微量元素地球化学课程作业
地球化学作业习题(含标准答案)

地球化学作业习题1、为什么硅酸盐矿物中 K 的配位数经常比 Na的配位数大?答: K 和 Na都属于碱性元素,其离子半径分别为: 1.38A 和 1.02A(Krauskopf etal,1995) 或1.59 和 1.24A(Gill,1996) 。
以与阴离子 O2-结合为例, O2-离子半径 1.40A(Krauskopf etal,1995)+ 2- + 2-或 1.32(Gill,1996), 根据阳离子与氧离子半径比值与配位数关系,K+/O2-= 0.9857, Na+/O2-=0.7286 ,由于等大球周围有 12 个球,而在离子晶体中,随阳离子半径的较小,为达到紧密接触,因此配位数也要减少,因此,在硅酸盐矿物中 K 的配位数经常比 Na的配位数大,前者与氧的配位数为8, 12,而后者为 6,8 。
2、Zn2+和 Mg2+的离子半径相近,但在天然矿物中,前者经常呈四面体配位,后者则常呈八面体配位,为什么?答:这是由于二者地球化学亲和性差异造成的, Mg2+离子半径 0.72A ,Zn2+离子半径≈0.70A ,二者离子半径相近,但是前者的电负性为 1.2, 后者电负性为 1.7 ,在与氧形成的化学键中,前者 71% 为离子键成分,后者离子键成分仅为 63%。
前者易于亲氧,后者则是典型的亲硫元素。
根据确定配位数的原则, Zn2+/S2-=0.41(Krauskopf et al,1995) ,因此闪锌矿形成典型的四面体配位,而后者2+ 2-Mg2+/O2-=0.51 ,因此呈八面体配位。
林伍德电负性法则 - 具有较低电负性的离子优先进入晶格当阳离子的离子键成分不同时,电负性较低的离子形成较高离子键成分 ( 键强较高 ) 的键,它们优先被结合进入矿物晶格,而电负性较高的离子则晚进入矿物晶格。
例如,Zn2+的电负性为2+ 2+857.7kJ/mol ,Fe2+的电负性为 774 kJ/mol ,而 Mg2+的电负性为 732 kJ/mol ,用林伍德法则判断,三个元素中 Mg2+和 Fe2+优先进入晶格组成镁铁硅酸盐, Zn2+则很难进入早期结晶的硅酸盐晶格,这与地质事实十分吻合。
14-微量元素地球化学

5.微量元素的岩石成因
硅质岩成因
5.微量元素的岩石成因
太原组硅质岩的热液成因解释
5.微量元素的岩石成因
变质岩原岩恢复
地壳不同变 质原岩的 REE与 La/Yb比值判 别图,可用 于区分不同 类型的玄武 岩、花岗岩 和碳酸盐岩
5.微量元素的岩石成因
重要元素对岩石成因的指示意义
元素 特征解释
高度相容元素,N i 和C o 赋存在Ol 中,C r在Sp和C px中,这些元素的高度富集(例如N i =250-300 ppm, C r=500Ni, Co, Cr 600 ppm)暗示着岩石母岩为地幔橄榄岩,如果岩石系列显示N i 的逐渐降低 (C o 也可以显示同样规律) 则预示着 Ol 的分离结晶作用。C r的逐渐降低代表尖晶石或者C px的分离结晶作用。 它们在部分熔融和分离结晶过程中显示相似的特征。都倾向于进入Fe-T i 氧化物(钛铁矿和钛磁铁矿), 是钛铁矿和 钛磁铁矿结晶分异的示踪剂。如果V和T i 显示差异性质, 则T i 可以类质同象进入一些副矿 物相,例如榍石和金红石。 极不相容元素,基本不进入主要的地幔矿物相,有时可以与T i 类质同象进入副矿物相,例如榍石和金红石。 不相容元素,在钾长石。云母或者角闪石中可以替换K。Rb在角闪石中类质同象替换能力弱于在钾长石和云母中,因 此K/Ba比值可以用来鉴别这些矿物相。 