工程机械液压与液力传动

合集下载

液压传动和液力传动知识点

液压传动和液力传动知识点

液压传动和液力传动——压力能和动能液压与气压传动系统的组成:动力装置,控制及调节装置,执行元件,辅助装置,工作介质液压传动的特点:1、与电动机相比,同等体积下,液压装置能产生更大的动力。

2、液压装置容易做到无极调节。

3、工作平稳换向冲击小,4、由于传动的泄露和液体的可压缩性所以无法保证严格的传动比,5、液压传动能量损失大,传动效率较低运动粘度、动力粘度P9 32号液压油指40摄氏度时运动粘度的平均值是32mm2/s相对粘度——恩氏度E 相对水的粘度液体是两种力:质量力和表面力P=p+pgh绝对压力,相对压力,连续性方程伯努利方程雷诺数Re=vd/v 非圆Re=vd/v d=4A/X沿程压力损失(层流紊流)P33 局部压力损失P34孔口流量P37空穴现象如果某处的压力低于空气分离压时,原先溶解在液体中的空气就会分离出来,从而导致液体中出现大量的气泡的现象危害1小液压冲击2产生气蚀3流量不稳定和压力波动防范措施1减小孔口或者缝隙前后压力降2减小吸油管路压力损失3良好密封4采用抗腐蚀能力强的金属材料液压冲击液压泵工作必要条件1形成密封溶剂2密封腔容积变化3吸油压油腔隔开排量可变为变量泵理论流量q=nV 实际流量(减去泄露损失)或者q=qn(容积效率)理论功率P=pq 进出口压力差乘以理论流量输出功率P=pq 压差乘以实际流量P59例题齿轮泵特点1泄露(泵内表面和齿顶间隙、齿轮端面间隙、齿轮啮合处)2径向不平衡力3困油现象(开一对卸荷槽)双作用叶片泵定子工作表面曲线(4个过渡圆弧2个大圆弧2个小圆弧)单作用变量叶片泵调偏心量(调定子)限压式变量叶片泵特性曲线斜盘式轴向柱塞泵——传动轴、斜盘、柱塞、缸体、配流盘滑靴与斜盘之间采用静压支撑结构缸的分类——活塞式、柱塞式、摆动式作用方式:单作用和双作用差动连接的速度、力的计算方法(与活塞杆面积有关)控制阀的用途——方向控制阀、压力控制阀、流量控制阀。

中位机能:1、H型方形控制阀:执行元件浮动状态,液压泵卸荷。

第五章 控制阀

第五章 控制阀
处于差动状态,系统不能卸荷。
Y
A 、 B 两个油口与 T 口相通, P 口封闭,执
行元件处于浮动状态,系统不能卸荷。
四个油口互相连通,执行元件处于浮动状 态,系统卸荷。
H
工程机械液压与液力传动
工程机械液压与液力传动
1.系统卸荷。 当阀处于中间位置时,P口能够通畅地与T口连通,使系统处 于卸荷状态,既节约能量,又防止油液发热,如M和H型; 2.执行机构浮动。 当阀处于中间位置时,如果A、B两油口互通,执行机构处于浮 动状态,可通过其他机构移动调整其位置,如Y和H型; 3.执行机构在任意位置停止。 当阀处于中间位置时,如果A、B两油口封闭,则可使执行机构 在任意位置停止,如O和M型; 4.系统保压。 当P口被封闭时,系统保压,液压泵能够用于多缸系统,如O和 Y型; 5.制动和锁紧要求。 执行元件采用了液压锁、制动器等时,要求中位时两腔与油 箱相通,保证锁紧和制动的可靠性,如O和M型。
换向阀
两位四通 换向阀 控制执 行元件 不能使执行元件在 任意位置停止运动 执行元件 正反向运
三位四通
换向阀
换向
能使执行元件在任
意位置停止运动
动时回油
方表示一个工作位置(若由虚线构成的方框则表示过 渡位置),有几个方框表示几位。 •一个方框中的箭头↑↓↗↙或堵塞符号⊥和┬与方框上边和下边 的交点数为油口通路数,有几个交点表示几通。箭头表示两油口连 通,但不表示流动方向,┬表示该油口堵死。 •将阀与系统供油路连通的油口用字母P表示,将阀与系统回油路连 通的油口用字母O或T表示,将阀与执行元件连通的油口用字母A和B 表示。 •换向阀都有两个以上的工作位置,其中一个是常位(即在不对换 向阀施加外力的情况下阀芯所处的位置),绘制液压系统图时,油 路一般应该连接在常位上。

