二重积分的反常积分
[高等教育]高数 9-2二重积分的计算_OK
![[高等教育]高数 9-2二重积分的计算_OK](https://img.taocdn.com/s3/m/d185d322240c844768eaeed7.png)
1x2 y
0 d z
z 1
1 2
y x1
1
xdx
1 2
(1
x)
(1
x
2
y)d
y
0
0
1
1
(
x
2x
2
x
3
)dx
1
40
48
2021/8/18
28
cz
例2. 计算三重积分
by a
x
解:
:
c2
c2x2 a2
c2 y2 b2
z
c2
c2x2 a2
c2 y2 b2
S1
D
(x, y)
y
y y2( x)
y y1( x)
简单区域:平行于 z 轴且穿过闭区域 内部的 直线与闭区域 的边界曲面 S 相交不多 于两点情形.
26
1)先将 x, y 看作定值,将 f (x, y, z)只看作 z 的函数,则
z
z z2(x, y)
F (x, y) z2(x,y) f (x, y, z)dz z1 ( x, y)
4
15
abc3
注:被积函数为一元函数时,多选用截面法
2021/8/18
33
例3 .计算积分
其中是两个球
( R > 0 )的公共部分.
D2z
z R
R
2
提示: 由于被积函数缺 x , y , 利用“截面法” 计算方便 .
D1 z
o x
y
原式 =
R2 z2 dz
0
dxdy
D1 z
R R
z2 dz
第二节 二重积分的计算法(2)

一、利用极坐标计算二重积分 二、小结 思考题
1
机动 目录 上页 下页 返回
一、极坐标系下二重积分的计算
1 1 2 2 ∆σ i = ( ri + ∆ri ) ⋅ ∆θ i − ri ⋅ ∆θ i 2 2 1 r = ri + ∆ri 2 = ri ∆ ri ∆ θ i + ( ∆ ri ) ∆ θ i r = ri 2 当( ∆ri , ∆θ i ) → ( 0,0)时,
D
8
机动 目录 上页 下页 返回
观察练习] [观察练习] 下列各图中区域 D 分别与 x , y 轴相切 的变化范围是什么? 于原点,试 于原点 试问θ 的变化范围是什么? (1)
y
r = ϕ(θ )
(2) y
r = ϕ(θ )
D
D
o x
(2) −
x
o
答: (1) 0 ≤ θ ≤ π ;
π
2
≤θ ≤
dσ = rdrdθ
又由点的极坐标与直角坐标之间的关系, 又由点的极坐标与直角坐标之间的关系,
x = r cos θ , y = r sin θ ∴ f ( x , y ) = f ( r cos θ , r sin θ )
故在极坐标下, 故在极坐标下,二重积分化为
∫∫ f ( x, y )dxdy = ∫∫ f (r cosθ , r sin θ )rdrdθ .
x2 + y2 = 1
x+ y =1
∫∫ f ( x , y )dxdy = ∫0 dθ ∫
2
π
1
D
1 sin θ + cosθ
f ( ρ cosθ , ρ sinθ ) ρdρ .
