公开课教学设计 位似图形的概念及画法

合集下载

2021年 位似图形的概念及画法优秀教学教案说课稿

2021年 位似图形的概念及画法优秀教学教案说课稿

位似第1课时位似的概念、性质及画法教学目标【知识与技能】1 掌握位似图形的定义、性质及画法2 掌握位似图形与相似图形的区别和练习【过程与方法】经历观察、思考及动手操作等过程,锻炼学生的分析问题,解决问题的能力【情感态度】通过对位似图片的观察,欣赏,可激发学生的学习兴趣,增强审美意识【教学重点】理解并掌握位似图形的定义,性质及画法【教学难点】位似图形的多种画法教学过程一、情境导入,初步认识问题在日常生活中,我们经常看到下面这些相似的图形,它们有什么特征呢?【教学说明】通过所展示的几幅美丽图片的观察,既可以激发学生的学习兴趣和求知欲望,增强审美意识,又能通过相似图形的这种特殊位置关系初步感受位似图形教学时,教师应着重引导学生观察这些相似图形所具有的特殊位置关系,可逐个进行剖析二、思考探究,获取新知问题如图,图中有多边形相似吗?如果有,那么这些图形有什么特征?【教学说明】让学生相互交流,共同发现,然后选取代表发表自己的观点,认识位似图形【归纳结论】位似图形:如果两个图形的对应顶点相交于一点,对应边互相平行,这样的两个图形叫做位似图形位似图形的特征:1位似图形必定是相似图形(反过来就不一定成立);2位似图形的对应顶点连线(或延长线)必相交于同一点,对应边互相平行;3 位似图形的对应边的比称为位似比,对应顶点连线(或延长线)相交的那个交点称为位似中心)利用位似,可以将一个图形放大或缩小三、典例精析,掌握新知例1如图,指出各组图形中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心【教学说明】教师应引导学生掌握怎样判别两个图形是位似图形的方法,然后由学生自主探究,相互交流获得结论显然(1、(2、(3 中的两个图形都是位似图形,其位似中心分别为A,A,【分析】将一个图形缩小的原图的,即是要新图形各个顶点到位似中心的距离与原图中各对应顶点到位似中心的距离之比为1:2,因而只要在同一平面内确定了某一点为位似中心的话,就一定能得到缩小后的四边形而选取某一点为位似中心时,这点可在两个图形的外部,中间或它们的内部几种不同情形,我们不妨按三种不同情形来进行画图,试试看解作法一:(1)在四边形ABCD的外面任取一点0(如图①所示)2 过点O分别作射线OA、OB、OC、OD;3 分别在OA、OB、OC、OD上截取点A',B’,C’,D’,使得====;4 顺次连接A’,B’,C’,D’,所得的四边形A’B' C’D’就是将四边形ABCD缩小后的图形,且其位似比为作法二:(1)在四边形ABCD外任取一点O (如图②)2作射线OA、OB、OC、OD;3分别在射线OA,OB,OC,OD的反向延长线上取点A’ ,B’ ,C’,D’ ,使====;4顺次连接A’,B’,C’,D’,则四边形A’B’C’D’ 也是四边形ABCD 缩小的图形作法三:(1)在四边形ABCD的内部任取一点O 如图③)2连OA 、OB 、OC 、OD ;3分别在OA ,OB ,OC ,OD 上截取点 A’ ,B’ ,C’,D’ , 使====; 4顺次连接A’,B’,C’,D’,则四边形A’B’C’D’ 是将四边形ABCD 缩小的图形【教学说明】对上述三种作图方法,教师可选讲其中一种,另两种方法在稍作提示后应留给学生完成,让学生积极参与,动手实践,在实践中增长知识,获取技能四、运用新知,深化理解1 如图,△OAB 和△OCD 是位似图形,AB / /CD 吗?为什么?2 如图,以O 为位似中心,画出将△ABC 放大为原来的两倍的图形【教学说明】这两道小题让学生独立完成后,相互交流教师巡视,适时参与讨论,设计,进一步加深学生理解和掌握位似图形的定义和性质在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分五、师生互动,课堂小结1 位似图形和相似图形的联系和区别是什么?请说说看;2 将一个图形放大或缩小,可以利用位似得到你认为画出一个图形的位似图形的关键是什么?通常有几种可能?【教学说明】师生共同回顾,对所学过知识进行反复梳理,加深认识1.布置作业:从教材P51习题中选取2.完成创优作业中本课时的“课时作业”部分教学反思本课时教学通过创设'清境让学生感受了位似的概念,接着通过实际操作,让学生体会了位似图形的作法在教学时,应注意加强与学生的互动与交流,并让学生动手操作,提高学生的自主学习能力。

