第2课椭圆及其标准方程(2)

合集下载

椭圆及其标准方程

椭圆及其标准方程

椭圆及其标准方程椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

这两个定点称为椭圆的焦点,常数2a称为椭圆的长轴长度。

椭圆的标准方程是(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心坐标,a和b分别是椭圆长轴和短轴的长度。

椭圆的定义让我们可以从几何的角度来理解它,但更重要的是要掌握椭圆的数学性质和标准方程。

接下来,我们将详细介绍椭圆的数学性质和标准方程。

首先,我们来看椭圆的标准方程(x-h)²/a² + (y-k)²/b² = 1。

这个方程中,(h,k)表示椭圆的中心坐标,a和b分别表示长轴和短轴的长度。

通过这个方程,我们可以确定椭圆的位置、形状和大小。

其次,椭圆的离心率是一个重要的概念。

离心率e定义为焦点到中心的距离与长轴长度的比值,即e = c/a,其中c为焦点到中心的距离。

离心率描述了椭圆的形状,当离心率接近于0时,椭圆趋近于圆形;当离心率接近于1时,椭圆趋近于长条形。

另外,椭圆还有一个重要的性质是它的对称轴。

椭圆有两条对称轴,分别是x 轴和y轴,它们通过椭圆的中心,并且与椭圆的长轴和短轴垂直。

对称轴对于研究椭圆的性质和方程都有重要的作用。

除此之外,椭圆还与焦点、直径、引线等概念有着密切的联系,这些概念都是理解和研究椭圆的重要工具。

总之,椭圆是数学中重要的曲线之一,它有着独特的数学性质和几何特征。

通过掌握椭圆的标准方程和数学性质,我们可以更深入地理解和研究椭圆,为数学和科学的发展做出贡献。

希望本文对你对椭圆及其标准方程有所帮助,谢谢阅读!。

《椭圆及其标准方程》人教版高中数学选修2-1PPT课件(第2课时)

《椭圆及其标准方程》人教版高中数学选修2-1PPT课件(第2课时)

PF1 PF2 16(2 3),
S
F1PF2
1 2
PF1
PF2 sin30 8 4
3.
巩固练习
例3:已知△ABC的一边BC长为8,周长为20,求顶点A的轨迹方程. 解:以BC边所在直线为x轴,BC中点为原点,建立如右图所示的直角坐标系,则B、C两点的坐标分
别为(-4,0)、(4,0).
|PA|,由于圆P与圆C相内切, ∴|PC|=r-|PA|, 即|PA|+|PC|=r=6. 因此,动点P到两定点A(0,2)、C(0,-2)的距离之和为6, ∴P的轨迹是以A、C为焦点的椭圆,且2a=6,2c=4,即a=3,c=2,∴b2=5.
∴所求动圆圆心P的轨迹方程为 x2 y2 1. 59
巩固练习
例3.如图,已知点A(-5,0),B(5,0).直线AM,BM交于点M,且它们的斜率之积是- 4/9,求 点M的轨迹方程.
y M
直译法
A
O
B
x
巩固练习
练习:已知x轴上一定点A 1, 0, Q为椭圆 x2 y2 1
4 上任一点, 求AQ的中点M的轨迹方程.
[解]设中点M的坐标为x, y,点Q的坐标为x0, y0 ,
人教版高中数学选修2-1
第2章 圆锥曲线与方程
2.2.1椭圆及其标准方程第二课时
PEOPLE'S EDUCATION PRESS HIGH SCHOOL MATHEMATICS ELECTIVE 2-1
讲解人:XXX 时间:2020.6.1
课前导入
定义
图形 方程 焦点 a,b,c之间的关系
椭圆的标准方程
|MF1|+|MF2|=2a (2a>2c>0)

2.2.1椭圆及其标准方程(2)

2.2.1椭圆及其标准方程(2)