在Pl 中容易类质同象替换C a(但是在Py中不取代C a),在钾长石中替换K,在浅部低压条件下当Pl 作为早期结晶相 的时候,显示相容元素特征,因此Sr或者C a/Sr比值是鉴别Pl 参与的有力指示剂。但是Sr在高压的地幔条件下,当Pl 不 稳定的时候,显示不相容元素特征。 石榴石(Opx和角闪石稍弱)容纳重稀土元素,因此会导致轻稀土的分异。榍石和Pl 倾向于吸纳轻稀土元素。C px仅导 致REE轻度分异。Eu强烈倾向进入Pl 中,因此Eu异常可以鉴别是否有Pl 的参与。 常类似于HREE,显示不相容元素特征。强烈倾向进入石榴石和角闪石中,辉石次之。榍石和磷灰石也富集Y,因此如 果岩石中存在这些副矿物,将明显影响Y的分异。
4-微量元素地球化学-2

V, Ti
Zr, Hf
Ba, Rb
Sr
REE
Y
5.微量元素的示踪意义
岩浆岩形成机制判别 Treuil和Joron(1973,1975)利用REE和其它微量元素在部 分熔融和分异结晶过程中分配行为的差别,创制了岩浆 岩形成机制判别图解法: 划分“超亲岩浆元素”(H)和“亲岩浆元素”(M) H—总分配系数小到相对于0.2-0.5可忽略不计. M—总分配系数小到相对于1可忽略不计.
5.微量元素的示踪意义
各构造环境玄武岩微量元素特征
洋中脊玄武岩 板内玄武岩
火山弧玄武岩
过渡型玄武岩
河南理工大学-机械与动力学院
31 31
5.微量元素的示踪意义
河南理工大学-机械与动力学院
32 32
5.微量元素的示踪意义
河南理工大学-机械与动力学院
33 33
??
20 20
5.微量元素的示踪意义
花岗岩类成因 花岗岩类可划分为I、S、M、A型等成因类型,不同成 因类型的花岗岩具有相应的REE配分模式。
河南理工大学-机械与动力学院
21 21
5.微量元素的示踪意义
Pither,1983,花岗岩的类型与构造环境
河南理工大学-机械与动力学院
22 22
5.微量元素的示踪意义
K=K2O×10000×0.83013/250
Ti=TiO2×10000×0.5995/1300
P=P2O5×10000×0.43646/95
这里K2O、TiO2、P2O5单位均为重量百分数
6 6
河南理工大学-机械与动力学院
5.微量元素的示踪意义
(3)应用时须注意的事项 1. 注明所引用的文献,这是对地球化学研究工作的基本 要求; 2. 在作图解时,可根据自己所拥有的元素数据,减少部 分元素进行作图,但各元素的相对顺序应相持不变; 3. 涉及到主量元素,是氧化物形式or是单元素形式,确 认是否需要进行换算,如将主量元素的氧化物含量换 算成单元素的 ppm 形式。
地球化学作业习题(含标准标准答案)

地球化学作业习题1、为什么硅酸盐矿物中K地配位数经常比Na地配位数大?答: K和Na都属于碱性元素,其离子半径分别为:1.38A和1.02A(Krauskopf et al,1995)或1.59和1.24A(Gill,1996).以与阴离子O2-结合为例,O2-离子半径1.40A(Krauskopf et al,1995)或1.32(Gill,1996),根据阳离子与氧离子半径比值与配位数关系,K+/O2-=0.9857, Na+/O2-=0.7286,由于等大球周围有12个球,而在离子晶体中,随阳离子半径地较小,为达到紧密接触,因此配位数也要减少,因此,在硅酸盐矿物中K地配位数经常比Na地配位数大,前者与氧地配位数为8,12,而后者为6,8.b5E2R。