《4.8图形的位似》教案

《4.8图形的位似》教案
举例:给出不规则多边形,指导学生通过观察和测量判断其是否与其他图形位似。
(3)位似图形在生活中的应用:运用位似图形解决实际问题,如地图放大缩小、相似图形的面积比等。
难点解析:将位似图形应用于实际问题,需要学生具备一定的数学建模和数据分析能力。
举例:给出实际场景,如房间平面图放大缩小,指导学生运用位似知识解决相关问题。
(2)位似图形的性质:熟练掌握位似图形的对应边平行、对应角相等的特点。
举例:分析具体图形的位似性质,如正方形、等边三角形的位似变换。
(3)位似图形的判定与证明:学会判断两个图形是否位似,并能运用比例关系进行证明。
举例:给出两个图形,指导学生通过观察、测量、计算等方法判断它们是否位似,并给出证明过程。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解位似图形的基本概念。位似是指在平面内,通过相似变换使两个图形的形状相同但大小不同的现象。它是几何变换中的重要内容,广泛应用于现实生活。
2.案例分析:接下来,我们来看一个具体的案例。通过地图放大缩小的实例,展示位似图形在实际中的应用,以及如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调位似图形的定义和性质这两个重点。对于难点部分,如位似比的计算和非标准图形的位似判定,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与位似图形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际操作,演示位似图形的基本原理。
4.位似图形的应用:解决实际问题,如地图放大缩小、相似图形的面积比等。
二、核心素养目标
《4.8图形的位似》核心素养目标:
1.培养学生的空间观念:通过探究位似图形的性质,提高学生对图形变换的认识,发展空间想象力。