二重积分的计算与应用

目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)前言 (1)1.二重积分的概念 (1)1.1二重积分的定义 (1)1.2可积条件 (2)1.3可积类 (2)1.4二重积分的性质 (2)2.二重积分的计算方法 (3)2.1直角坐标系下的二重积分的计算 (3)2.2二重积分的变量变换 (4)2.2.1普通情况下的变换 (4)2.2.2极坐标计算二重积分 (4)3.广义二重积分 (6)4.二重积分的应用 (6)4.1体积 (7)4.2曲面的面积 (8)4.3其它 (8)参考文献 (9)二重积分的计算与应用学生姓名:学号:数学与信息科学学院数学与应用数学专业指导教师:职称:摘要:研究了二重积分的几何意义,概念,性质以及在直角坐标系及极坐标下的计算方法,并给出了计算公式及相关例题,最后总结了二重积分的计算方法.关键词:二重积分;直角坐标系;极坐标;曲顶柱体The calculation and application of double integral Abstract : This paper mainly studies the geometric significance of double integral, the concept, nature and calculation method under the rectangular coordinate system and polar coordinate calculation method.Key Words: Double integral; The rectangular coordinate system; The polar coordinate; Curved top cylinder前言我们已经很熟悉定积分的一些性质及计算方法.同样,二重积分在实际中应用广泛,且有直观的几何解释,所不同的是现在讨论的对象为定义在平面区域上的二元函数.这类问题在物理学与工程技术中也常遇到,如求非均匀平面的质量、质心、转动惯量等.二重积分的计算的基本途径是将其转化成二次积分计算,计算二重积分时选择积分顺序,交换积分次序以及转换坐标系都是至关重要的问题.本文对二重积分的计算方法进行了全面的概括和总结,并对各种计算方法的选择进行了认真地研究,为准确的计算二重积分提供有效的帮助.1.二重积分的概念1.1[]2二重积分的定义设(,)f x y是定义在可求面积的有界闭区域D上的函数.J是一个确定的数,若对任给的某个正数ε,总存在某个正数δ,是对于D的任何分割T,当它的细度||T||时,属于T 的所有积分和都有1(,)||ni i i i f J ξσσε=∆-<∑则成(,)f x y 在D 上可积,数J 称为(,)f x y 的二重积分,记为(,)σDJ f x y d =⎰⎰.1.2[]1可积条件二重积分的可积条件与定积分类似(1)必要条件:函数(,)f x y 在D 上可积,则(,)f x y 在D 上必有界. (2)充要条件:①函数(,)f x y 在D 上可积s S =⇔(其中S ,s 分别为在上的上积分和下积分). ②函数(,)f x y 在D 上可积⇔对0>∀ε,存在分割T ,使得()().ε<-T s T S③函数(,)f x y 在D 上可积⇔对0>∀ε,存在分割T ,使得.1εσω<∑=∆ni i i1.3[]1可积类(1)有界闭区域D 上的连续函数必可积.(2)若(,)f x y 在有界闭区域D 上有界,且仅在D 内有限条光滑曲线上不连续,则(,)f x y 在D 上可积.1.4[]2二重积分的性质性质4.1(线性性) (,)σ(,)σDDkf x y d k f x y d =⎰⎰⎰⎰.性质4.2(线性性)[](,)(,)σ=(,)σ(,)σDDDf x yg x y d f x y d g x y d ±±⎰⎰⎰⎰⎰⎰.性质4.3(分段可加性)1212(,)σ=(,)σ+(,)σD D D D f x y d f x y d f x y d +⎰⎰⎰⎰⎰⎰.性质4.4(保不等式性) 设(,),(,)(,)x y D f x y g x y ∀∈<, 则 (,)σ(,)σDDf x y dg x y d <⎰⎰⎰⎰.性质4.5 设(,)m f x y M ≤≤,则(,)σDm f x y d M σσ≤≤⎰⎰其中σ表示D 的面积.