2、Zn2+和Mg2+地离子半径相近,但在天然矿物中,前者经常呈四面体配位,后者则常呈八面体配位,为什么?答:这是由于二者地球化学亲和性差异造成地,Mg2+离子半径0.72A,Zn2+离子半径≈0.70A,二者离子半径相近,但是前者地电负性为1.2,后者电负性为1.7,在与氧形成地化学键中,前者71%为离子键成分,后者离子键成分仅为63%.前者易于亲氧,后者则是典型地亲硫元素.根据确定配位数地原则,Zn2+/S2-=0.41(Krauskopf et al,1995),因此闪锌矿形成典型地四面体配位,而后者Mg2+/O2-=0.51,因此呈八面体配位.p1Ean。
林伍德电负性法则-具有较低电负性地离子优先进入晶格当阳离子地离子键成分不同时,电负性较低地离子形成较高离子键成分(键强较高)地键,它们优先被结合进入矿物晶格,而电负性较高地离子则晚进入矿物晶格.例如,Zn2+地电负性为857.7kJ/mol,Fe2+地电负性为774 kJ/mol,而Mg2+地电负性为732 kJ/mol,用林伍德法则判断,三个元素中Mg2+和Fe2+优先进入晶格组成镁铁硅酸盐,Zn2+则很难进入早期结晶地硅酸盐晶格,这与地质事实十分吻合.电负性决定了元素之间相互化合时地化学键性,因此可以用电负性大小来衡量离子键地强弱,由此判断元素进入矿物晶格地先后顺序.Zn2+(0.083nm)与Mg2+(0.078nm)、Fe2+(0.083nm)地离子性质很相似,若按戈氏法则从相互置换质点间地电价和半经地角度进行判断,Zn2+应于早期进入铁镁硅酸盐晶格.由于Zn2+地电负性较大,化合时共价键性较强,难于以类质同象方式进入Fe2+和Mg2+结晶矿物中,Zn2+往往在硅酸盐熔体晚期结晶形成ZnSiO4(硅锌矿)和Zn4[Si2O7][OH]2.2H2O)(异极矿)等矿物.林伍德电负性法则更适合于非离子键性地化合物.DXDiT。
微量元素地球化学参考文档

方法存在的问题: ❖ 难以证明是否达到平衡以及难以选纯矿物; ❖ 为了精确测定微量元素,实验过程中元素
的浓度远远高于自然体系。 ❖ 这些都是目前应用于解决实际问题的难题。
迄今以实验方法测得的分配系数数据尚不多 见。
26
2. 实测法:
斑晶-基质法 直接测定天然岩浆岩(火山岩)微 量元素含量。
火山岩中斑晶矿物代表熔体结晶过程中的固相, 基质或淬火熔体代表熔体相—岩浆,两相中微量元素 比值即为该元素的分配系数。
16
放射性产热元素(Radiogenic productheat elements) U、Th、40K(40K占K总量的极小部分)三种 元素,在研究地壳热结构、热状态方面有特 殊意义。 U、Th、40K是放射性元素,在自然蜕变过 程中产生热量,从而限制了岩石圈(地幔、 地壳)的热状态。
17
3.亨利定律:稀溶液定律
23
kDT kD,1 x1 kD,2 x2 kD,n xn
用岩石中所有矿物简单分配系数与岩石中各矿 物含量乘积之和表达:
式中:KjDi 为元素i在j矿物中的简单分配系数, Xj为i在j矿物中的重量百分数;n为与熔浆达到平衡 的矿物总数。
24
分配系数测定
两种方法求得分配系数,为进行实际问题研究的基本理 论参数。 根据能斯特定律,分配系数测定由两部分组成:平衡体 系中固相(结晶相)和液相(基质)的微量元素浓度。 计算分配系数。 1 .实验法:针对自然地质作用,设计各种给定条件,如 岩浆的酸度进行实验。 初始物质选择: ❖ 化学试剂法-试剂合成玻璃物质; ❖ 天然岩石;使一种矿物和熔体,或者两种矿物达到平 衡,并使微量元素在两相中达到溶解平衡,淬火后产物 分离测定含量,测定该元素在两相中浓度,得出分配系 数。
微量元素在生物地球化学中的作用