【机械化】液压及液力传动技术

【机械化】液压及液力传动技术

地址:山东·济南工业北路297号 电话:0531-89812001 传真:0531-88961747
页码: Page:
21
选择工作液体时要考虑的因素
考虑方面 内容 是否阻燃(闪点,燃点) 抑制噪声能力(空气溶解度,消泡性) 废液再生处理及环保要求 压力范围(润滑性,承载能力) 温度范围(粘度,粘 - 温特性,热稳定性,挥发度,低温流动 性) 转速(气蚀,对支承面侵润能力) 物理化学指标 对金属和密封件等的相容性 过滤能力、吸气情况、去垢能力 锈蚀性 抗氧化稳定性 剪切稳定性 价格及使用寿命 货源情况 维护、更换难易程度
地址:山东·济南工业北路297号 电话:0531-89812001 传真:0531-88961747
页码: Page:
12
4、辅助元件:为系统的运行提供辅助功能的装置, 如油液的散热、存储、输送、过滤、测量等。
地址:山东·济南工业北路297号 电话:0531-89812001 传真:0531-88961747
页码: Page:
8
液压泵的常见类型 按输油方向能否改变:单向泵、双向泵 按额定压力高低:低压泵、中压泵、(中)高压泵。 按转速:高速马达、中速马达、低速马达 按排量能否调节:定量马达、变量马达 按输油方向能否改变:单向马达、双向马达
按结构:齿轮马达、叶片马达、柱塞马达
地址:山东·济南工业北路297号 电话:0531-89812001 传真:0531-88961747
出轴带动机器的工作部分,液体与装在输入轴、输出轴、壳体上的各叶轮相互作用,
产生动量矩的变化,从而达到传递能量的目的。 液力传动与靠液体压力能来传递能量的液压传动在原理、结构和性能上都有很 大差别。液力传动的输入轴与输出轴之间只靠液体为工作介质联系,构件间不直接 接触,是一种非刚性传动。液力传动的优点是:能吸收冲击和振动,过载保护性好, 甚至在输出轴卡住时动力机仍能运转而不受损伤,带载荷起动容易,能实现自动变 速和无级调速等。因此它能提高整个传动装置的动力性能。

第四篇 液压传动与液力传动

第四篇 液压传动与液力传动

第四篇液压传动与液力传动第16章液压传动1、液压传动是以液体(通常是油液)作为工作介质,利用液体压力来传递动力和进行控制的一种传动方式。

2、人们常见的液压千斤顶由手动柱塞液压泵和液压缸两大部分构成。

3、液压传动装置是一种能量转换装置,它先将机械能转换为便于输送的液压能,然后又将液压能转换为机械能,以驱动工作机构完成所要求的各种动作。

4、液体在外力作用下流动时,分子间的内聚力会阻碍分子间的相对运动而产生一种内摩擦力,这种特性称作液体的黏性。

静止液体不呈现粘性,粘性的大小可用粘度来衡量,粘度是选择液压用流体的主要指标,是影响流动液体的重要物理性质。

4、液体传动按其工作原理的不同可分为液压传动和液力传动。

5、液力传动装置主要有液力偶合器和液力变矩器。

6、液力传动是一种以液体为工作介质的能量转换装置,它主要包括:能量输入部件,泵轮,它将发动机的机械能转变为液体的动能;能量输出部件,涡轮,它将液体的动能转变为机械能。

如果液力传动装置只有上述两个部件,则称为液力偶合器。

如果除上述两部件还有一个固定的导流部件(一般为导轮),则称为液力变矩器。

7、汽车液力变矩器中的主动件是导轮。

8、一般液压系统可分为几部分?各部分的主要元件是什么?各有什么作用?液压由以下5个部分组成:(1)动力元件:是指液压油泵,它将发动机或电动机输入的机械能转换为液压能,其作用是为系统提供具有一定压力的流量的液压油,是系统的动力源。

(2)执行元件:是指液压油缸和液压马达,它们是将液夺能转换为机械能,输出力和速度或扭矩和转速,以驱动工作部件。

(3)控制元件:是指各类阀,其作用是用来控制系统中油液的压力、流量和流动方向,以保证执行元件完成预定的动作。

(4)辅助元件:是指油箱、油管、过滤器、冷却器及各种指示器和控制仪表等,它们的作用是提供必要的条件使系统得以完成正常工作。

(5)工作介质:是液压油,液压系统是通过工作介质来实现运动和动力传递的。

第17章液压泵1、在液压传动系统中有两个重要参数:压力P和流量Q2、液体的可压缩性很小,一般可忽略不计。

1.什么是液体传动、液压传动和液力传动.