§2.2.1椭圆及其标准方程(2)编写:英德市第二中学,叶加修;审核:英西中学,刘东【学习目标】熟练椭圆方程的求解【知识回顾】1. 椭圆221259x y +=上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( ) A.5 B.6 C.4 D.102.椭圆 的焦点坐标是( ) A.(±5,0) B.(0,±5) C.(0,±12) D.(±12,0)3.小结:【新知构建】用待定系数法求椭圆标准方程的步骤.(1)作判断:依据条件判断椭圆的焦点在x 轴上还是在y 轴上.(2)设方程:①依据上述判断设方程为 或 .②在不能确定焦点位置的情况下也可设 .(3)找关系,根据已知条件,建立关于a ,b ,c 或m ,n 的方程组.(4)解方程组,代入所设方程即为所求.例1 已知圆A :(x +3)+y =100,圆A 内一定点B(3,0),圆P 过B 点且与圆A 内切,求圆心P 的轨迹方程.例2 已知两圆C 1:(x -4)2+y 2=169,圆C 2:(x +4)2+y 2=9,动圆在圆C 1内部和圆C 1相内切,和圆C 2相外切,求动圆圆心的轨迹.小结: 22125169x y +=【当堂练习】1.已知两定点F 1(-2,0),F 2(2,0),点P 是平面上一动点,且|PF 1|+|PF 2|=6,则点P 的轨迹是( )A .圆B .直线C .椭圆D .线段2.若椭圆的两焦点为(-2,0),(2,0),且过点⎝ ⎛⎭⎪⎫52,-32,则该椭圆的方程是( ) A.y 28+x 24=1 B.y 210+x 26=1 C.y 24+x 28=1 D.y 26+x 210=1 3.过椭圆4x 2+2y 2=1的一个焦点F 1的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点F 2构成△ABF 2,那么△ABF 2的周长是______.小结:【课后作业】1.椭圆x 2m +y 24=1的焦距是2,则m 的值为( ) A .5或3 B .8 C .5 D .32. 如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .(0,2)B .(0,+∞)C .(-∞,1)D .(0,1)3.椭圆x 249+y 224=1上一点P 与椭圆的两个焦点F 1、F 2的连线互相垂直,则△PF 1F 2的面积为( )A .20B .22C .24D .284. 一动圆过定点A (1,0),且与定圆(x +1)2+y 2=16相切,则动圆圆心轨迹方程是__________.5. 与椭圆x 2+4y 2=4有公共的焦点,且经过点A (2,1)的椭圆的方程为 .6.△ABC 的三边a >b >c 且成等差数列,A 、C 两点的坐标分别是(-1,0)、(1,0),求顶点B 的轨迹方程。

2椭圆及其标准方程

2椭圆及其标准方程

2椭圆及其标准方程椭圆是平面几何中的一种特殊曲线,由一个固定点F(称为焦点)和一个固定直线L(称为准线)上的所有点P的位置关系定义。

对于任意点P,它到焦点F和准线L的距离之和等于常数2a,即PF+PL=2a。

首先,我们来定义椭圆的标准方程。

一个椭圆的标准方程如下:(x-h)^2/a^2+(y-k)^2/b^2=1其中,(h,k)是椭圆的中心坐标,a和b是椭圆的半径(轴长)。

通过标准方程,我们可以得到椭圆的一些重要性质和特征。

1.中心坐标:椭圆的中心(h,k)是标准方程的两个平方项的系数的相反数,即(h,k)=(0,0)或(h,k)=(h,k)。

2.长轴和短轴:对于椭圆的标准方程,如果a>b,那么轴长a是椭圆的长轴,轴长b是椭圆的短轴。

反之,如果a<b,则轴长a是椭圆的短轴,轴长b是椭圆的长轴。

3.焦点坐标:标准方程中的a和b决定了椭圆的焦点坐标。

假设椭圆的中心是(h,k),那么焦点坐标可以通过以下公式计算:F = (h ± ae, k)其中e是椭圆的离心率,e=c/a,c是焦距,c^2=a^2-b^24.坐标轴与方位角:椭圆的标准方程与X轴和Y轴平行。