性质4.6 (二重积分的中值定理)设函数(,)f x y 在闭区域D 上连续,D S 是D 的面积,则∃(ζ,η)∈D 使得(,)Df x y ⎰⎰σd =(,)f ξηDS.其中中值定理的几何意义:以D 为底,z=(,)f x y ((,)f x y ≥0)为曲顶的曲顶柱体体积等于一个同底的平顶柱体的体积,这个平顶柱体的高等于(,)f x y 在区域D 某点的函数值(,)f ξη.2.二重积分的计算方法定理1 设在矩形区域[][],,D a b c d =⨯上可积,且对每个[],x a b ∈积分存在,则累次积分(,)b d acdx f x y dy ⎰⎰也存在,且(,)σ=(,)b d acDf x y d dx f x y dy ⎰⎰⎰⎰.另外,同理(,)σ=(,)db caDf x y d dy f x y dx ⎰⎰⎰⎰.2.1[]4直角坐标系下的二重积分的计算此方法的关键就是化二重积分为累次积分,对于一般区域,通常可以分为以下两种区域进行计算:①X 型区域:平面点集12{(,)|()(),},D x y y x y y x a x b =≤≤≤≤ 则化二重积分为累次积分21()()(,)σ(,)bx a x Dy f x y d dx f x y dy y =⎰⎰⎰⎰. ②Y 型区域:平面点集{12(,)|()(),}D x y x y x x y c y d =≤≤≤≤则化二重积分为累次积分21()()(,)σ=(,)dy c y Dx f x y d dy f x y dx x ⎰⎰⎰⎰. 例1 设D 是由直线0,1x y ==及x y =围成的区域,试计算22()y DI x e d σ-=⎰⎰.解 利用Y 型区域积分:231123001()3yy y I dy x e dx y e dy --==⎰⎰⎰.由分部积分法得 1163I e=-. 例2 计算二重积分Dd σ⎰⎰,其中D 为由直线2,2y x x y ==及3x y +=所围的三角形区域.解 利用X 型区域,则相应的221()2(01),()3(12),2x y x x x y x x x y =≤≤=-<≤=所以 1223012212x x x x DD D d d d dx dy dx dy σσσ-=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰1201(2)(3)22x xx dx x dx =-+--⎰⎰ =32. 2.2[]5 二重积分的变量变换定理2 设(,)f x y 在有界闭区域D 上可积,变换T: (,),(,)x u v y u v ==将uv 平面由按段光滑闭曲线所围成的闭区域∆一对一的映成xy 平面上的闭区域D ,函数(,),(,)x u v y u v 在∆内分别具有一阶连续偏导数且它们的行列式 (,)0(,)(,)x y J u v u v ∂=≠∈∆∂, 则 (,)((,),(,))|(,)|D f x y dxdy f x u v y u v J u v dudv ∆=⎰⎰⎰⎰. 2.2.1普通情况下的变换例3 求抛物线22,y mx y nx ==和直线,y x y x αβ==所围成的区域D 的面积S (0,0m n αβ<<<<).解 D 的面积DS dxdy =⎰⎰为了简化积分区域,做变换2,,u ux y v v==则[][],,m n αβ∆=⨯.由于4(,)(,)(,)x y uJ u v u v v ∂==∈∆∂,所以 22334433()()6n m Du dv n m S dxdy dudv u du v v βαβααβ∆--====⎰⎰⎰⎰⎰⎰. 2.2.2极坐标计算二重积分当积分区域是圆域或圆域的一部分时,或者背积函数的形式为22()f x y +时,采用极坐标变换T :cos ,sin (0,02)x r y r r θθθπ==≤<+∞≤≤, 则 (,)(,)(,)x y J r r u v θ∂==∂.定理3 设(,)f x y 满足定理1的条件,且在极坐标变换下xy 平面上有界闭区域D 与r θ平面上区域∆对应,则成立(,)(cos ,sin )Df x y dxdy f r r rdrd θθθ∆=⎰⎰⎰⎰.二重积分在极坐标下化为累次积分有以情况:1.θ型区域:若原点o D ∈,且xy 平面上射线θ=常数与D 的边界至多交与两点,则必可表示为12()(),r r r θθαθβ≤≤≤≤, 于是有 2()1()(,)(cos ,sin )r r Df x y dxdy d f r r rdr βθαθθθθ=⎰⎰⎰⎰.R 型区域:若平面上的圆r =常数与D 的边界至多交与两点,则∆必可表示为1212()(),r r r r r θθθ≤≤≤≤,于是有 2211()()(,)(cos ,sin )r r Dr f x y dxdy rdr f r r d r θθθθθ=⎰⎰⎰⎰.2.