1.什么是液体传动、液压传动和液力传动.

1.什么是液体传动、液压传动和液力传动?答:(1)液体传动以液体为工作介质传递能量和进行控制的传动方式称为液体传动。

(2)液压传动利用液体压力能传递动力和运动的传动方式称为液压传动。

(3)液力传动主要利用液体动能的传动方式称为液力传动。

2.什么是液压传动原理图?什么是元件、回路和系统?答:(1) 液压传动原理图由代表各种液压元件、辅件及连接形式的图形符号组成,用以表示一个液压系统工作原理的简图,称为液压传动原理图。

图形符号有两种表达方式:一种用结构示意图,这样的图形比较直观,元件的结构特点清楚明了.但图形太繁锁,绘图麻烦;另一种是图形符号图,即把各类液压元件用其图形符号表示。

(2) 元件由数个不同零件组成的,用以完成特定功能的组件,称为元件,如液压缸、液压马达、液压泵、阀、油箱、过滤器、蓄能器、冷却器和管街头等;这些元件有的是通用的、标准化的。

(3) 回路液压回路是完成某种特定功能、由元件构成的典型环节。

(4) 系统液压系统是由回路组成的、用以控制和驱动液压机械完成所需工作的整个传动系统。

3.我国对液压元件的图形符号做了哪些规定和说明?答:㈠标准规定的液压元件图形符号.主要用于绘制以液压油为工作介质的液压系统原理图。

㈡液压元件的图形符号应以元件的静态或零位来表示;当组成系统的动作另有说明时,可作例外。

㈢在液压传动系统中,液压元件若无法采用图形符号表达时,可以采用结构简图表示,㈣元件符号只表示元件的职能和连接系统的通路,不表示元件的具体结构扣参数,也不表示系统管路的具体位置和元件的安装位置;㈤元件的图形符号在传动系统中酌布置,除有方向性的元件符号(油箱和仪表等)外,可根据具体情况水平或垂直绘制。

㈥元件的名称、型号和叁数(如压力、流量、功率和管径)等,一般应在系统图的元件表中标明.必要时可标注在元件符号旁边。

㈦标准中未规定的图形符号,可根据本标准的原则和所列图例的规律性进行派生;当无法直接引用和派生时,或有必要特别说明系统中某一重要元件的结构及动作原理时,均允许局部采用结构简图表示。

液压、液力、机械传动介绍及其优缺点

液压、液力、机械传动介绍及其优缺点

液压、液力、机械传动介绍及其优缺点传统的工程车辆的行走装置采用机械式传动或液力机械式传动。

机械式传动方式具有传动效率高、传动精度高等优点,但换挡和调速不方便,难以实现智能控制。

液力机械传动方式是在机械传动方式的基础上引入了液力变矩器,液力变矩器具有传动比与负载自适应、传动柔和等优点,但液力变矩器的高效率区域非常狭窄,低速稳定性差,对于行驶速度较低及需要频繁启动、制动和换向的工程车辆来讲,总传动效率低,造成系统发热大、可操作性差,驾驶员劳动强度高。

静液压传动具有微动性好,速度刚度大,传动效率高,易于进行启动、制动、换向操作,且易于实现电液复合控制的优点。

近几年,随着液压工业的发展,液压元件的可靠性不断提高,成本不断降低,国内外相继出现了全液压驱动的工程机械,如全液压推土机、全液压平地机、全液压叉车、全液压起重机和全液压挖掘机等。

静液压驱动技术的优点是相对于机械传动和液力机械传动而言的液压传动的优点集中于动力传动方面,而在智能控制方面,电子控制方式具有成本低、控制性能好、易于调节等优点。

在工程车辆实现全液压化以后,如何引入电子控制方式,使液压传动与电子控制相结合,充分发挥液压和电子的优点,实现工程车辆行走驱动的智能化,这是当前和今后一段时期内国内外工程车辆的发展趋势。