通过坐标轴与椭圆的交点,我们可以确定椭圆的方位角α。

如果a是椭圆的长轴,则α是X轴与长轴之间的夹角。

如果a是椭圆的短轴,则α是Y轴与短轴之间的夹角。

5.离心率:椭圆的离心率e=c/a决定了椭圆的形状。

当e=0时,椭圆退化为一个圆。

当0<e<1时,椭圆是一个实心的闭合曲线。

当e=1时,椭圆退化为一个抛物线。

当e>1时,椭圆是一个开放曲线,具有两个分离的曲线段。

6.曲率:椭圆上的曲率是指在其中一点的切线的弯曲程度。

在椭圆的两个焦点上,曲率最大;在椭圆的两个准线上,曲率最小。

7.相交角:两个椭圆可以相交,相交的部分被称为交点。

交点的个数和位置取决于两个椭圆的大小和位置相对于彼此。

总结起来,椭圆是一个具有特定形状和性质的图形。

椭圆及其标准方程二

椭圆及其标准方程二
o x y
第 8页
高考调研 · 高三总复习 · 数学 (理)
椭圆的弦长 AB 为椭圆的一条弦,A(x1,y1),B(x2,y2),弦中点 M(x0, y0). (1)弦长 l=|x 1-x2| 1+k2=|y 1-y2| b2x0 (2)kAB=- 2 . a y0 1 1+ 2 . k
b2x0 (3)直线 AB 的方程:y-y0=- 2 (x-x0). a y0 a2y0 (4)直线 AB 的垂直平分线方程:y-y0= 2 (x-x0). b x0
基础知识
第 5页
高考调研 · 高三总复习 · 数学 (理)
x2 y2 椭圆 2+ 2=1(a>b>0)的参数方程为 a b x=acosθ (θ是参数). y=bsinθ
第 6页
高考调研 · 高三总复习 · 数学 (理)
x2 y2 点 P(x0,y0)和椭圆a2 +b2=1(a>b>0)的关系: x02 y02 (1)P(x0,y0)在椭圆内⇔ a2 + b2 <1. x02 y02 (2)P(x0,y0)在椭圆上⇔ 2 + 2 =1. a b x02 y02 (3)P(x0,y0)在椭圆外⇔ a2 + b2 >1.
x2 y2 35)=1 404>0 ,∴直线 y=2x-1 与椭圆 + =1 相交. 9 4 方法二:∵直线方程 y=2x- 1 过点(1,1),而 (1,1)在椭圆内部,故选 A.
第11页
高考调研 · 高三总复习 · 数学 (理)
解析 方法一:∵直线方程 y=2x-1 过点 (1,1),而(1,1)在椭 圆内部,故选 A. y=2x-1, 方法二: 由 x2+y2=1 得 10y2+2y-35=0, Δ=22-4×10×(- 9 4 x2 y2 35)=1 404>0,∴直线 y=2x-1 与椭圆 + =1 相交. 9 4

说课:椭圆及其标准方程 (2) 公开课一等奖课件PPT

说课:椭圆及其标准方程 (2) 公开课一等奖课件PPT

二、过程意识
3、练习巩固,感悟新知----知识的运用
(1)写出适合下列条件的椭圆的标准方程(课本P40)
①a=4,b=1,焦点在x轴上
②a=4,c= 15 ,焦点在y轴上
如果该椭圆上一点P到焦点F1的距离等于6,那么P到
另一个焦点F2距离是---------------
(2)已知椭圆两个焦点的坐标分别为 (2,0),(2,0) ,并
图1
二、过程意识
现在请同学们将细绳的两端拉开一段距离,分别固 定在圆板的两点F1、F2处,移动笔尖一周,看看这时笔 尖画出的轨迹是什么图形?
这时候动点P满足的几何条件又是什么?学生不难说 出动点到两定点距离之和等于定长(常数)。
这时根据学生回答的情况结合
教具的演示让学生直观感知,假如 绳子的的长度(常数)小于或等于
36 16
36 16
D. x2 y2 1
64 4
二、过程意识
(4)如图:画出所给的椭圆的焦点的位 置,并说明理由。(补充练习)
y
x o
二、过程意识
说明:这个环节结合教学目标对教材例题、习 题进行了重组和加工,以学生的练习、感悟为 主,不预设例题,那个题目需要分析、讲解由 课堂实际而定,另外练习尽可能体现题形多样 性和层次性,以满足不同层次的学生的需要。 分析解答中注意发现学生思维的闪光点,注意 不同思维、方法的碰撞。 设计意图:不同于以往,这个环节通过放手让 学生自己练习、感悟,让学生在“游泳中学会 游泳”,以增强对学生能力培养的针对性和实 效性。
三、探究意识
y p
o
课外探究(2)
设计意图:通过创造性的使用 教材,一方面使针对教材内容所 开展的探究性活动成为一种真 x 实的可能;另一方面通过这样 的设计可逐渐培养学生自主学 习、自我探索的良好习惯,并 最终从根本上转变学生的学习 方式,同时为对学生数学学习 的过程性评价找到一种比较好 的形式和一个很好的落脚点。

椭圆及其标准方程(第二课时)课件高二上学期数学人教A版(2019)选择性必修第一册

椭圆及其标准方程(第二课时)课件高二上学期数学人教A版(2019)选择性必修第一册
表示焦点在y轴上的椭圆,则m的取值范
围是 (1,2.)
练习:求适合下列条件的椭圆的标准方程:
(1)a= ,b=1,焦点在x轴上;
(2)焦点为F1(0,-3),F2(0,3),且a=5.
(3)两个焦点分别是F1(-2,0)、F2(2,0),且过 P(2,3)点;
(4)经过点P(-2,0)和Q(0,-3).
答案:(1)
(3)
x2 y2 1 6
x2
y2
1
16 12
y2 x2
(2)
1
25 16
(4) x2 + y2 =1 49
小结:求椭圆标准方程的步骤:
①定位:确定焦点所在的坐标轴;
②定量:求a, b的值.
例3 :将圆 x 2 y 2= 4上的点的横坐标保持不变,
纵坐标变为原来的一半,求所的曲线的方程,
则其焦距为(A) 8 m2
A.2 8 m2
B.2 2 2 m
C.2 m2 8
D. 2 m 2 2
4. a 6, c 1 ,焦点在y轴上的椭圆的标准方程