湘教版九上数学第1课时 位似图形的概念及画法教案

湘教版九上数学第1课时 位似图形的概念及画法教案

湘教版九上数学3.6 位似第1课时位似图形的概念及画法【知识与技能】1.了解图形的位似概念,会判断简单的位似图形和位似中心.2.理解位似图形的性质,能利用位似将一个图形放大或缩小,解决一些简单的实际问题.【过程与方法】采用引导、启发、合作、探究等方法,经历观察、发现、动手操作、归纳、交流等数学活动,获得知识,形成技能,发展思维,学会学习.【情感态度】使学生亲身经历位似图形的概念的形成过程和位似图形性质的探索过程,感受数学学习内容的现实性、应用性.【教学重点】图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小.【教学难点】探索位似概念、位似图形的性质的过程及利用位似准确地把一个图形通过不同的方法放大或缩小.一、情境导入,初步认识1.相似多边形的定义及判定是什么?2.相似多边形有哪些性质?3.我们已学过的图形变换有哪些?它们的性质是什么?【教学说明】分析相关知识,为本节课的教学作准备.二、思考探究,获取新知1.下图是运用幻灯机(点O表示光源)把幻灯片上的一只小狗放映到屏幕上的示意图.(1)这两个图形之间有什么关系?(2)在左边小狗的头顶上和狗尾巴尖上分别取点A,B.右边小狗的头顶上和狗尾巴尖上的点A′,B′分别为点A,B的对应点.作直线AA′、BB′,你发现了什么?(3)分别量出线段OA、OA′、OB、OB′的长度,计算(精确到0.1):OA OA'=_______;OBOB'=_______.(4)任意在两只小狗上找一些对应点,每一对对应点与点O所连线段的比与上述的值相等吗?【归纳结论】一般地,如果一个图形G上的点A、B、C、…、P与另一个图形G′上的点A′、B′、C′、…、P′分别对应,且满足:(1)直线AA′、BB′、CC′、…、PP′都经过同一点O.(2)OA OB OC OP OA OB OC OP====''''…=k那么图形G与图形G′是位似图形,这个点O叫作位似中心,常数k叫作位似比.2.在下图中,线段AB与A′B′成位似图形,O是位似中心,你能证明AB ∥A′B′吗?3.由此,你能得到什么结论?【归纳结论】两个图形位似,则这两个图形不仅相似,而且对应点的连线相交于一点,对应边互相平行.利用位似,可以把一个图形进行放大或缩小.画位似图形的方法:方法:1.确定位似中心;2.找对应点;3.连线;4.下结论.三、运用新知,深化理解1.下列说法中正确的是()A.位似图形可以通过平移而相互得到B.位似图形的对应边平行且相等C.位似图形的位似中心不只有一个D.位似中心到对应点的距离之比都相等【答案】 D2.如图,五边形ABCDE和五边形A1B1C1D1E1是位似图形,且PA1=23 PA,则AB∶A1B1等于()A.23B.32C.35D.53【答案】 B3.如图,火焰的光线穿过小孔O,在竖直的屏幕上形成倒立的实像,像的长度BD=2cm,OA=60cm,OB=15cm,则火焰的长度为______.【答案】8cm4.如图,五边形ABCDE与五边形A′B′C′D′E′是位似图形,且位似比为2. 若五边形ABCDE的面积为17cm2,周长为20cm,那么五边形A′B′C′D′E′的面积为_______,周长为_______.【答案】174cm210cm5.如图,A′B′∥AB,B′C′∥BC,且OA′∶A′A=4∶3,则△ABC与_______是位似图形,位似比为_______;△OAB与_______是位似图形,位似比为_______.【答案】△A′B′C′7∶4 △OA′B′7∶4【教学说明】通过例题、练习,让学生总结解决问题的方法,以培养学生良好的学习习惯.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题3.6”中第1题.在学习图形的位似概念过程中,让学生用类比的方法认识事物总是互相联系的,温故而知新.而通过“位似图形的性质”的探索,让学生认识事物的结论必须通过大胆猜测、判断和归纳.在分析理解位似图形性质时,加强师生的双边活动,提高学生分析问题、解决问题的能力.。

位似图形最佳教案设计

位似图形最佳教案设计

§23.5 位似图形一、教学目标图形的位似,作位似图形的方法二、教学重点、难点1.教学重点:图形的位似2.教学难点:利用作位似图形的方法将一个图形放大或缩小三、教学过程1.引言相似与轴对称、平移、旋转一样,也是图形之间的一个基本变换,可以将一个图形放大或缩小,保持形状不变.这节课我将向大家介绍一种特殊的画相似多边形的方法.2.作图现在要把多边形ABCDE放大到1.5倍,即新图与原图的相似比为1.5作法1.任取一点O;2.以点O为端点作射线OA、OB、OC、……;3.分别在射线OA、OB、OC、……上取点A′、B′、C′、……,使OA′∶OA=OB′∶OB=OC′∶OC=…=1.5;4.连接A′B′、B′C′、……,得到所要画的多边形A′B′C′D′E′.3.给出位似的定义如上图,两个图形的对应点A与A′,B与B′,C与C′……的连线都交于一点O,并且OA OB OCOA OkB OC'''==⋯⋯==,这两个图形叫做位似图形,点O叫做位似中心.4.变化要画四边形ABCD的位似图形,还可以任取一点O,如图,作直线OA、OB、OC、OD,在点O的另一侧取点A′、B′、C′、D′,使OA′∶OA=OB′∶OB=OC′∶OC=OD′∶OD=2,也可以得到放大到2倍的四边形A′B′C′D′.实际上,如图所示,如果把位似中心取在多边形内,那么也可以把一个多边形放大或缩小,而且较为简便.课堂练习任意画一个五边形,再把它放大到原来的3倍.学生在自己的笔记本上画图,教师适当指导。

