最常用的统计学概率分布总结 含清晰图
统计学一些知识的总结:qq图,肥尾分布,置信区间

统计学⼀些知识的总结:qq图,肥尾分布,置信区间
Q-Q图: ⽐较已知样本的分布和猜测分布的图, 猜测的概率分布通常为正态分布。
⽐如猜测样本是正态分布的,则有:
假设样本有n个,则⽤标准正态分布函数获取n个分位值。
取法:
将样本和这个n个值都从⼩到⼤排列,⼀⼀对应。
这样就能获得n对坐标。
标准正态分布函数⽣成的值作x,样本值作y,则可在直⾓坐标系中绘制出n个点。
如果所有点连成的线越接近直线 y=x,那么就能说样本分布越近似猜测的分布。
参考链接:
/tag/qq图/
肥尾分布的q-q图如下:
置信区间: 值在某⼀个区间内的概率⼤于95%,就把这个区间叫作95%的置信区间,以此类推。
R的q-q图中虚线画出了95%的置信区间。
常用概率分布-医学统计学

标准正态分布的µ=0,σ=1,则 µ±σ相当于区间(-1,1), µ±1.96σ相当于区间(-1.96,1.96), µ±2.58σ的区间相当于区间(-2.58,2.58)。
区间(-1,1)的面积:1-2Φ(-1)=1-2×0.1587=0.6826=68.26% 区间(-1.96,1.96)的面积:1-2Φ(-1.96)=1-2×0.0250=0.9500=95% 区间(-2.58,2.58)的面积:1-2Φ(-2.58)=1-2×0.0049=0.9902=99.02%
在单位空间中某种昆虫或野生动物数的分布,粉尘在
观察容积内的分布,放射性物质在单位时间内放射出
质点数的分布等。Poisson分布一般记作
。
Poisson分布作为二项分布的一种极限情况
Poisson分布可以看作是发生的概率π 很小,而观
察例数很大时的二项分布。除要符合二项分布的三个
基本条件外,Poisson分布还要求π或1-π接近于0和1。 有些情况π和n都难以确定,只能以观察单位(时间、
例 3 某年某市调查了 200例正常成人血铅含量 (μg/100g)如下,试估计该市成人血铅含量的95%医 学参考值范围。
分析:血铅的分布为偏态分布,且血铅含量只以 过高为异常,要用百分位数法制定单侧上限。
二、质量控制 为了控制实验中的检测误差,常用 ±2S作上
下但的警影随响机戒某因线一素,指很以标多, ±3S作为上下控制线。这里的2S和 3如S可果该视指为标1的.96随S 和2.58S的约数。其依据是正常情况下 检机误测波差动,误属则差于往是随往服机符从正态分布的。
概率 密度
正态分布的密度函数,即正态曲线的方程为 -∞<X<+∞
均数为0,标准差为1的正态分布,这种正态分布 称为标准正态分布。
概率论与数理统计常用的统计分布

n(
)2
X
)2
概率论与数理统计i 1
抽样分布定理 最重要的总体: X ~ N (, 2 )
如何由样本 X1, X2,...X n 推断 , 2 ?
分析:
对 , 2 的推断是通过构造统计量实现的
(1)如何构造“好”的统计量 (X1, X2,...Xn ) (2) g(X1, X2,...Xn ) 服从什么分布?
概率论与数理统计
定理 1 设总体 X ~ N (, 2 ) , X1, X2,...Xn 是取自 X 的一个样本, X 为该样本的样本均值,则有 (1) X ~ N(, 2 / n) (2)U X ~ N (0,1)
/ n
概率论与数理统计
本,则
设 X1, X2 ,, Xn 是来自总体 X ~ N(, 2 ) 的样
❖要求由样本构造一个以较大的概率包含真 实参数的一个范围或区间,这种带有概率 的区间称为置信区间,通过构造一个置信 区间对未知参数进行估计的方法
称为区间估计。
概率论与数理统计
设总体X的分布函数形式已知, 但它的一 个或多个参数为未知, 借助于总体X的一个样 本来估计总体未知参数的问题称为点估计问 题.
Review
F
设 U ~ 2 (n1), V ~ 2 (n2 ) ,且 U ,V 相互独立,令
F
U /n1 V /n2
称 F 服从自由度为 (n1, n2) 的 F 分布,记为 F ~ F (n1, n2).
F(n1, n2 )的上侧分位点记为F (n1, n2 )
O
F (n1 , n2)
抽样分布的途径: (1) 精确地求出抽样分布,并称相应的统
在参数估计问题中,假定总体分布 形式已知,未知的仅仅是一个或几个 参数.
几种常见的概率分布及应用