微量元素在生物地球化学中的作用人们常说,健康的饮食应该保证营养的平衡,其中包括大量的碳水化合物、蛋白质、脂肪、矿物质和维生素等。
而在矿物质中,有一类叫微量元素,它们虽然在人体内所需的量很少,但却非常重要。
微量元素不仅在人体内发挥着关键的生理作用,而且在生态系统中也扮演着不可替代的角色。
本文将从微量元素在生态系统中的作用出发,介绍微量元素在生物地球化学过程中所起的作用。
一、微量元素在生态系统中的作用微量元素在生态系统中是必不可少的营养物质,它们可以促进植物生长、影响动物的免疫力和繁殖能力,还能调控生态系统的生物地球化学循环过程。
以下我们将分别介绍它们的作用。
1.促进植物生长微量元素对植物生长发育有着极其重要的影响,特别是在缺乏某种元素的情况下,这种影响更加显著。
如硼(B)是植物在生长期间不可或缺的微量元素之一,它参与植物对钙离子的吸收,维持细胞壁的完整性,促进分裂和伸长,从而提高植物的耐受性和抗性。
又如镁(Mg)虽然是植物体内所需数量较大的元素之一,但是缺乏镁会引起植物的生长停滞和发黄等生理障碍。
2.影响动物的免疫力和繁殖能力微量元素在动物的生理功能中也扮演着重要的角色。
例如,锌(Zn)是动物免疫系统中的重要组成部分,它参与免疫细胞的分化与增殖,调节免疫功能,并且对于蛋白质和核酸的合成十分关键。
而铜(Cu)也是细胞内重要的氧化剂,它有助于合成胶原蛋白,提高抗氧化能力,同时也可以促进动物繁殖系统的正常发育。
3.调控生态系统的生物地球化学循环过程微量元素的存在也对生态系统中的生物地球化学过程有着不可替代的作用。
以氮素生物地球化学循环为例,微量元素钼(Mo)和钴(Co)都是催化酶中的重要成分。
它们在固氮细菌中发挥作用,参与到固氮酶的合成过程中,从而促进了氮素固定的效率。
又如,碳地球化学过程中,铁(Fe)参与到水中的氧气溶解和呼吸作用中,促进海洋中浮游植物的生长和物种多样性的提高。
二、微量元素在生物地球化学过程中的作用微量元素在生态系统中起着非常重要的作用,而它们更是整个生物地球化学循环过程中所必不可少的元素,因为它们不仅是生物体内的重要组分,而且在环境中的循环和转化也起着重要的作用。
微量元素矿床地球化学

a K D i ai
一个体系中所有矿物的简单分配系数加权和称为总分配系数: i i D =∑K DX j 影响分配系数的因素有: 1) 体系的总成分 2) 温度 2) 压力 第二节 稀土元素 稀土地球化学是 20 世纪 60 年代逐渐发展起来的一个地球化学分支。 稀土元素在地球各类岩石中, 在陨石、月岩及其它星际物质中普遍存在。由于稀土元素的不活动性,化学性质相似,离子半径有规 则的变化,不同来源、不同形成方式的岩石具有不同类型的稀土模式。近年来,还发展了稀土定量模 拟计算,用以推测源区的物质组成和可能的形成历史。 一、稀土元素的性质 在元素周期表中原子序数为 57~71 的十五个元素 , 加上化学性质相近的钇统称为稀土元素 REE(Rare Earth Elements)。它们是,镧(La,Lanthanun)、铈(Ce,Cerium)、镨(Pr,Praseodynium)、 钕(Nd, Neodynium), 钷(Pm, Promithium)、 钐(Sm, Samarium)、 铕(Eu, Europium), 钆(Gd, Gadolinium)、 铽(Tb,Terbium) 、镝(Dy,Dysprosium)、钬(Ho,Holmium)、铒(Er,Erbium)、铥(Tm,Thulium)、镱 (Yb,Ytterbium)、镥(Lu,Lutetium)和钇(Y,Yttrium)。