若原点为D 的内点,D 的边界的极坐标方程为()r r θ=,则∆必可表示成为0(),02r r θθπ≤≤≤≤,于是有 2()0(,)(cos ,sin )r Df x y dxdy d f r r rdr πθθθθ=⎰⎰⎰⎰.3.若原点O 在D 的边界上,则∆为0(),r r θαθβ≤≤≤≤, 于是有 ()0(,)(cos ,sin )r Df x y dxdy d f r r rdr βθαθθθ=⎰⎰⎰⎰.例4 计算I=D其中D 为圆域.122≤+y x解 由于原点为D 的内点故有210Dd πθ=⎰⎰[].212010202πθθππ=--=⎰⎰d d r例5 求球体2222x y z R ++≤被圆柱体22x y Rx +=所割下部分的体积(称为维维安尼体(Viviani )).解 由所求立体的对称性,只要求出第一卦限的部分体积后乘以4即可.在第一卦限内的体积是一个曲顶柱体,其底为xy 平面内由0y ≥和22x y Rx +=所确定的区域,曲顶的方程为z =所以4DV σ=.其中D={}22(,)|0,x y y x y Rx ≥+≤,用极坐标变换后有cos33322004424(1sin )()3323R V d R d R ππθπθθθ==-=-⎰⎰⎰.3[]4.广义二重积分若在无界区域D 上(),0,≥y x f 则()σd y x f D⎰⎰,收敛⇔在D 的任何有界子区域上f 可积,且积分值有上界.例6 证明反常积分σd e Dy x⎰⎰+-)(22收敛,其中[)[);,0,0+∞⨯+∞=D 并由此计算概率积分.02dx e x ⎰+∞-证明 设(),,)(22y xe y xf +-= 则显然()y x f ,在[)[)+∞⨯+∞=,0,0D 上非负.设,0,0,:222≥≥≤+y x R y x D R 则).1(4r 2222020)(R Rr Dy x e e d d e--+--==⎰⎰⎰⎰πθσπ显然对D的任何有限子集'D ,只要R 充分大,总可使得,'R D D ⊂ 于是有.4'22'22)()(πσσ≤≤⎰⎰⎰⎰+-+-d e d e Dy xDy x即广义积分σd e Dy x⎰⎰+-)(22收敛.记,2dx e I x ⎰+∞-=则.))(()(022222dxdy e dy e dx e I Dy xy x ⎰⎰⎰⎰+-+∞-+∞-== 其中[)[),,0,0:+∞⨯+∞D 做极坐标代换,0,20,sin ,cos +∞<≤≤≤⎩⎨⎧==r r y r x πθθθ 则,4r 02022πθπ==⎰⎰∞+-dr e d I r .202π==⎰∞+-dx e I x 4.二重积分的应用二重积分在几何、物理等许多学科中有着广泛的应用,这里重点介绍它在几何方面的应用. 4.1体积根据二重积分的几何意义,⎰⎰Dd y x f σ),(表示以),(y x f 为曲顶,以),(y x f 在xOy坐标平面的投影区域D 为底的曲顶柱体的体积.因此,利用二重积分可以计算空间曲面所围立体的体积. 例7[]6 求椭球面1222222=++cz b y a x 所围之椭球的体积.解 由于椭球体在空间直角坐标系八个卦限上的体积是对称的.令D 表示椭球面在xOy 坐标面第一象限的投影区域,则D ,0,0,1),(2222⎭⎬⎫⎩⎨⎧≥≥≤+=y x b y a x y x体积.),(8⎰⎰=Ddxdy y x z V 作广义极坐标变换θθsin ,cos br y ar x ==,则此变换的雅可比行列式abr J =,与D 相对应的积分区域{},20,10),(*πθθ≤≤≤≤=r r D 此时,1),(2r c y x z z -==从而 abrdr r c d drd J br ar z V D ⎰⎰⎰⎰-==2*1218)sin ,cos (8πθθθθ.34128102abc dr r r abc ππ⎰=-⋅= 例8[]6 求球面+2x 2224a z y =+与圆柱面)0(222>=+a ax y x 所围立体的体积.图1解 由对称性(图1(a )给出的是第一卦限部分).44222⎰⎰--=Ddxdy y x a V其中D 为半圆周22x ax y -=及x 轴所围成的闭区域(图1(b )).