几种常见的概率分布及应用常见的概率分布有很多种,在统计学和概率论中,这些分布被广泛应用于各种领域,包括自然科学、工程、经济和社会科学等。
下面是几种常见的概率分布及其应用:1. 均匀分布(Uniform Distribution):均匀分布是最简单的概率分布之一,它的概率密度函数在一个给定的区间内是常数。
这种分布广泛应用于统计推断、模拟和随机数生成等领域。
2. 二项分布(Binomial Distribution):二项分布适用于具有两个可能结果的离散试验,如抛硬币、打靶等。
在二项分布中,每个试验都是独立的,并且具有相同的概率。
二项分布在实验研究和贝叶斯统计等领域有广泛的应用。
3. 泊松分布(Poisson Distribution):泊松分布适用于描述单位时间或空间内稀有事件发生次数的概率分布。
它在复杂事件模型、风险评估和可靠性分析等领域有广泛的应用。
4. 正态分布(Normal Distribution):正态分布是最常见的连续概率分布之一,也被称为高斯分布。
它具有对称的钟形曲线,广泛应用于自然科学、社会科学和工程等领域。
正态分布在统计推断、回归分析、贝叶斯统计等方面发挥着重要作用。
5. 指数分布(Exponential Distribution):指数分布适用于描述事件发生之间的时间间隔的概率分布。
它在可靠性工程、队列论、生存分析等领域有广泛的应用。
6. γ分布(Gamma Distribution):γ分布是一类连续概率分布,用于描述正数随机变量的分布,如等待时间、寿命和利润等。
它在贝叶斯统计、过程控制和金融分析等领域被广泛使用。
7. t分布(T-Distribution):t分布是一种用于小样本情况下的概率分布,它类似于正态分布,但考虑了样本容量较小的情况。
t分布在统计推断和假设检验等方面有广泛的应用。
8. χ²分布(Chi-Square Distribution):χ²分布是一种用于度量变量之间的独立性和相关性的概率分布。
常见概率分布类型解析

常见概率分布类型解析概率分布是描述随机变量可能取值的概率的函数。
在统计学和概率论中,有许多常见的概率分布类型,它们在不同的情境下具有不同的特点和应用。
本文将对几种常见的概率分布类型进行解析,包括二项分布、泊松分布、正态分布和指数分布。
一、二项分布二项分布是最常见的离散概率分布之一,描述了在一系列独立重复的同一试验中成功的次数的概率分布。
在每次试验中,事件只有两种可能的结果,通常用“成功”和“失败”来表示。
二项分布的概率质量函数可以用以下公式表示:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)其中,P(X=k)表示成功的次数为k的概率,n表示试验的总次数,p表示每次试验成功的概率,C(n,k)表示组合数。
二项分布常用于描述二元随机变量的分布,例如抛硬币、赌博游戏等。
在实际应用中,二项分布可以用来估计二元事件发生的概率,进行假设检验等。
二、泊松分布泊松分布是描述单位时间(或单位空间)内随机事件发生次数的概率分布。
泊松分布适用于事件发生的次数是独立的且平均发生率是恒定的情况。
泊松分布的概率质量函数可以用以下公式表示:P(X=k) = (λ^k * e^(-λ)) / k!其中,P(X=k)表示事件发生次数为k的概率,λ表示单位时间(或单位空间)内事件平均发生率。
泊松分布常用于描述稀有事件的发生情况,例如电话交换机接到的电话数、一天内发生的交通事故数等。
在实际应用中,泊松分布可以用来预测未来一段时间内事件发生的概率。
三、正态分布正态分布是最常见的连续概率分布之一,也称为高斯分布。
正态分布具有钟形曲线的特点,均值、方差完全决定了正态分布的形状。
正态分布的概率密度函数可以用以下公式表示:f(x) = (1 / (σ * sqrt(2π))) * e^(-(x-μ)^2 / (2σ^2))其中,f(x)表示随机变量X的概率密度函数,μ表示均值,σ表示标准差。
正态分布在自然界和社会现象中广泛存在,例如身高、体重、考试成绩等。
概率分布与统计图表

心,左右对称。 2. 在 在 处取得概率密度函数的最大值, 处有拐点,表现为 钟形曲线。即正
对称。即态分布以均数为中
态曲线在横轴上方均数处最高。
2018/10/26
6
3. 正态分布有两个参数,即均数µ 和标准差σ。
µ 是位置参数,σ是变异度参数(形状参数)。常用
N(µ ,σ2)表示均数为μ ,标准差为σ的正态分布;用
( 2)
2018/10/26
16
( 3)
查附表1,标准正态分布曲线下左侧面积为0.10所对应
的Z值为-1.28,所以80%的8岁男孩身高值集中在
X 1.28S 区间内,即116.9cm~129.2cm
2018/10/26
17
练习:
查附表,求标准正态分布曲线下的面积。 (-∞,-1.96),( -∞ ,-2.58), (-1.96,1.96),(-1,1),( -∞ ,0.00)。
,
S=4.79 cm ,估计(1)该地8岁男孩身高在130 cm以上者占该地8岁 男孩总数的百分比;(2)身高界于120cm~128cm者占该地8岁男孩
总数的比例;(3)该地80%男孩身高集中在哪个范围?
先做标准化变化:
理论上该地8岁男孩身高在130 cm以上者占该地8岁男孩 总数的7.21%。
2018/10/26 15
分析:正常人的血红蛋白过高过低均为异常,要制
定双侧正常值范围。
该指标的95%医学参考值范围为
2018/10/26 21
例4 某地调查110名正常成年男子的第一秒肺通 气量,得均数为4.2 L,标准差为0.7 L ,试估计该地 正常成年男子第一秒肺通气量的95%参考值范围。
分析:正常人的第一秒肺通气量近似正态分布,且只
(卫生统计学)第四章 常用概率分布

