小学奥数-三年级-一笔画

合集下载

(完整word版)三年级奥数.几何.一笔画与多笔画

(完整word版)三年级奥数.几何.一笔画与多笔画

一笔画与多笔画知识框架一、一笔画的认识所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从上图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法。

什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 二、一笔画问题(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4)奇点个数超过两个的图形,一定不能一笔画.三、多笔画问题我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n个奇点(n为自然数),那么这个图一定可以用n笔画成.重难点(1)知道什么样的的是奇点?什么样的点是偶点。

(2)知道什么样的图形可以一笔画出。

(3)不能一笔画出的图形叫做多笔画图形,多笔画图形的笔画数与什么有关呢?例题精讲【例 1】我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?【巩固】 下图中,哪些点是奇点,哪些点是偶点?【例 2】 观察下面的图形,说明哪些图可以一笔画完,哪些不能,为什么?对于可以一笔画的图形,指明画法.【巩固】 下面的图形,哪些能一笔画出?哪些不能一笔画出?J O I H G FED CBA GF E D CBA【例 3】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【例 4】 右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【巩固】 右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?【例 5】 下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?E CDB A 乙甲【例 6】 邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?【例 7】 (2010年第8届走美杯3年级初赛第6题)有16个点排成的44 方阵。

三年级奥数一笔画

三年级奥数一笔画

1、掌握奇点与偶点。

2、掌握一笔画的基本方法。

学习目标:1、培养学生的观察能力、动手操作能力、初步了解数形思想。

2、初步培养学生归纳总结的思想。

知识引入:沿着俄国和波兰的边界,有一条长长的布格河。

这条河流经俄国的古城康尼斯堡——它就是今天俄罗斯西北边界城市加里宁格勒。

布格河横贯康尼斯堡城区,它有两条支流,一条称新河,另一条叫旧河,两河在城中心会合后,成为一条主流,叫做大河。

在新旧两河与大河之间,夹着一块岛形地带,这里是城市的繁华地区。

全城分为北、东、南、岛四个区,各区之间共有七座桥梁联系着。

人们长期生活在河畔、岛上,来往于七桥之间。

有人提出这样一个问题:能不能一次走遍所有的七座桥,而每座桥只准经过一次?问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。

最后,人们只好把这个问题向俄国科学院院士欧拉提出,请他帮助解决。

小朋友,你能解决它吗?下列各图各有几个单数点,几个双数点?3()2()1()一笔画我数数各个点引出几条线段就能判断了。

数一数下列各图有几个单数点,几个双数点?下列各图能一笔画吗?为什么?动手画一画。

下列图形中能一笔画的请一笔画,不能一笔画的,请说明原因。

我可以动手试试!动手试,还真复杂,有没有什么简单的规律可循呢?邮递员叔叔将下图改成一笔画。

判断下面的图形是否可以一笔画出?如果不能,请把它改成可以一笔画的图形。

邮递员叔叔向11个地点送信,一次送完,怎样走,才能尽快地把信送到?同学们,真聪明。

那你们动手试试,看谁改动方法多。

我可以把所有点都改成双数点。

我还可以只保留2个单数点,其余点都保留双数点。

你还能解决这个问题吗?CBA5、园林工人在花园里浇花,怎样走才能不重复地走遍每条小路?6、我国在2008年举办国际奥林匹克运动会,下图是国际奥林匹克运动会的会标,你能一笔把它画下来吗?7、甲乙两个邮递员去送信,两人以相同的速度走遍所有的街道,甲从A 点出发,乙从B 点出发,最后都回到邮局(C 点)。