在极坐标系中,与闭区域D 相应的区域*D {},20,cos 20),(πθθθ≤≤≤≤=a r r 于是⎰⎰⎰⎰-=-=Da rdr r a d rdrd r a V 20cos 2022224444πθθθ=.)322(332)sin 1(33220333⎰-=-ππθθa d a4.2曲面的面积设曲面S 的方程为),,(y x f z = 它在xOy 面上的投影区域为,xy D 求曲面S 的面积.A若函数),(y x f z =在域xy D 上有一阶连续偏导数,可以证明,曲面S 的面积.),(),(122dxdy y x f y x f A xyD y x ⎰⎰'+'+=(1)例9 计算抛物面22y x z +=在平面1=z 下方的面积.解 1=z 下方的抛物面在xOy 面的投影区域xy D {}.1),(22≤+=y x y x又,2x z x =',2y z y =' 221y x z z '+'+=,44122y x ++ 代入公式(1)并用极坐标计算,可得抛物面的面积 ⎰⎰⎰⎰+=++=xyxyD D rdrd r dxdy y x A *22241441θ=).155(6)41(201212-=+⎰⎰πθπrdr r d如果曲面方程为),(z y g x =或),(z x h y =,则可以把曲面投影到yOz 或xOz 平面上,其投影区域记为yz D 或xz D ,类似地有.),(),(122dydz z y g z y g A yzD zy ⎰⎰'+'+= 或.),(),(122dxdz x z h x z h A xzD z x⎰⎰'+'+= 4.3其它例10[]4 平均利润 某公司销售商品Ⅰx 个单位,商品Ⅱy 个单位的利润),(y x P .5000)100()200(22+----=y x现已知一周内商品Ⅰ的销售数量在150~200个单位之间变化,一周内商品Ⅱ的销售数量在80~100个单位之间变化.求销售这两种商品一周的平均利润.解 由于y x ,的变化范围{},10080,200150),(≤≤≤≤=y x y x D 所以D 的面积.10002050=⨯=σ 由二重积分的中值定理,该公司销售这两种商品一周的平均利润为[]σσσd y x d y x P DD⎰⎰⎰⎰+----=5000)100()200(10001),(122 []dy y x dx 5000)100()200(100012210080200150+----=⎰⎰ dx y y y x 100803220015050003)100()200(10001⎥⎦⎤⎢⎣⎡+----=⎰ 20015020015023292000)200(2030001⎰⎥⎦⎤⎢⎣⎡+--=x x dx 4033300012100000≈=(元). 参考文献:[1] 赵树原,胡显佑,陆启良.微积分学习与考试指导[M] .北京:中国人民大学出版社, 1999. [2] 华东师范大学数学系.数学分析(第三版)[M]. 北京:高等教育出版社,2004. [3] 刘玉琏,傅沛仁等.数学分析讲义(第四版)[M]. 北京:高等教育出版社,2003. [4] 周应编著. 数学分析习题及解答[M]. 武汉:武汉大学出版社,2001. [5] 胡适耕,张显文编著. 数学分析原理与方法[M].北京:科学出版社,2008. [6] 吴良森等编著. 数学分析习题精解[M].北京:科学出版社,2002.。
高等数学第十章第二节二重积分的计算法课件.ppt

y y y2(x)
D
y y1(x)
a
bx
则
f (x, y) d
b
dx
y2 (x) f (x, y) d y
D
a
y1( x)
• 若积分区域为
则
f (x, y) d
d
dy
x2 ( y) f (x, y) d x
D
c
x1( y)
y x x2 ( y) d
D
c
x x1( y) x
一、利用直角坐标计算二重积分
由曲顶柱体体积的计算可知, 当被积函数 f (x, y) 0
且在D上连续时, 若D为 X – 型区域
y y 2(x)
则
D
D
:
1
(
x) a
y x
b
2
(
x)
f (x, y) dx dy
b
2 (x)
a d x 1(x)
f
(x,
D
x o a y 1(x)b y) d y
d
dy
2(y)
f (x, y) dx
c
1(y)
y d
y 2(x)
x
y
c
1(
y) y
x
D
1(x)
2
(
y)
o a x bx
为计算方便,可选择积分序, 必要时还可以交换积分序.