目前,工程车辆行走驱动系统的传动方式包括机械传动、液力机械传动、液压传动和电机驱动等方式,每种传动方式都具有各自的优缺点。

机械传动机械传动是指发动机的动力经过离合器、变速箱、万向节、传动轴、驱动桥、轮边减速器最终驱动车轮转动,使整车行驶的传动方式,由于只需克服运动幅的摩擦阻力,其速度损失很小,所以具有传动效率高、传动精度高、传动可靠等优点。

但速度调节主要依靠变速箱换挡,调速惯性很大,响应速度不高,如果由驾驶员操作变速箱换挡,工程机械液压控制新技术则很难掌握最佳换挡时间,同时増加了驾驶员的劳动强度:如果采用智能换挡变速箱,成本大幅增加。

由于以上缺点,目前工程车辆很少采用单纯的机械传动方式。

工程机械ppt课件

工程机械ppt课件

18
6.2 液压传动的基本概念
压缩性:恒温情况下,液体受压力作用而体积缩小,密度 变大的性质。其大小用压缩系数β表示。
(1)体积压缩系数
β
1 ΔV Δ p V0
V0-压缩前液体体积(m3); Δp-压力变化(Pa);
ΔV-压缩后液体体积的变化(m3) 。
(2)体积弹性模量:体积压缩系数β的倒数。
帕斯卡原理:以液体的压力来传递能量和动力。
F1
F2
密闭液体上的压强,能够大小
不变地向各个方向传递。
液压传动特点: 结构简单紧凑、传动比大、平稳、动作灵敏、易控制。
3
帕斯卡原理应用实例
图中是运用帕斯卡原理寻找推力和负载间关系的实例。图 中垂直、水平液压缸截面积为A1、A2;活塞上负载为F1、F2。两 缸互相连通,构成一个密闭容器,则按帕斯卡原理,缸内压力 到处相等,p1=p2, 于是F2=F1 . A2/A1, 如果垂直液缸活塞 上没负载,则在略 去活塞重量及其它 阻力时,不论怎样 推动水平液压缸活 塞,不能在液体中 形成压力。
14
各种液压元件实物图片
15
6.1 概述
五、液压传动的应用
工程机械:推土机、挖掘机、压路机 起重运输:汽车吊、叉车、港口龙门吊 矿山机械:凿岩机、提升机、液压支架 建筑机械: 打桩机、平地机、液压千斤顶 农业机械:拖拉机、联合收割机 冶金机械:压力机、轧钢机 轻工机械: 打包机、注塑机 汽车工业: 汽车的转向器和减振器、自卸汽车 智能机械: 模拟驾驶舱、机器人
第六章 液压传动与液力传动
6.1 概述 6.2 液压传动的基本概念 6.3 液压系统的动力装置 6.4 液压系统的执行装置 6.5 液压系统的控制装置 6.7 液压系统的辅助装置 6.8 典型液压系统

液力传动与液压传动各自的原理和特点

液力传动与液压传动各自的原理和特点

液压传动的基本原理液压传动的基本原理是在密闭的容器内,利用有压力的油液作为工作介质来实现能量转换和传递动力的。

其中的液体称为工作介质,一般为矿物油,它的作用和机械传动中的皮带、链条和齿轮等传动元件相类似。

液压传动是利用帕斯卡原理!帕斯卡原理是大概就是:在密闭环境中,向液体施加一个力,这个液体会向各个方向传递这个力!力的大小不变!液压传动就是利用这个物理性质,向一个物体施加一个力,利用帕斯卡原理使这个力变大!从而起到举起重物的效果!液压传动的特点一优点:(1)体积小、重量轻,因此惯性力较小,当突然过载或停车时,不会发生大的冲击;(2)能在给定范围内平稳的自动调节牵引速度,并可实现无极调速;(3)换向容易,在不改变电机旋转方向的情况下,可以较方便地实现工作机构旋转和直线往复运动的转换;(4)液压泵和液压马达之间用油管连接,在空间布置上彼此不受严格限制;(5)由于采用油液为工作介质,元件相对运动表面间能自行润滑,磨损小,使用寿命长;(6)操纵控制简便,自动化程度高;(7)容易实现过载保护。