在稀土地球化学讨论中,一般只考虑前十五 个元素。按照原子序数的大小进一步把稀土元素分为轻稀土元素 LREE(Light rare earth elements)、 重稀土元素 HREE(Heavy rare earth elements)和中稀土元素 MREE(Middle rare earth elements)。 具有低原子序数的稀土元素划为轻稀土元素(简称轻稀土,下同),具有高原子序数的稀土元素划为重 稀土,具有中等原子序数的稀土元素划为中稀土。 稀土元素的电子结构如表 1 所示。所有稀土元素在 6s 能级具有两个电子,随着原子序数的增加, 电子依次充入 4f 能级。 La 在 4f 能级没有电子, Ce 在 4f 能级有二个电子, Lu 在 4f 能级有 14 个电子, 所有 4f 轨道全部被充满。 稀土元素处在 5d 和 6s 能级上的电子容易失去,形成三价阳离子。在地质作用中,除 Eu、Ce 有变 价外,所有稀土元素都表现为正三价。Eu 除正三价外,还经常表现为正二价。三价离子和二价离子的 比例决定于氧的逸度。在强烈氧化条件下,如在地表条件或者热液中,Ce 有时表现为正四价。在强烈 还原条件下,有时 Yb 能以 Yb2+出现。 稀土元素的原子半径和离子半径随着原子序数的增加而依次减小,离子半径由 La 的 l.032Å 到 Lu 的 0.861Å (表 1)。这是由于随着原子序数的增加,电子依次充入 4f 能级而保持最外层电子不变的 结果。这个现象叫做镧系收缩。 二、稀土元素的丰度 地壳火成岩和陨石的丰度如图 1 所示。由图 1 可以看出,由 La 到 Lu,稀土的丰度曲线是一条十 分有规则的曲线。除了自然界不存在的元素钜(Pm)外,凡是原予序数为偶数的元素都比相邻的原子序 数为奇数的元素的丰度大,位于丰度曲线的峰部位置,而原子序数为偶数的元素的丰度小,处于曲线 2
微量元素地球化学

La系收缩造成稀土元素(REE)离子半径递减,相应的 单斜辉石/玄武质岩浆之间的分配系数递增
KREE单斜辉石/玄武质岩浆
体系组分的影响
体系组分对分配系 数的影响主要反映 在熔体(岩浆)的组 分变化上
随着岩浆组成从基 性向中酸性演化, 稀土元素在角闪石 和岩浆之间的分配 系数渐次升高,变 化幅度极大。
锆 石 Zircon
ZrSiO4
第一部分
微量元素地球化学的一些基本理论问题
1.1 微量元素的定义 1.2 微量元素在地质体中的赋存型式 1.3 微量元素分类 1.4 支配微量元素地球化学行为的主要物理化学定律
a. Goldschmidt三定律 b. 化学势、逸度、活度 c. 固熔体、稀溶液与亨利定律 d. Nernst分配定律与分配系数(ki= cis/cil) e. 分配系数的含义 f. 影响分配系数的主要因素 g. 分配系数的测定
基本的化学分类
Goldschmidt分类
亲石
亲铁
亲铜
亲气
地球的组分分异,由元素的 性质决定。 元素在周期表中的位置: 亲铁元素: 地核 亲石元素: 地幔与地壳 亲气元素: 大气圈和水圈
一般的地球化学分类
常用分类
主元素(major elements) 过渡(族)元素(transition elements)
如果源岩的矿物组分不是等比例地进入熔体,严格说 来,部分熔融的微量元素方程应该是:
cil cio
=
1 Di+(1-Pi)F
这里, Di是微量元素i在源岩与熔体间的分配系数 Pi是微量元素i在残留相与熔体间的分配系数
2.1c 平衡部分熔融过程微量元素的变化规律
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蛇绿岩中地幔橄榄岩成因及构造意义研究