(2) 若积分域较复杂,可将它分成若干 y
D2
X-型域或Y-型域 , 则
D1
D D1 D2 D3
D3
o
x
例1. 计算 I D x2 yd , 其中D 是直线 y=1, x=2, 及
在极坐标系下计算二重积分

解: (1) 利用对称区间奇偶性,得 I x2dxdy D
Q D x 2d xdy D y 2dyd x
y
I1 (x2y2)dxdy 2D
D o 1x
1 2d 1r3dr
20 0
4
二重积分
综合题: 计算 I (x2xyex2y2)dxdy,其中: D
o
A
D
f
(x,
y)dxdy d
2()f(rcos,
1()
rsin)rdr.
二重积分
例 1 计算 x2 y2 d , D {( x, y) | 2 x2 y2 4 2}.
D
y
解:D 在极坐标系下可表示为
{ ( r ,) |0 2 , r 2 }
O
x
x2 y2d r rdrd
D
D
2d 2r2dr
0
2
0
r3
(
3
)
|2
d
2 7 3d 1 4 4
03
3
二重积分
例2. 计算 (x2y2)dxdy, 其中D 为由圆 x2 y2 2y, D
x2 y2 4y及直线 y 3x 0, x 3y 0, 所围成的
x
x y
1 x2 y2
是关于Y的奇函数,
D
xy 1x2 y2
dxdy0
D
xy1 1x2 y2
dxdy
D
1 1x2 y2
dxdy
2
2d
0
1r 0 1r2 dr
第2.2讲 二重积分的计算_极坐标

D
o
f (r cos ,r sin )rdrd
D
( )
d f (r cos ,r sin )rdr.
0
r ( ) A
二重积分化为二次积分的公式(3)
区域特征如图
D
0 2, 0 r ( ).
o
f (r cos ,r sin )rdrd
D
2
( )
d f (r cos ,r sin )rdr.
D
y 0, y x2, x 1 所围区域,则 f (x, y) 等于
(A) xy (B) 2xy (C)xy 1 (D) xy 1 8
2.设D是xOy平面上以(1,1),(1,1)和(1,1)为顶点的三角形区域,
D1是D在第一象限的部分,则 (xy cosx sin y)dxdy
D
(A) 2 cosx sin ydxdy
答案: ln 2.
练习2: 计算二重积分 x2 y2 d .
D
答案:32 .
其中D是圆 x2 y2 2 y所围成的区域.
9
练习3:利用极坐标计算二重积分
D
x x2
y y2
d .
其中D:x2 y2 1 x y 1.
答案:2 .
2
难题解析
1.设f (x, y) 连续,且 f (x, y) xy f (u, v)dudv,其中 D 是由
0 0 (a x)( x y)
解
a
x
dx
f '(y)
a
a
dy dy
f '( y) dx
0 0 (a x)(x y)
0 y (a x)(x y)
a
a
f '( y)dy
二重积分的计算法(2)

D
f ( x,
y)dxdy
D
f ( y, x)dxdy
1 2
D
[
f
(
x,
y)
f ( y, x)]dxdy
机动 目录 上页 下页 返回 结束
(20)(本题满分10分)2010年数学二
计算二重积分 r2 sin 1 r2 cos 2drd,其中
D
D
(r, )
|
0
r
sec , 0
}. 4
y
解 由题设知,积分区域D如图
D
形式,其中积分区域
D {( x, y) | 1 x y 1 x2 , 0 x 1} .