选取较好同学的在实物投影仪上演示5. 课堂小结位似的定义6. 拓展阅读数学与艺术的美妙结合——分形雪花是什么形状呢?科学家通过研究发现:将正三角形的每一边三等分,而以其居中的那一条线段为底边再作等边三角形.然后以其两腰代替底边.再将六角形的每边三等分,重复上述的作法.如图1所示,如此继续下去,就得到了雪花曲线. 雪花曲线的每一部分经过放大都可以与它的整体形状相似,这种现象叫自相似.只要有足够细的笔,这种自相似的过程可以任意继续表现下去.观察图2中的图形,这也是通过等边三角形绘制的另一幅自相似图形.图3是五边形的一幅自相似图形.自然界中其实存在很多自相似现象,如图4所示树木的生长,又如雪花的形成、土地干旱形成的地面裂纹等.现在已经有了一个专门的数学分支来研究像雪花这样的自相似图形,这就是20世纪70年代由美国计算机专家芒德布罗创立的分形几何.如图5,通过计算机可以把简单的图形设计成美丽无比的分形图案,人们称为分形艺术.给出超级链接: 分形频道给学生欣赏几幅分形的照片 并打开FractalForge 生成分形的软件,带领学生欣赏优美的分形图案.图 1 图 2图 3 图 4图5。

初中位似教案

初中位似教案

初中位似教案教学目标:1. 让学生理解位似的概念,掌握位似的基本性质。

2. 培养学生运用位似知识解决实际问题的能力。

3. 培养学生合作交流、归纳总结的能力。

教学内容:1. 位似的概念及其性质2. 位似图形的画法3. 位似在实际问题中的应用教学重点:位似的概念、位似的基本性质教学难点:位似图形的画法、位似在实际问题中的应用教学过程:一、导入(5分钟)1. 利用多媒体展示一些生活中的相似图形,引导学生发现相似图形的特征。

2. 提问:什么是相似图形?相似图形有哪些性质?二、新课讲解(15分钟)1. 引入位似的概念:在平面内,如果两个图形的形状相同,但大小不一定相同,那么这两个图形称为位似图形。

2. 讲解位似的基本性质:(1)位似图形的大小不同,但形状相同。

(2)位似图形的对应边成比例。

(3)位似图形的角度相等。

3. 举例说明位似图形的性质,引导学生理解并掌握。

三、课堂练习(10分钟)1. 让学生独立完成教材中的练习题,巩固位似的概念和性质。

2. 教师选取部分学生的作业进行点评,指出优点和不足。

四、位似图形的画法(10分钟)1. 讲解位似图形的画法步骤:(1)确定位似中心。

(2)画出位似图形的大致形状。

(3)按照比例关系,调整图形的大小。

(4)检查位似图形的形状和大小是否符合要求。

2. 让学生动手画出一个位似图形,并讲解画法。

五、位似在实际问题中的应用(10分钟)1. 举例讲解位似在实际问题中的应用,如地图、设计图案等。

2. 让学生思考:位似在现实生活中有哪些应用?六、课堂小结(5分钟)1. 让学生总结本节课所学的内容,巩固知识点。

2. 教师点评本节课学生的表现,鼓励优秀学生,帮助后进生。

七、作业布置(5分钟)1. 让学生完成教材后的练习题。

2. 布置一道实际问题,让学生运用位似知识解决。

教学反思:本节课通过讲解位似的概念、性质和画法,以及实际应用,使学生掌握了位似知识。

在教学过程中,注意调动学生的积极性,让学生参与课堂讨论,提高学生的学习兴趣。

27.3.1 位似图形的概念及画法(公开课)PPT课件

27.3.1  位似图形的概念及画法(公开课)PPT课件
位似比等于相似比
知识点2 位似图形的性质
1.位似图形一定是相似图形,反之相 似图形不一定是位似图形.
2.判断位似图形时,要注意首先它们 必须是相似图形,其次每一对对应点所在 直线都经过同一点。
3.位似比等于相似比。
判断
下面哪些相似图形是位似图形?


