、线、面之间的位置关系:
(1)点与直线的位置关系:
点A在直线a上: 记为:A∈a
a
点B不在直线a上: 记为:B∈a
平面及其表示法
一.平面的概念: 光滑的桌面、平静的湖面等都是我
们熟悉的平面形象,数学中的平面概念 是现实平面加以抽象的结果。
二.平面的特征:
平面没有大小、厚薄和宽窄,平面在空 间是无限延伸的。
三.平面的画法: (1)水平放置的平面: (2)垂直放置的平面:
ß a
通常把表示平面的平行四边形的锐角 画成450
(3)在画图时,如果图形的一部分被另一 部分遮住,可以把遮住部分画成虚线,也 可以不画。


; https:/// 棋牌赚钱

给他倒了一杯水,因为我刚在幼儿园里学了一首歌,词里说的是给妈妈倒水,可我妈还没回来呢,我就先给我爸倒了。我爸只说了一句,好儿子……就流泪了。从那次起,我知道他是爱我的。光头小男孩说。 ? 我给我奶奶耳朵上夹了一朵花,要是别人,她才

高中数学 第1章 立体几何初步 1.2.1 平面的基本性质高一数学教案

高中数学 第1章 立体几何初步 1.2.1 平面的基本性质高一数学教案
共线,共点问题
[探究问题]
1.把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面是否只相交于一点?为什么?
[提示]由下边的图可知它们不是相交于一点,而是相交于一条直线.
2.如图所示,在正方体ABCDA1B1C1D1中,E为AB的中点,F为AA1的中点.试问CE,D1F,DA三线是否交于一点?为什么?
③A a,a α⇒A α;④A∈a,a α⇒A α.
A.1B.2
C.3D.4
D[①不正确,如a∩α=A;②不正确,“a∈α”表述错误;③不正确,如图所示,A a,a α,但A∈α;④不正确,“A α”表述错误.]
2.如图所示,点A∈α,B α,C α,则平面ABC与平面α的交点的个数是______个.
①公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.
用符号表示为: ⇒AB α.
②公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.
用符号表示为: ⇒α∩β=l且P∈l.
③公理3:经过不在同一条直线上的三点,有且只有一个平面.
(2)α∩β=l,m∩α=A,m∩β=B,A l,B l
点线共面问题
【例2】 已知一条直线与另外三条互相平行的直线都相交,证明:这四条直线共面.
思路探究:法一: → →

法二: → →
[证明]如图.
法一:∵a∥b,∴a,b确定平面α.
又∵l∩a=A,l∩b=B,
∴l上有两点A,B在α内,即直线l α.
2.证明:两两相交且不共点的三条直线在同一平面内.
[解]已知:如图所示,l1∩l2=A,l2∩l3=B,l1∩l3=C.
求证:直线l1,l2,l3在同一平面内.

平面的基本性质及推论

平面的基本性质及推论

4个
(2)共点的三条直线可以确定几个平面? 1个或3个
D1
C1
O
A1
B1
D A
C B
D A
C B
D1 A1
C1 B1
小结
1、平面的基本性质:三公理三推论 2、公理化方法:从一些原始概念(基 本概念)和一些不加证明的原始命题 (公理)出发,运用逻辑推理,推导 出其他命题和定理的方法叫公理化方 法。
观察下列问题,你能得到什么结论?
B
桌面α
A
公理1:如果一条直线上两点在一个平面内,那么这条 直线上的所有的点都在这个平面内(即直线在平面内)。
Байду номын сангаас符 符号号语表言:示:
Al, B l,且A , B l
α
A
B
公理1的作用:
一 是可以用来判定一条直线是否在平面内,即 要判定直线在平面内,只需确定直线上两个 点在平面内即可;
符号语言:
P P
l且P
l
公理3的作用:
一 是判定两个平面相交,即如果两个平面有一个 公共点,那么这两个平面相交;
二 是判定点在直线上,即点若是某两个平面的公 共点,那么这点就在这两个平面的交线上.
三.两平面两个公共点的连线就是它们的交线
β
α
(×)
(×) (×)
(×) (×)
2、(1)不共面的四点可以确定几个平面?
一.平面的概念及特征:
平面没有大小、厚薄和宽窄,平面在空间是无限延伸的。
二.平面的表示:
几何画法:通常用平行四边形来表示平面.
D
C
α A
符号表示:
B
α
平面ABCD 平面AC
三.用数学符号来表示点、线、面之间的位置关系:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考:如果直线 l 与平面α有一个公共点P,直线 l 是否在 平面α内?如果直线 l 与平面α有两个公共点,直线 l 是否 在平面α内?
三、平面公理: 人们在生产、生活中,经过长期观察与实践,总结出关于 平面的一些基本性质,我们把它作为公理.这些公理是进 一步推理的基础,不需证明. 公理1:如果一条直线上的两点在一个平面内,那么这条直 线在此平面内.
且只有一条过该点的公共直线.