奥数-03一笔画+答案

奥数-03一笔画+答案
解析:图(1)有 8 个奇点,所以要 4 笔画出。图(2)有 12 个奇点,所以要 6 笔画出。图(3)能一笔画出。
【例 8】 如图 A 所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河 岸。问:一个散步者能否一次不重复地走遍这七座桥?
解析:通过画图,把一个实际问题转化为一个几何图形(如图 B),成为一笔画 的问题了,而图 B 中有 2 个奇点,所以能一笔画出。 练习四 1、右边各图至少要用几笔画完?
1
【例 1】 右图中,哪些点是偶点?哪些点是奇点? 解析:我们把一个图形上与偶数条线相连的点叫
做偶点,与奇数条线相连的点叫做奇点。奇点有 J、D、 H,偶点有 A、B、C、E、F、G、I。
【例 2】 下面图形能不能一笔画成?如果能,应该怎样画?
解析:图 1 能一笔画,因为图中只有两个奇点。图 2 也能一笔画,因为图中全 是偶点,图 3 不能一笔画,因为有 4 个奇点。
条线,将其改成成可一笔画的图形。
G
H
A
I
J
F
B
K
L
E
C
图b
D
【例 2】 右图是某展览厅的平面图,它由五个展室组 成,任两展室之间都有门相通,整个展览厅还有一个进 口和一个出口,问游人能否从入口进,从出口出,并且 一次不重复地穿过所有的门?
解析:将图形中的 6 个区域看成 6 个点,每个门看 成连结他们的线段,显然 6 个点都是偶点,所以游人能 一次不重复的走过所有的门。
2
【例 4】 右图中的线段表示小路,请你仔细观 察,认真思考,能够不重复地爬遍小路的是甲蚂 蚁还是乙蚂蚁?该怎样爬?
解析:要想不重复爬遍小路,需要图形能 一笔画出,由于图中有两个奇点,所以应该从 奇点出发才能一笔画出图形,所以甲蚂蚁能够。

一笔画三年级奥数题及答案

一笔画三年级奥数题及答案

一笔画三年级奥数题及答案
一笔画三年级奥数题及答案
一笔画问题:
请观察右图中已有的几个图形,并按规律填出空白处的图形。

分析与解:
首先可以看出图形的第一行、第二列都是由一个圆、一个三角形和一个正方形所组成的;其次,在所给出的图形中,我们发现各行、
各列均没有重复的'图形,而且所给出的图形中,只有圆、三角形和
正方形三种图形.由此,我们知道这个图的特点是:
①仅由圆、三角形、正方形组成;
②各行各列中,都只有一个圆、一个三角形和一个正方形。

因此,根据不重不漏的原则,在第二行的空格中应填一个三角形,而第三行的空格中应填一个正方形。

三年级奥数--一笔画

三年级奥数--一笔画

第一讲加减法的速算与巧算班级:姓名:成绩:知识点:1.如果一个图形可以用笔在纸上连续不断而且不重复地一笔画成,那么这个图形就叫一笔画。

2.凡是由偶点组成的连通图,一定可以一笔画成,画时可以任一偶点为起点,最后仍以这个点为终点画完一个图形。

3.凡是只有两个奇数点(其余均为偶点)的连通图,一定可以一笔画完,画时必须以一个奇点为起点,另一个奇点为终点。

4.其他情况的图都不能一笔画出。

【例1】下列图形中,()图形能够一笔画,()图形不能一笔画。

【例2】下列各图形,至少能够用几笔将它们画完。

()笔【例3】【例4】【例5】【例6】综合练习:一.填空题(方框内填数字,圆圈内添运算符号)1.34+47+53+66=(34+□)+(47+□)2.456-78-67-33-22=456-(□+22)-(67○33)3.127-163+63=127-(163○63)4.847-(39-53)=847○53○39二.计算题5.47+66+53+19+346.83+79+80+78+82+81+77+847.393+4992+1995+294+988.5678-(189+678)9.523-28910.4658-(14+13+16+17)11.2600-74-135-26-16512.568+49-268+5113.998+499-30414.764-543+98+34315.642-(436-258)-6416. 879+(263-379)-66317.602-593+494-39818.22222222220000000000-222222222219.5371860000000-53718620.20+19-18-17+16+15-14-13+12+11-10-9+8+7-6-5+4+3-2-1。

一起学奥数--一笔画(三年级)

一起学奥数--一笔画(三年级)