×
相似图形成为位似图形必须具备两个条件: ①对应点的连线交于一点; ②对应边互相平行或在同一条直线上.
A.6
B.5
C.9
D. 8
3
综合应用
4.如图,正方形EFGH,IJKL都是正方形ABCD的位 似图形,点P是位似中心. (1)如果相似比为3,正方形ABCD的位似图形是 哪一个? (2)正方形IJKL是正方形EFGH的位似 图形吗?如果是,求相似比;是 3∶2 (3)如果由正方形EFGH得到它的位似 图形正方形ABCD,求相似比. 2∶1
3.顺次连接点A′,B′,C′,
A
D′,所得四边形A′B′C′D′就是所
B
D
A'
要求的图形.
B' D' C
C'
O
作法二:
如果在四边形外任选一点O,分别在OA,OB,
OC,OD 的反向延长线上取点A′,B′,C′,D′使得
OA' 四OA =
OOBB'= OOCC'= OODD'=12
呢?如果点 O 取在
BD
△OCD是位似图形.
知识点3 画位似图形
利用位似,可以将一个图形放大或缩小.
例如,要把四边形 ABCD 缩小到原来的 1. 2
怎么画出 来呢?
.
动手操作
作法一:1.在四边形外任选一点 O .
2.分别在线段 OA,OB,OC,OD 上取A′,B′,

人教版九年级数学下册27.3 第1课时 位似图形的概念及画法 学案

人教版九年级数学下册27.3 第1课时 位似图形的概念及画法 学案

27.3 位似第1课时位似图形的概念及画法教学目标1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.重点、难点1.重点:位似图形的有关概念、性质与作图.2.难点:利用位似将一个图形放大或缩小.一.创设情境活动1 提出问题:生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.思考:观察图27.3-2图中有多边形相似吗?如果有,那么这种相似什么共同的特征?图27.3-2活动:学生通过观察了解到有一类相似图形,除具备相似的所有性质外,还有其特性,学生自己归纳出位似图形的概念:如果两个图形不仅是相似图形,而且是每组对应点连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.这个点叫做位似中心.这时的相似比又称为相似比.(位似中心可在形上、形外、形内.)结论:________________________________________________二、利用位似,可以将一个图形放大或缩小活动2 提出问题:把图1中的四边形ABCD 缩小到原来的21. 分析:把原图形缩小到原来的21,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .作法一:作法二:作法三:三、课堂练习1下列图中的两个图形不是位似图形的是( )A .B .C.D.2下列四图中的两个三角形是位似三角形的是()A.图(3)、图(4)B.B.图(2)、图(3)、图(4)C.C.图(2)、图(3)D.D.图(1)、图(2)3.如图,三个正六边形全等,其中成位似图形关系的有()A.0对B.1对C.2对D.3对。