研究目的和意义:
地幔橄榄岩是蛇绿岩超镁铁岩的主要岩石类型。
在蛇绿岩的形成过程和构造侵位的过程中,地幔橄榄岩还会遭受部分熔融作用,熔体萃取作用,以及地幔交代等多种地质作用的影响和改造。
不同的地质作用会产生相应的矿物组合,通过对蛇绿岩中的地幔橄榄岩不同时代矿物组合特征的研究,可以进一步对蛇绿岩形成构造背景的认识,对于恢复蛇绿岩的形成和演化至关重要。
拟解决的问题:
1.地幔橄榄岩的形成过程中所经历的地质作用,如部分熔融作用,熔体抽取作用,流体-岩石反应,熔体-岩石反应等。
2.蛇绿岩的形成环境,如SSZ环境和MOR环境[1]。
拟研究的手段和方法:
1. 岩石学
对岩石的结构,构造,风化程度以及变质程度以及组成矿物进行研究,对岩石进行定名,如地幔橄榄岩包含纯橄岩,方辉橄榄岩以及二辉橄榄岩。
2. 矿物学
对岩石的组成矿物进行观察研究,地幔橄榄岩中不同时代的矿物的矿物组合具有不同的结构特征,反映了岩石成因的复杂性和多阶段演化的特征。
地幔橄榄岩中的矿物会保存地幔橄榄岩形成和演化历史的印记,尤其是地幔橄榄岩的矿物组合及化学特征对认识地幔橄榄岩的成因和恢复蛇绿岩的形成背景至关重要。
对地幔橄榄岩中的橄榄石,斜方辉石,单斜辉石,尖晶石等矿物的化学成分进行研究和分析。
室内试验工作显示,尖晶石二辉橄榄岩在10—20 kbar的压力范围内,随着岩石熔融程度的增加,岩石中单斜辉石的含量迅速减少,斜方辉石的含量将逐渐降低。
橄榄石的Fo和NiO含量,辉石的Mg#和Cr2O3含量,铬尖晶石的Cr#值将逐渐增加,而辉石和全岩的Al2O3和TiO2将逐渐减少[2]。
尖晶石的Cr#值是地幔岩熔融程度、源区亏损程度以及结晶压力的灵敏指示剂,Cr#反映了地幔部分熔融程度的增加[3],经历较高程度部分熔融和萃取的橄榄岩具有较高的Cr#值。
Dick 和Bullen(1984)根据铬尖晶石的成分将阿尔卑斯型地幔橄榄岩分为三中类型:Ⅰ型:铬尖晶石的Cr#<60;Ⅲ型:铬尖晶石的Cr#>60;Ⅱ型:为一种过渡类型,铬尖晶石的Cr#包含Ⅰ型和Ⅲ型地幔橄榄岩中的铬尖晶石。
其中Ⅰ型地幔橄榄岩可能反映了洋中脊大洋岩石圈的环境,相当于深海橄榄岩,其部分熔融程度较低;Ⅲ型地幔橄榄岩,形成于岛弧环境,经历了较高程度的部分熔融;Ⅱ型地幔橄榄岩,则反映了复合来源的特征[3]。
利用铬尖晶石的Cr#—Mg#图解,可以判断地幔橄榄岩的形成环境,即为SSZ型还是MOR
型地幔橄榄岩。
地球化学:
1. 主量元素
地幔橄榄岩全岩的化学组成是岩石学家研究岩石成因的重要工具。
将不同元素的含量与MgO作相关图解,来反映岩石的成分变化,指示地幔橄榄岩的熔融的过程。
MgO含量可以作为岩石亏损程度的标志,随着岩石橄榄石含量的增高,岩石的MgO相应的增高,岩石因此也更加的亏损。
地幔橄榄岩中MgO含量高低是地幔亏损程度或部分熔融程度的标志,MgO 含量越高,CaO、Al2O3、SiO2等易熔组分含量越低,说明其局部熔融程度越高从岩石学意义上讲,在上地幔熔出玄武岩浆过程中,CaO、Al2O3、SiO2等易熔组分容易进入熔体,熔出玄武岩浆越多,残留的地幔橄榄岩越富镁,地幔亏损程度越高。
2. 微量元素
蛇纹石化作用通常会影响微量元素Rb、Sr、Ba和U含量,的变化,而Nb、Ta、Th、Hf的低含量会影响分析的精度,,因此,选择含量相对较高的微量元素Cr、Ni、V、Co、Zr和Y进行讨论。
作出MgO与Cr、Ni、V、Co、Zr和Y的相关性图解,分析这些元素之间的相关性。