解
在极坐标系下
x r cos
y
r
sin
所以圆方程为 r 1,
直线方程为r
1
,
sin cos
x2 y2 1 x y1
f ( x, y)dxdy
2 d
1
1
f (r cos , r sin )rdr.
二、选择题(本题15分,每小题3分)2009级期末考试
3、球面x2 y2 z2 4a2与柱面x2 y2 2ax所围成的
立体体积V ( B )
( A) 4 2 d
2a cos
4a2 r 2 dr;
0
0
(B)
4
2 d
2a cos
r
4a2 r 2 dr;
0
0
(C)
8
2 d
2a cos
yx
所示,将积分化为直角坐标系下 o
的二重积分为
D x1 1x
r2 sin 1 r2 cos2 r2 sin2 drd
二重积分的计算法

0
法二
先x后y
2
x2+y2
a
2
x
D
e
a
x y
d xd y dy
a a2 y2
2 2
a
a y
e
x2 y 2
dx
e
a
y
2
dy
a y
e
x2
dx积不出
14
故本题无法用直角 坐标计算.
二、利用极坐标计算二重积分 y
在极坐标系下, 用同心圆 r =常数 及射线 =常数, 分划区域D 为
极坐标积分。
令x=rcos, y=rsin, 则 x2+y2 = 1的极坐标方程为r = 1. 由(2)
y
x2+y2 1
D*: 0 r 1, 0 2
0
x
D
1 x 2 y 2 dxdy
d 1 r 2 cos2 r 2 sin 2 rdr
1
x
y=x 1 D1
D2
0
D 1 x
注:分块函数的积分要分块(区域)来积. 另外,带绝对值的函数是分块函数。
10
例 11
求由下列曲面所围成的立体体积, z x y , z xy, x y 1, x 0, y 0 .
解 画图. 所围立体在 xoy 面上的投影 D 如图所示。
x2 y2 R2 , x2 z 2 R2
利用对称性, 考虑第一卦限部分,
其曲顶柱体的顶为 z R 2 x 2
R
o x
0 y R 2 x 2 ( x, y ) D : 0 x R 则所求体积为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I 目 录 1引言 .................................................................................................................... 1 2无界区域上的二重积分 ............................................................................. 1 2.1定义 .................................................... 1 2.2(,)Dfxyd收敛的判定 ..................................... 2
2.3B函数与函数的联系 ...................................... 4 3无界函数的二重积分 .................................................................................. 9 3.1定义 ..................................................... 9 3.2判定定理................................................ 9 3.3无界函数计算 ............................................ 10 参考文献 ........................................................................................................... 11 致谢 .................................................................................................................... 12 II
二重积分的反常积分 数学系本0601班 魏慧 指导教师:梁素萍 摘 要:本文探究了二重积分中的两种反常积分,即无界区域上的二重积分和无界函数的二重积分,分别从定义及其判别法两个方面研究了关于二重反常积分的敛散性,同时还计算了泊松(Poisson)积分,并用其证明了B函数与Г函数的关系式,鲜明地反映反常二重积分在证明某些题目时的优越性。
关键词: 二重积分, 反常, 广义 。