二缺点:(1)使用液压传动对维护的要求高,工作油要始终保持清洁;(2)对液压元件制造精度要求高,工艺复杂,成本较高;(3)液压元件维修较复杂,且需有较高的技术水平;(4)用油做工作介质,在工作面存在火灾隐患;(5)传动效率低。

液力传动原理在传动装置中以液体(矿物油)为工作介质进行能量传递与控制的称为液体传动装置,简称液体传动。

在液体传递能量时,将机械能转变为液体动能,再由液体动能转变为机械能的过程。

凡是主要以工作液体的动能进行能量传递与控制的装置称为液力传动或动液传动。

液力传动特点1、液力传动的优点(1)使汽车具有良好的自动适应性;(2)提高汽车的使用寿命;(3)提高汽车的通过性和具有良好的低速稳定性;(4)简化操纵和提高舒适性;(5)可以不中断地充分利用发动机的功率,有利于减少排气污染。

(6)它的部件是密闭式的,无论风砂雨雪对它的工作都不产生什么坏的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章概述
一、液压传动:利用密闭工作容积内液体压力能的传动。

二、液压系统的组成:1、动力元件,即液压泵(将机械能转换为液体的压力能);2、执行元件(将液体的压力能转换为机械能);3、控制元件,即各种阀(压力阀、流量阀、方向阀);
4、辅助元件(油箱、滤油器、储能器等);
5、传动介质(液压油)。

三、液压系统图图形符号只表示元件的职能和连接通路,不表示元件的具体结构和参数,也不表示从一个工作状态转到另一个工作状态的过度过程,系统图只表示各元件的连接关系,而不表示系统布管的具体位置或元件在机器中的实际安装位置。

第二章液压流体力学基础
一、粘性:液体在外力作用下流动(或有流动趋势)时,分子间的内聚力要阻止分子间的相对运动,而产生的内摩擦力的性质叫做液体粘性。

液体流动(或有流动趋势)时才会呈现粘性。

我国生产的全损耗系统用液压油采用40°C的远动粘度值为其粘度等级标号,即油的牌号。

温度升高,粘度下降;
二、可压缩性:液体的可压缩性可以用体积压缩系数k,即单位压力变化下体积的相对变化量来表示。

三、理想液体:无粘度,不可压缩。

四、L 表示石油产品;H 表示液压系统的工作介质。

五、液压油的选择:环境温度高时,应选用粘度较高的油;工作压力高时,宜选择高粘度的油;工作装置运动速度很高时,宜选择粘度较低的油。

六、液压系统压力损失:1、沿程压力损失:油液沿等直径直管流动时所产生的压力损失。

2、局部压力损失:油液流经局部障碍时,由于液体的方向和速度的突然变化,在局部形成漩涡引起的流速在某一局部受到扰动而变化所产生的损失。

第三章液压动力元件
一、齿轮泵:低压泵、定量泵,结构简单、制造容易、成本低,对油液污染不敏感,磨损严重,泄漏大。

泄漏、困油、径向不平衡力。

二、齿轮泵泄漏:1、轴向间隙(泄漏最严重),2、径向间隙,3、两个齿轮的齿面齿合处。

高压齿轮泵中,使用轴向间隙补偿装置,以减小端面泄漏,提高容积效率。

三、消除齿轮泵困油:在齿轮泵的两侧端盖上铣两条卸荷槽。

四、减小径向不平衡力:缩小压油口,同时适当增大径向间隙。

五、叶片泵:单作用叶片泵(变量泵)、双作用叶片泵(定量泵)
六、柱塞泵:变量泵,泄漏小,抗污染能力低。

分类:斜盘式、斜轴式。

第五章液压控制阀
一、单向阀:普通单向阀、液控单向阀(可以双向流动)
二、换向阀:“O”型:双向锁死;“H”型:双向浮动,中位卸荷;
三、溢流阀作用:限制最高压力,防止系统过载;维持系统压力恒定。

(进口调压,常闭)
四、减压阀:使出口压力(二次压力)低于进口压力(一次压力)的一种压力控制阀。

(出口调压,常开)
五、顺序阀:控制液压系统中各执行元件动作先后顺序的。

(常闭)
六、压力继电器:一种将油液的压力信号转换成电信号的电液控制元件。

七、调速阀为什么比节流阀稳定:因为多了一个定差减压阀。

八、比例电磁阀工作原理:
九、执行机构三种连接方式:
十、液压系统性能指标:。

相关文档
最新文档