P l, 且P l

l P
作用: ①判断两个平面相交的依据. ②判断点在直线上.
例1:教材P43页
2、下列命题中,正确的命题是( B
A、有三个公共点的两个平面重合
)
B、梯形的四个顶点在同一个平面内
C、三条互相平行的直线必共面
D、四条线段顺次首尾连接,构成平面图形
公理2:过不在一条直线上的三点,有且只有一个平面. 存在性; 唯一性 不在一条直线上的三个点A、B、C所确定的平面,可
以记成“平面ABC”.
作用:确定平面的主要依据. 思考:把三角板的一个角立在课桌面上,三角板所在平面
A

B
与桌面所在平面是否只相交于一点B?为什么?

B
公理3:如果两个不重合的平面有一个公共点,那么它们有
3、下列命题正确的是( D )
A、两条直线可以确定一个平面
B、一条直线和一个点可以确定一个平面
C、空间不同的三点可以确定一个平面
D、两条相交直线可以确定一个平面
平面 学习目标: 1、了解平面的概念. 2、知道平面的画法及表示方法. 3、掌握平面的三个公理,并会用符号进行描述.
观察活动室里的地面,它呈现出怎样的现象?
观察海面,它又呈现出怎样的现象?
一、平面
1、平面的概念:几何里的平面是无限延展的.
2.平面的画法 常常把水平的平面画成一个平行四边形,用平行四

l

B
A
A l , B l , A , B l
作用:判定直线是否在平面内.
图形、文字、符号
l

B

l
A
点A在直线l外: B l
Al 点A在直线l上:
l


A


A B l
直线l在平面 内; 直线l在平面 外:
l
平面 经过直线l.
l
(1)
说明:画图的顺序:先画大件(平面),再画小件(点、线)
1、判断下列各题的说法正确与否,在正确的说法的题号
后打
,否则打
:
( ( ( ( ( ) ) ) ) )
(1)、一个平面长4米,宽2米; (2)、平面有边界; (3)、一个平面的面积是25cm2; (4)、菱形的面积是4cm2; (5)、一个平面可以把空间分成两部分.
点不在平面内 直线a、b交于点A
A
a b A
图形
符号语言
文字语言(读法) 直线a在平面


a
a
a
a

直线a与平面 平行
直线a与平面 交于点A 平面 与 相交于直线

a
Aa AFra bibliotek ll
例1.将下列符号语言转化为图形语言:
B l B ,A l, A , bc p c, a / / c, (2)a ,b ,

B
1、平面的两个特征:①无限延展 ②平的(没有厚度)
2、一条直线把平面分成两部分; 一个平面把空间分成两部分. 思考:二个平面把空间分成几部分? 二、常见的点、线、面的基本位置关系 图形 符号语言 文字语言(读法) 点在直线上 点不在直线上
A
A
a
a
A
b a
A a
A a
A
A
A
点在平面内
边形表示平面. 平行四边形的锐角通常画成45°,且横边长等于其 邻边长的2倍.
D A B
C
为了增强立体感,常常把 被遮挡部分用虚线画出来.
D A E
F
B
C
3.平面的表示方法 (2)常用平行四边形表示
(1)平面是无限延展的(常用平面的一部分表示平面)

D
A
C

(3)记法: ①平面α 、平面β 、平面γ (标记在角上) ②平面ABCD ③平面AC 或平面BD
相关文档
最新文档