《位似图形的概念及画法》教案 (公开课)2022年人教版数学

《位似图形的概念及画法》教案 (公开课)2022年人教版数学

27.3 位似第1课时位似图形的概念及画法1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的相关知识;(重点)2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.(难点)一、情境导入生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.观察图中有多边形相似吗?如果有,那么这种相似有什么共同的特征?二、合作探究探究点:位似图形【类型一】判定是否是位似图形以下3个图形中是位似图形的有()A.0个B.1个C.2个D.3个解析:根据位似图形的定义可知两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),所以位似图形是第一个和第三个.应选C.方法总结:判断两个图形是不是位似图形,首先要看它们是不是相似图形,再看它们对应顶点的连线是否交于一点.变式训练:见《学练优》本课时练习“课堂达标训练〞第1题【类型二】确定位似中心找出以下列图形的位似中心.解析:(1)连接对应点AE、BF,并延长的交点就是位似中心;(2)连接对应点AN、BM,并延长的交点就是位似中心;(3)连接AA′,BB′,它们的交点就是位似中心.解:(1)连接对应点AE、BF,分别延长AE、BF,使AE、BF交于点O,点O就是位似中心;(2)连接对应点AN、BM,延长AN、BM,使AN、BM的延长线交于点O,点O就是位似中心;(3)连接AA′、BB′,AA′、BB′的交点就是位似中心O.方法总结:确定位似图形的位似中心时,要找准对应顶点,再经过每组对应顶点作直线,交点即为位似中心.变式训练:见《学练优》本课时练习“课后稳固提升〞第2题【类型三】画位似图形按要求画位似图形:(1)图①中,以O为位似中心,把△ABC放大到原来的2倍;(2)图②中,以O为位似中心,把△ABC缩小为原来的1 3.解析:(1)连接OA、OB、OC并延长使AD=OA,BE=BO,CF=CO,顺次连接D、E、F就得出图形;(2)连接OA、OB、OC,作射线CP,在CP上取点M、N、Q使MN=NQ =CQ,连接OM,作NF∥OM交OC于F,再依次作EF∥BC,DE∥AB,连接DF,就可以求出结论.解:(1)如图①,画图步骤:①连接OA、OB、OC;②分别延长OA至D,OB至E,OC 至F,使AD=OA,BE=BO,CF=CO;③顺次连接D、E、F,∴△DEF是所求作的三角形;(2)如图②,画图步骤:①连接OA、OB、OC,②作射线CP,在CP上取点M、N、Q 使MN=NQ=CQ,③连接OM,④作NF∥OM交OC于F,⑤再依次作EF∥BC交OB于E,DE∥AB交OA于D,⑥连接DF,∴△DEF是所求作的三角形.方法总结:画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.变式训练:见《学练优》本课时练习“课后稳固提升〞第7题【类型四】位似图形的实际应用在放映电影时,我们需要把胶片上的图片放大到银幕上,以便人们欣赏.如图,点P为放映机的光源,△ABC是胶片上面的画面,△A′B′C′cm×cm,放映的银幕规格是2m×2m,光源P与胶片的距离是20cm,那么银幕应距离光源P多远时,放映的图象正好布满整个银幕?解析:由题中条件可知△A′B′C′是△ABC的位似图形,所以其对应边成比例,进而即可求解.解:图中△A′B′C′是△ABC的位似图形,设银幕距离光源P为x m时,放映的图象正好布满整个银幕,那么位似比为x0.2=2×10-2,解得xP16m时,放映的图象正好布满整个银幕.方法总结:在位似变换中,任意一对对应点到位似中心的距离之比等于对应边的比,面积比等于相似比的平方.【类型五】利用位似的性质进行证明或计算如图,F在BD上,BC、AD相交于点E,且AB∥CD∥EF,(1)图中有哪几对位似三角形,选其中一对加以证明;(2)假设AB=2,CD=3,求EF的长.解析:(1)利用相似三角形的判定方法以及位似图形的性质得出答案;(2)利用比例的性质以及相似三角形的性质求出BEBC=EFDC=25,求出EF即可.解:(1)△DFE与△DBA,△BFE与△BDC,△AEB与△DEC都是位似图形.理由:∵AB∥CD∥EF,∴△DFE∽△DBA,△BFE∽△BDC,△AEB∽△DEC,且对应边都交于一点,∴△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形;(2)∵△BFE ∽△BDC ,△AEB ∽△DEC ,AB =2,CD =3,∴AB DC =BE EC =23,∴BE BC =EF DC=25,解得EF =65. 方法总结:位似图形上任意一对对应点到位似中心的距离之比等于相似比.位似图形的对应线段的比等于相似比.变式训练:见《学练优》本课时练习“课后稳固提升〞第6题三、板书设计位似图形的概念及画法1.位似图形的概念;2.位似图形的性质及画法.在教学过程中,为了便于学生理解位似图形的特征,应注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识.教师应把学习的主动权充分放给学生,在每一环节及时归纳总结,使学生学有所收获.第2课 伟大的历史转折1 教学分析 知识与 能力 知道中共十一届三中全会召开时间;了解它的背景,理解其重大意义;了解拨乱反正加强了民主与法制建设,推动了社会主义现代化建设;学会在历史开展的进程中认识历史人物、历史事件的地位和作用过程与方法学会运用原因与结果、联系与综合等概念,理解中共十一届三中全会的召开背景与历史意义 情感态度与价值观 认同中国共产党完全有能力领导中国人民取得社会主义建设事业的成功;认识改革开放是我国的强国之路【重点难点】教学重点:中共十一届三中全会教学难点:中共十一届三中全会在政治上、思想上、组织上的转变以及历史意义2教学过程一、导入新课“文化大革命〞时期,我国教育遭到了很大破坏,高考中断了十年。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