Double integral of the improper integral Name: Wei Hui Class0601, Mathematics Department Tutor: Liang Suping Abstract:This paper discusses the double integral of the two kinds of abnormal points, namely the unbounded regional double and unbounded function, the double integral respectively from two aspects of definition and research method about double abnormal integral convergence, also calculated, pine (Poisson tabor, and its proof) Г function with the B function equation, vividly reflected abnormal double to prove some questions in the superiority. Key words: Double integral, Abnormal , Generalized. 1
1引言 与定积分相同, 我们也可以把二重积分推广到积分区域是无界的和被积函数是无界的两种情形,统称为反常二重积分。
2无界区域上的二重积分 2.1定义 反常二重积分是数学分析中的一个重要内容,用它来计算泊松(Poisson)积分,或是用它来证明B函数与Г函数的关系式,都是十分简捷的。在概率、统计、数理方程等学科中,反常二重积分也被广泛的引用。所以,对反常二重积分给出一个严格、明确而又易于运用的定义,是十分有益的。 定义1 (,)fxy为定义在无界区域D上的二元函数,若对于平面上任一包围原点的光滑封闭曲线,(,)fxy在曲线所围的有界区域E 与D的交集ED=D上二重可积。令d=min22{|(,)}xyxy,若存在有限极限: (,)lim(,)dDDJfxydfxyd
且与的取法无关,则称(,)fxy在D上的反常二重积分收敛,并记 (,)lim(,)dDDJfxydfxyd; (1)
否则称(,)fxy在D上的反常二重积分发散,或简称(,)Dfxyd发散。 2
2.2 (,)Dfxyd收敛的判定 定理1 设在无界区域D上(,)0fxy,12,,,,n为一列包围原点的光滑封闭曲线序列,满足 (i)22inf{|(,)}()nndxyxyn; (ii) sup(,)nnDIfxyd,
其中nnDED,nE为n所围的有界区域,这时反常二重积分 (1) 必定收敛,并且(,)DfxydI
证 设'为任何包围原点的光滑封闭曲线,它所围成的区域记为'E,并记''DED。因为limnxd,因此存在 n,使得'nDDD。由于
(,)0fxy,所以有
'(,)(,)nDDfxydfxydI
另一方面,因为 sup(,)nnDIfxyd,
故对任给的0,总有0n,使得0(,)nDfxydI 因而对于充分大的0'nDD,有'(,)DfxydI
xy
OE
D
D 3 再由 '(,)DIfxydI 可知反常二重积分 (,)Dfxyd存在,且等于I。 由定理 1的证明容易看到有以下定理: 定理2 若在无界区域D上(,)0fxy,则反常二重积分 (1) 收敛的充要条件是:在D的任何有界子区域上(,)fxy可积,且积分值有上界。 例1 计算广义积分222()xyRed 解:对广义积分222()xyRed,取圆aD:222xya,则 222()(1)axyaDede
显然a时2aDR,因此有 222()xyRed
=22()limlimaxyaaDed2(1)ae
例2 利用222()xyRed 计算2xedx
.
解:对广义积分222()xyRed ,若选择正方形方式扩展,取lD:||xl,||yl,则 de
lDyx)(
22dyedxllyxll)(
22
dxdyeellyxll][22 dxdyeellyxll][22 dxedyellxlly22 2][2dxellx
显然当l时有2lDR,因此有 dedelDyxlyx)(R)(22222lim
2][lim2dxellxl
2][2dxex
4
由此得到dxex2 注:事实上概率论中很重要的泊松积分2xedx的计算有更为简便的算法, 因2xe的原函数不能用初等函数表示,故用一元广义积分的方法不能求出该积分的值。 但2xIedx2yedx 22222xyxyIedxedxedxdy
2xIedx
若在泊松积分2xedx中令12xy,则 2212xedx 221
12xedx
而此式中的被积函数221()2xxe是统计学中常用的标准正态分布的密度函数。 小结: 在计算反常二重积分时,一般选择有利于计算的特殊区域(如圆、矩形等)扩展方式,讨论相应极限的存在性。
2.3B函数与函数的联系 证明: 若0,0pq,则 ()()(,)()pqBpqpq
证 对于函数, 令2xu 则2dxudu, 于是212100()2pxpupxedxuedu 从而 22212100()()4pxqypqxedxyedy
22212100lim4RRpxqyRxedxyedy