第二节 Poisson分布的概念与特征
一、Poisson分布概念与特征
若某一随机变量X的取值为0,1,2,…,且X=k 的概率为:
P(X k) k e
k!
记作 X~P( λ )
其中 自然数e≈2.7182; λ 是大于0的常数,称X服从以λ 为参数的Poisson分布。
Poisson分布主要用于描述在单位时间(空间)内稀有事件的发生数。例如:放 射性物质在单位时间内的放射次数、单位容积内充分摇匀的水中的细菌数、染色 体异变数等。
350 300 250 200
人数
150 100
50 0
109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 143
不同参数µ和σ下的正态分布曲线
正态分布函数
1.Gauss函数 (Gauss, 1777~1855 德国人)
某地正常成人心率(次/分)的频率分布
频数 1 5 12 13 26 31
组段 75~ 80~ 85~ 90~ 95~ 100~105
频数 24 15 9 7 5 2
心率频数分布
35
30
25
20
人数
15
10
5
0
45
50
55
60
65
70
75
80
85
90
95 100~105
正态曲线
例4-10 某地1986年120名8岁男孩身高频数图
百分位数法
例4-13
282名正常人尿汞值(g/L)测量结果
尿汞值 0~ 8.0~
16.0~ 24.0~ 32.0~ 40~ 48.0~ 56.0~ 64.0~72.0
13种常见的统计分布ppt课件

属性
✓ 连续型分布 ✓ 用于描述以方向、位置、周期性(环形)时间、角度等为测度
单位的数字特征
应用
✓ 医学领域内一些现象是以方向或时间度量,具有周期性特点, 如某疾病在一年内各月份的发生数、胎儿在一昼夜间各时点 分娩的频度
✓ 有些数据本身就是以角度来表示:如脑电阴图的上升角,气 象环境的风向玫瑰图
✓ 这些数据不能用通常的均数、标准差描述
1 二项分布 Binomial Distribution
应用 条件
✓ 各观察单位只能具有相互对立的一种结果,如阳性或阴 性,生存或死亡等,属于两分类资料
✓ 已知发生某一结果(阳性)的概率为π,其对立结果的概 率为1-π,实际工作中要求π是从大量观察中获得比较稳 定的数值。
✓ n次试验在相同条件下进行,且各个观察单位的观察结果 相互独立,即每个观察单位的观察结果不会影响到其他观 察单位的结果。如要求疾病无传染性、无家族性等。
9 F分布 F Distribution
属性
✓ 连续型分布 ✓ 用于方差Γ分布 Γ Distribution or Gamma Distribution
属性
✓ 连续型分布 ✓ 正偏态分布,常用于正偏态分布的拟合
11 圆形分布 Circular Distribution
5 均匀分布 Uniform Distribution
属性
✓ 连续型分布 ✓ 数值计算的误差分析 ✓ 任意分布的随机数
理解
✓ 均匀分布在自然情况下极为罕见,而人工栽培的有一定株 行距的植物群落即是均匀分布
✓ 均匀,表示可能性相等的含义
6 正态分布 Normal Distribution
属性
✓ 连续型分布 ✓ 自然界、人类社会、心理和教育中大量现象均按正态形式分布,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
µ
e
dt
σ√2π
3. Chi-squared ( )分布 如果 Z1, Z2 ..., Zn 是相互独立的随机变量,且都服从于 N(0,1)分布,那么
服从自由度(degree of freedom, df)为 n 的χ 分布,记为X~χ n . (1)PDF of χ
2
பைடு நூலகம்
(2)CDF of χ
4. t-分布(student's t-distribution) 设 X ~ N(0,1)和Y ~ χ2 (n) ,且 X 和 Y 相互独立,则称随机变量
复习: 统计推断常用概率分布
1.随机变量分布函数 (1)累积分布函数(Cumulative Distribution Function (CDF)) If X is any random variable, then its CDF is defined for any real number x by
d d
so we have
dt
2. 正态分布(normal distribution)
(1)概率密度函数(PDF)
以上结果可表示为 ~
|µ, σ ,.
1
µ
e
σ√2π
标准正态分布(standard normal distribution)表示为 N(0,1) xµ ~N 0,1 σ
1
(2) 累积分布函数 (CDF)
(2)CDF of F distribution
4
PX x
(2)概率密度函数(Probability Density Function (PDF)) The probability density function (PDF) f(x) of a continuous distribution is defined as the derivative of the (cumulative) distribution function F(x),
T= X Y /n
服从 df. 为 n 的 t-分布,记为 T ~ t(n)。 (1)PDF of t-distribution
(2)CDF of t-distribution
3
5. F-分布 X 和 Y 是相互独立的χ 分布随机变量,d.f 分别为 m 和 n,则称随机变量
F= X/m Y/n
服从 df.为 (m, n)的 F-分布,且通常写为 F~F(m,n)。 (1)PDF of F distribution