27.3 位似
第1课时位似图形的概念及画法
1.正确理解位似图形等有关概念,能够按照要求利用位似将图形进行放大或缩小以及能够正确地作出位似图形的位似中心.
2.在实际操作和探究活动中,让学生感受、体会到几何图形之美,提高对数学美的认识层次,陶冶美育情操,激发学习热情.
阅读教材P47-48,自学“思考”与“探究”,理解位似的概念,会找出位似图形的位似中心,并能按要求将图形进行放大或缩小的位似变换.
自学反馈学生独立完成后集体订正
①两个多边形不仅,而且对应点的连线相交于一点,对应边互相,像这样的两个图形叫做位似图形,这个点叫做.
②下列说法正确的是( )
A.两个图形如果是位似图形,那么这两个图形一定全等
B.两个图形如果是位似图形,那么这两个图形不一定相似
C.两个图形如果是相似图形,那么这两个图形一定位似
D.两个图形如果是位似图形,那么这两个图形一定相似
③用作位似图形的方法,可以将一个图形放大或缩小,位似中心位置可能在( )
A.原图形的外部
B.原图形的内部
C.原图形的边上
D.任意位置
位似的三要素即是判定位似的依据,也是位似图形的性质.
活动1 小组讨论
例1如图,作出一个新图形,使新图形与原图形对应线段的比为2∶1.
解:1.在原图形上取A、B、C、D、E、F、G,在图形外任取一点P;
2.作射线AP、BP、CP、DP、EP、FP、GP;
3.在这些射线上依次取A′、B′、C′、D′、E′、F′、G′,使PA′=2PA,PB′=2PB,PC′=2PC,PD′=2PD,PE′=2PE,PF′=2PF,PG′=2PG;
4.顺次连接点A′、B′、C′、D′、E′、F′、G′、A′.
所得到的图形就是符合要求的图形.
在作位似图形时,按要求作出各点的对应点后,注意对应点之间的连线,不要错连.
活动2 跟踪训练(独立完成后展示学习成果)
1.例1中的位似中心为点,如果把位似中心选在原图形的内部,那么所得图形是怎样的?如果点A′、B′、C′、D′、E′、F′、G′取在AP、BP、CP、DP、EP、FP、GP的延长线上时,所得的图形又是怎样的?(试着画一画)
当位似中心在原图形的外部时,两个图形可能在位似中心的两侧或同侧.
2.如图,△OAB和△OCD是位似图形,AB与CD平行吗?为什么?
3.如图,以O为位似中心,将△ABC放大为原来的两倍.
第2小题可根据位似的三要素得出对应线段平行;第3小题可有两种情况,画出其中一种即可.
4.如图,△ABC与△A′B′C′是位似图形,点O是位似中心,若OA=2AA′,S△ABC=8,则S△A′B′C′= .
活动1 小组讨论
例2请画出如图所示两个图形的位似中心.
解:如图所示的点O1,就是图1的位似中心.
如图所示的点O2,就是图2的位似中心.
正确地作出位似中心,是解位似图形的关键,可以根据位似中心的定义,位似图形的对应点连线的交点就是位似中心.
活动2 跟踪训练(独立完成后展示学习成果)
如图,图中的小方格都是边长为1的正方形,△ABC与△A1B1C1是以点O为位似中心的位似图形,它们的顶点都是在小正方形的顶点上.
①画出位似中心点O;
②求出△ABC与△A1B1C1的相似比;
③以点O为位似中心,再画一个△A2B2C2,使它与△ABC的相似比等于1.5.
活动3 课堂小结
学生试述:这节课你学到了些什么?
教学至此,敬请使用学案当堂训练部分.
【预习导学】
自学反馈
①相似平行位似中心
②D
③D
【合作探究1】
活动2 跟踪训练
1.P 略
2.平行因为位似的两个图形的对应边平行