利用地幔橄榄岩微量元素原始地幔标准化图解,分析其中的高场强元素,大离子亲石元素的分布特征,来分析是否有流体作用和地幔源区的特征。
3. 稀土元素
作出地幔橄榄岩原始地幔标准化的稀土元素图解,并对LREE,MREE以及HREE三种稀土元素进行分析,描述他们的富集程度,同时观察Eu是否存在异常。
同时利用稀土元素的总量来只是部分熔融的程度,利用稀土元素的配分模式,LREE是否富集来分析岩石是否经历了流体交代作用。
利用LREE和HFSE的的相关性图解,可以判别导致LREE和HFSE富集的原因。
由于HFSE在流体中的活动性相对较差,而在熔体中的活动性较强,而LREE在流体中和熔体中均具有较强的活动性,通过判别LREE和HFSE之间时否具有相关性,可以判断地幔橄榄岩LREE的富集是由于流体-岩石反应导致的还是由于熔体-岩石反应导致的。
由于HREE在后期改造中具有一定的稳定性,可以通过HREE的含量来判断地幔橄榄岩部分熔融程度的大小。
利用微量元素的分配公式,分别计算不同熔融程度下的HREE的含量,做出不同熔融条件下地幔橄榄岩部分的稀土元素的图解,来研究岩石的部分熔融程度。
预期结果
蛇绿岩根据其形成环境可以分为洋中脊型(MOR)和俯冲带之上型(SSZ)。
SSZ型蛇绿岩中的地幔橄榄岩以方辉橄榄岩为主,二辉橄榄岩较MOR型蛇绿岩少见。
地幔橄榄岩中的橄榄石,辉石通常可见有波状消光,扭折带等地幔橄榄岩在分离板块边界或者其他地质动力活动区域(例如大学洋中脊,或者弧后盆地)经历高温高压变形作用的记录。
SSZ型地幔橄榄岩和MOR型地幔橄岩形成的构环境不同,因此SSZ型蛇绿岩中的地幔橄榄岩的MgO、SiO2、Ni、Cr、Co等相容元素含量较MOR型橄榄岩富集,而Al2O3、CaO、Sc、V等不相容元素则较MOR型蛇绿岩中的地幔橄榄岩。
在作微量元素与MgO相关性图解时,相容元素与MgO呈现正相关,而不相同元素与MgO将呈现负相关。
SSZ型蛇绿岩中的地幔橄榄岩由于在形成的过程中会遭受流体的作用,通常情况下SSZ型蛇绿岩中的地幔橄榄岩会富集LREE,其稀土分配模式通常呈U型或V型。
由于HREE不受后期流体作用的影响,因此HREE的总量可以反映部分熔融程度的大小。
SSZ型地幔橄榄岩与MOR 型地幔橄榄岩相比,通常遭受了较高程度的部分熔融作用,因此SSZ型地幔橄榄岩的HREE的含量相对于MOR型地幔橄榄岩来说较低。
因此根据以上特征,可以判别地幔橄榄的类型。
References:
[1]. Pearce, J.A., S.J. Lippard and S. Roberts, Characteristics and tectonic significance of supra-subduction zone ophiolites. Geological Society, London, Special Publications, 1984. 16(1): p. 77-94.
[2]. Dupuis, C., et al., The Yarlung Zangbo Suture Zone ophiolitic mélange (southern Tibet): new insights from geochemistry of ultramafic rocks. Journal of Asian Earth Sciences, 2005. 25(6): p. 937-960.
[3]. Dick, H.J.B. and T. Bullen, Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 1984. 86(1): p. 54-76.。