动动手: p.62随堂1
一笔画规则: 1、如果一个连在一起的图中,奇点个数为0或2,那么这个图形可以一笔画。 2、如果一个连在一起的图中,奇点个数不是0或2,那么这个图形就不能一
笔画成。
如何一笔画成: 奇点个数为0时,可从任何一个点开始画,最后回到始点; 当奇点个数为2时,可以从任一个奇点开始,最后到另一个奇点终止。
思考: 1、一个图形中奇点是否可以为奇数个(引起对数奇偶性的兴趣) 2、为什么偶点不影响一笔画(养成学生搞清问题根源的习惯)
例2、如下图中的线段代表小路,A、B处各有一只蚂蚁。哪只蚂蚁能够不重复 地爬完这5条小路?
A
D 【分析】1、由以上总结可知,奇点的数量决定了是否可
以一笔画成图形。本题蚂蚁能够不重复地爬完5条小路,
西岛
北岸 东岛
南岸
【分析】1、首先得把实景图转化为示意图。 用点和线分别来表示两个岛、两岸及七座桥。 注意:先画点,再按桥连通两个点
2、如果这个示意图,能够做到一笔画,则 可以证明能够不重复、不遗漏的经过每座桥, 否则就没法实现。
3、数连接每个点的线,发现四个点都是奇 点,所以没法完成一笔画。即没法做到不重 复、不遗漏的经过每一座桥。
C
2、当我们不得不重复走某些路段才能达到“一笔画”的效果时,就需要去选择应该 重复走哪几条路合理。显然,重复走的路要尽量的少,且尽量选择路程短的道理。
3、回到“一笔画”数学模型,只要我们快速消灭奇点个数,就能实现重 复走的路少。那么请考虑怎么实现呢?
4、如上图,我们可以在E和G、F和H之间两条线,就符合了从B点出发 的一笔画。
例1、下图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相 通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有 的门,并且从入口进,从出口出?

一起学奥数--一笔画(三年级)

一起学奥数--一笔画(三年级)

A
B
F E
A
B
E F
C
D C
D
【分析】1、左图是一个平面示意图,要分析 路线与出入口问题,应该把左图转化为点线 示意图。
2、只要点ቤተ መጻሕፍቲ ባይዱ示意图能够一笔画成,就能达到 一次走遍各通道而又不必重复的进出方法。
3、左下图,除了C、D两点为奇点,其它的 为偶点。因此,只要C或D点进,D或C点出 就能达到要求。
4、我们可以设定一条线路: D E F A B E C B D
西岛
北岸 东岛
南岸
【分析】1、首先得把实景图转化为示意图。 用点和线分别来表示两个岛、两岸及七座桥。 注意:先画点,再按桥连通两个点
2、如果这个示意图,能够做到一笔画,则 可以证明能够不重复、不遗漏的经过每座桥, 否则就没法实现。
3、数连接每个点的线,发现四个点都是奇 点,所以没法完成一笔画。即没法做到不重 复、不遗漏的经过每一座桥。
动动手: p.62随堂1
一笔画规则: 1、如果一个连在一起的图中,奇点个数为0或2,那么这个图形可以一笔画。 2、如果一个连在一起的图中,奇点个数不是0或2,那么这个图形就不能一
笔画成。
如何一笔画成: 奇点个数为0时,可从任何一个点开始画,最后回到始点; 当奇点个数为2时,可以从任一个奇点开始,最后到另一个奇点终止。
思考: 1、一个图形中奇点是否可以为奇数个(引起对数奇偶性的兴趣) 2、为什么偶点不影响一笔画(养成学生搞清问题根源的习惯)
例2、如下图中的线段代表小路,A、B处各有一只蚂蚁。哪只蚂蚁能够不重复 地爬完这5条小路?
A
D 【分析】1、由以上总结可知,奇点的数量决定了是否可
以一笔画成图形。本题蚂蚁能够不重复地爬完5条小路,

三年级奥数专题:一笔画

三年级奥数专题:一笔画

三年级奥数专题:一笔画(一)如果一个图形可以用笔在纸上连续不断而且不重复地一笔画成,那么这个图形就叫一笔画。

显然,在下面的图形中,(1)(2)不能一笔画成,故不是一笔画,(3)(4)可以一笔画成,是一笔画。

同学们可能会问:为什么有的图形能一笔画成,有的图形却不能一笔画成呢?一笔画图形有哪些特点?关于这个问题有一个著名的数学故事——哥尼斯堡七桥问题。

哥尼斯堡是立陶宛共和国的一座城市,布勒格尔河从城中穿过,河中有两个岛,18世纪时河上共有七座桥连接A,B两个岛以及河的两岸C,D(如下图)。

所谓七桥问题就是:一个散步者要一次走遍这七座桥,每座桥只走一次,怎样走才能成功?当时的许多人都热衷于解决七桥问题,但是都没成功。

后来,这个问题引起了大数学家欧拉(1707-1783)的兴趣,许多人的不成功促使欧拉从反面来思考问题:是否根本就不存在这样一条路线呢?经过认真研究,欧拉终于在1736年圆满地解决了七桥问题,并发现了一笔画原理。