3.略
4.2
【合作探究2】
活动2 跟踪训练
①略
②1 2
③略
第二十九章投影与视图
29.1 投影
第1课时投影
1.通过观察、实验、探索、想象,了解投影、投影线、投影面、平行投影、中心投影的概念.
2.能够确定物体在平行光线和点光源发出的光线在某一平面上的投影.
阅读教材P87-88页,自学“投影”、“平行投影”、“中心投影”的内容,区分清楚概念.
自学反馈独立完成后小组内交流
①光线照射物体,在某个平面(地面或墙壁等)上得到的,叫做物体的投影,照射光线叫做,投影所在的平面叫做.
②由光线形成的投影叫做平行投影,由发出的光线形成的影子就是中心投影.
③皮影戏是利用(填“平行投影”或“中心投影”)的一种表演艺术.
④“平行投影”与“中心投影”的投影线有何区别?
⑤教材P88页练习题.
影子的形成需要“光线”、“物体”、“形成影子的面”三个条件;本章中所提的“投影面”是一个平面,生活中的影子不一定在同一个平面上;而光线的平行与否是区分“平行投影”和“中心投影”的条件.
活动1 小组讨论
例1 太阳光照射到日晷上形成的投影与灯光照射到三角尺在墙面上形成的投影有何不同?
解:太阳光形成的投影是平行投影,灯光形成的投影是中心投影.
太阳光是平行光线,由此形成的投影是平行投影;灯光是从一点发出的光线,它形成的投影叫做中心投影.
例 2 如图中①②③④是木杆一天中四个不同时刻在地面上的影子,将它们按时间先后顺序排
列为.
解:④③②①.
一天当中影子的变化情况是:正西—北偏西—正北—北偏东—正东.
活动2 跟踪训练(独立完成后展示学习成果)
1.请判断如图所示的两根电线杆的影子是灯光还是太阳光形成的.
可画出光线,根据光线的方向来判断,若光线平行则是太阳光照射形成的平行投影;若交于一点则是灯光照射形成的中心投影.
2.身高相同的甲、乙两人分别距同一路灯2米、3米,路灯亮时,甲的影子比乙的影子.
活动1 小组讨论
例3如图,小强家后院有一根电线杆和一棵大树.
①请根据树在阳光下的影子,画出电线杆的影子;(用线段表示)
②若此时大树的影子长为6 m,电线杆高8 m,其影长为10 m,求大树的高度.
解:①如图,线段AB即为所求;
②设大树的高度为x m,则有
6x =810
.∴x=4.8. 答:大树的高度为4.8 m.
①小题首先要确定太阳光为光源,投影线是平行的,可以根据树和它的影子确定
光线,从而画出电线杆的影子;②在同一时刻,物体的影长与实际长度的比值是定值. 活动2 跟踪训练(独立完成后展示学习成果)
如图,我国某大使馆内有一单杠支架,支架高2.8 m ,在大使办公楼前竖立着高28 m 的旗杆,旗杆底部离大使办公楼墙根的垂直距离为17 m ,在一个阳光灿烂的某一时刻,单杠支架的影长为2.24 m ,大使办公窗口离地面5 m ,问此刻中华人民共和国国旗的影子是否能达到大使办公室的窗口?
可先画出旗杆在办公楼上的投影,通过同一时刻,同一物体的影长与物长的比是
一个定值这一规律计算出旗杆投影到墙上的影长,跟5 m 进行比较就可得出结论. 活动3 课堂小结
学生试述:这节课你学到了什么?
教学至此,敬请使用学案当堂训练部分.
【预习导学】 自学反馈
①影子 投影线 投影面 ②平行 同一点(点光源) ③平行投影 ④略 ⑤略
【合作探究1】 活动2 跟踪训练
1.灯光
2.短
【合作探究2】
活动2 跟踪训练
旗杆的影长应为22.4 m,投在墙上的影长为6.75 m>5 m,所以影子能达到大使办公室的窗口。

相关文档
最新文档