y2 x2 1
__3_6___35____.
例24 已知圆A:(x+3)+y=100,圆A内一 定点B(3,0),圆P过B点且与圆A内切,求圆心 P的轨迹方程.
并且CF1=2,则CF2=_8__.
变题: 若椭圆的方程为16 x2 9y2 144 ,试口答完成(1).
x2 y2 1 9 16
探究: 若方程 x2 y2 1 表示焦点在y轴上的椭圆, k 2 3k
求k的取值范围; 若方程表示椭圆呢?
例2、写出适合下列条件的椭圆的标准方程
(1) a =4,b=1,焦点在 x 轴上;

高二数学椭圆及其标准方程2

高二数学椭圆及其标准方程2

把平面内与两个定点F1、F2的距离之和 (2a)等于常数(大于|F1F2|)的点的轨迹叫 做椭圆。
这两个定点F1、F2叫做椭圆的焦点,两焦 点间的距离叫做椭圆的焦距(2c)
思 考
当2a=2c或2a<2c时情况将有什么变化?
M直线为x轴,线段F1F2的垂直平分线为y 轴,建立直角坐标系,则F1(-c,0),F2(c,0). 设M(x,y)是椭圆上任意一点,由椭圆定 义得:
练习:
(1)、如果方程
x2
2

y2
1

1 表示
的曲线为椭圆,则λ的取值范围是 _________;
若表示焦点在x轴上的椭圆,则 ____________。
1 (2)AB是过椭圆 x2
y2
9 25
的左
焦点F1的弦, 则△ABF2的周长是多少?
1 (3)椭圆
x2 25
y2 16
的焦点是
F1, F2,P在椭圆上,若PF1的中点在Y轴 上,则|PF1|:|PF2|=______?
1、b2+c2=a2 2、焦点坐标:F1(0,-c),F2(0,c)
例1 写出适合下列条件的椭圆标准方程:
(1)两个焦点的坐标为(-4,0)、(4,0),椭圆 上一点P到两焦点的距离和为10;
(2)两焦点坐标为(0,-2),(0,2),并且椭 圆过点( 3 , 5 )
22
(3) 2b=6,两个焦点间的距离为8。
求轨迹(曲线)方程的一般步骤 (1)建立适当的坐标系,并设轨迹上任一点M (x,y)
(2)写出适合条件P的点的集合P{M|p(M)}
(3)用坐标表示条件p(x),列出方程f(x,y)=0 (4)化简f(x,y)=0为最简形式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课 2.1.1椭圆及其标准方程(2)
类型四、与椭圆有关的轨迹问题
【课堂主体参与】
例1、(课本P34例2)在圆42
2=+y x 上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 中点M 的轨迹是什么?为什么?
练习1、(课本P43 B 组第1)如图,x DP ⊥轴,点M 在DP 的延长线上,且2
3=DP DM
,当点P 在圆422=+y x 上运动时,求点M 的轨迹方程,并说明轨迹的形状. 与上述例题相比,你有什么发现?
例2、(课本P35例3)设点B A ,的坐标分别为)0,5(),0,5(-. 直线BM AM ,相交于点M ,且它们的斜率之积是94-
,求点M 的轨迹方程.
练习2、已知ABC ∆的两个顶点B A ,的坐标分别为()()0,5,0,5-,且BC AC ,所在直线斜率之积等于)0(<m m ,试探究顶点A 的轨迹.
练习3、课本P36练习4
例3、(课本P42第1题)如果点),(y x M 在运动过程中,总满足关系式
10)3()3(2222=-++++y x y x ,点M 的轨迹是什么曲线?为什么?写出它的方程.
练习3、(课本P42第7题)
如图,圆O 的半径为定长r ,A 是圆O 内一个定点,P 是圆上任意一点. 线段AP 的垂直平分线l 和半径OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是什么?为什么?
【课堂检测反馈】 1、已知两定点)0,2(),0,2(21F F -,动点M 到两定点的距离之和为M
2、已知 ∆ABC 的周长为36,求∆ABC 的顶点C 的轨迹方程。

【拓展深化】
1、求过点)0,2(A 且与圆03242
2=-++y x x 内切的圆的圆心C 的轨迹方程.
2、一动圆与已知圆1)3(:221=++y x O 外切,与圆81)3(:222=+-y x O 内切,试求动圆圆心M 的轨迹方程. A P O
Q l。

相关文档
最新文档