欧拉是怎样解决七桥问题的呢?因为岛的大小,桥的长短都与问题无关,所以欧拉把A,B两岛以及陆地C,D用点表示,桥用线表示,那么七桥问题就变为右图是否可以一笔画的问题了。

我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点。

如下图中,A,B,C,E,F,G,I是偶点,D,H,J,O是奇点。

欧拉的一笔画原理是:(1)一笔画必须是连通的(图形的各部分之间连接在一起);(2)没有奇点的连通图形是一笔画,画时可以以任一偶点为起点,最后仍回到这点;(3)只有两个奇点的连通图形是一笔画,画时必须以一个奇点为起点,以另一个奇点为终点;(4)奇点个数超过两个的图形不是一笔画。

利用一笔画原理,七桥问题很容易解决。

因为图中A,B,C,D 都是奇点,有四个奇点的图形不是一笔画,所以一个散步者不可能不重复地一次走遍这七座桥。

顺便补充两点:(1)一个图形的奇点数目一定是偶数。

因为图形中的每条线都有两个端点,所以图形中所有端点的总数必然是偶数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1 图2 图3
连通的图形有可能一笔画
图4 图5
总结:
随堂练习5
根据今天学习知识,先判断下列图形能不能 一笔画成?再想一想该从哪里开始画?最后 再动手画画看。
例3
一辆洒水车要给某城市的街道洒水,街道地 图如下:你能否设计一条洒水车洒水的路线 ,使洒水车不重复地走过所有的街道,再回 到出发点?
是单数的,叫单数点(奇点)。
①从这点出发的线的数目是单数的,叫单数点(奇点 )。如:
● ● ●
②从这点出发的线的数目是双数的,叫双数点(偶点 )。如:
● ● ●
不连通的图不能一笔画。
【随堂练习2】观察下列图形,试着画一画。
图1
图2
图3
图4
图5
图6
【随堂练习3】判断下列图形能否一笔画。
不连通的图形不能一笔画
方法二:添线。
【例6】奥运五环能否一笔画成?
【例6】奥运五环能否一笔画成?
七桥问题
哥尼斯堡是德国的一座名城,人杰地灵,这里诞生了大哲学家康 德(1724~1804)和大数学家希尔伯特(1862~1943)。帕瑞格 尔河从城中穿过,河中有两个岛,河上有七座桥连接这两个岛及河的 两岸。 人们提出一个问题:能否经过每座桥恰好一次,既无重复也无遗漏? 很多人都来试验,但没有一个人能够成功。 后来,大数学家欧拉(1707~1783)知道了这个问题,他巧妙地 证明了这件事是不可能的。
一笔画
“一笔画”是指笔不离开纸,而且 每条线都只画一次不准重复而画成 的图形。
“一笔画”是一种有趣的数学游 戏,那么什么样的图形可以一笔 画成呢?试一试,画一画,发挥 你的想象力,发现一笔画的规律。
【例1】你能用一笔画出下列图形吗?
( 4 )个
( 2 )个
( 9 )个

5 )个

交点分为两种 ( 1 )从这点出发的线的数目 是双数的,叫双数点(偶点)。 ( 2 )从这点出发的线的数目
七桥问题
七桥问题



一笔画判断 1.必须是连通图。 2.奇点=0:哪儿进、哪儿出。 3.奇点=2:一个起点,另一个终点。
多笔画化为一笔画 1.窍门:减少奇点的个数。 2.方法:去线、添线(在两个奇点之间)。



世界是美的, 只要有一双发现美的眼睛; 数学是美的, 只要有一颗发现美的心灵。
小广场
超市
文具店
电器城
菜市场
服装城
【例4】下面的图形都不能一笔画成,你能否 在图中添上一条线段,使它能一笔画成。
【例4】下面的图形都不能一笔画成,你能否 在图中添上一条线段,使它能一笔画成。
【例4】下面的图形都不能一笔画成,你能否 在图中添上一条线段,使它能一笔画成。
【例5】请你判断下图能否一笔画?若不能, 你能用什么方法把它改成一笔画? 解:方法一:去线。
相关文档
最新文档