硫酸概述

硫酸概述
硫酸概述

1.1 硫酸的应用

硫酸是一种重要的基本化工原料,是化学工业中最重印染、无机盐要的产品,主要用于制造无机化学肥料,其次作为基础化工原料用于有色金属的冶炼、石油精炼和石油化工、纺织工业、某些无机酸和有机酸、橡胶工业、油漆工业以及国防军工、农药医药、制革、炼焦等工业部门,此外还用于钢铁酸洗。合成纤维、涂料、洗涤剂,制冷剂、饲料添加剂、石油精炼、有色金属冶炼,钢铁、医药和化学工业等,也都离不开硫酸。硫酸的产量常常被用作衡量一个国家工业发展水平的标志。

1.2 硫酸的发展过程

1.2.1 早期的硫酸生产。15世纪后半叶,B.瓦伦丁在其著作中,先后提到将绿矾与砂共热,以及将硫磺与硝石混合物焚燃的两种制取硫酸的方法。约1740年,英国人J.沃德首先使用玻璃器皿从事硫酸生产,器皿的容积达300l。在器皿中间歇地焚燃硫磺和硝石的混合物,产生的二氧化硫和氮氧化物与氧、水反应生成硫酸,此即硝化法制硫酸的先导。

1.2.2硝化法的兴衰。1746年,英国人J.罗巴克在伯明翰建成一座6ft(lft=0.3048m)见方的铅室,这是世界上第一座铅室法生产硫酸的工厂。1805年前后,首次出现在铅室之外设置燃烧炉焚燃硫磺和硝石,使铅室法实现了连续作业。1827年,著名的法国科学家J.-L.盖-吕萨克建议在铅室之后设置吸硝塔,用铅室产品(65%H2SO4)吸收废气中的氮氧化物。1859年,英国人J.格洛弗又在铅室之前增设脱硝塔,成功地从含硝硫酸中充分脱除氮氧化物,并使出塔的产品浓度达76%H2SO4。这两项发明的结合,实现了氮氧化物的循环利用,使铅室法工艺得以基本完善。1911年,奥地利人C.奥普尔在赫鲁绍建立了世界上第一套塔式法装置。六个塔的总容积为600m3,日产14t硫酸(以100%H2SO4计)。1923年,H.彼德森在匈牙利马扎罗瓦尔建成一套由一个脱硝塔、两个成酸塔和四个吸硝塔组成的七塔式装置,在酸液循环流程及塔内气液接触方式等方面有所创新,提高了生产效率。铅室法产品的浓度为65%H2SO4,塔式法则为76%H2SO4。在以硫铁矿和冶炼烟气为原料时,产品中还含有多种杂质。40年代起,染料、化纤、有机合成和石油化工等行业对浓硫酸和发烟硫酸的需要量迅速增加,许多工业部门对浓硫酸产品的纯度也提出了更高的要求,因而使接触法逐渐在硫酸工业中居于主导地

位。

1.2.3 接触法。1831年,英国的P.菲利普斯首先发明以二氧化硫和空气混合,并通过装有铂粉或铂丝的炽热瓷管制取三氧化硫的方法。1870年,茜素合成法的成功导致染料工业的兴起,对发烟硫酸的需要量激增,为接触法的发展提供了动力。1875年,德国人E.雅各布在克罗伊茨纳赫建成第一座生产发烟硫酸的接触法装置。他曾以铅室法产品进行热分解取得二氧化硫、氧和水蒸气的混合物,冷凝除水后的余气通过催化剂层,制成含43%SO3的发烟硫酸。1913年,巴登苯胺纯碱公司发明了添加碱金属盐的钒催化剂,活性较好,不易中毒,且价格较低,在工业应用中显示了优异的成效。从此,性能不断有所改进的钒催化剂相继涌现,并迅速获得广泛应用,终于完全取代了铂及其他催化剂。

1.2.4 近30年的发展第二次世界大战以后,硫酸工业取得了较大的发展,世界硫酸产量不断增长(见表)。

世界及部分国家的硫酸产量(Mt,以100%H2SO4 计)

年份世界美国苏联中国日本法国联邦德国1950 27.81 11.82 2.13 0.07 2.03 1.22 1.45 1960 48.70 16.22 5.39 1.33 4.45 2.05 3.17 1970 92.32 26.78 12.06 2.91 6.93 3.68 4.44 1980 43.01 38.24 23.00 7.64 6.78 4.81 4.74

硫酸工业简史

现代的硫酸生产技术也有显著的进步。50年代初,联邦德国和美国同时开发成功硫铁矿沸腾焙烧技术。联邦德国的法本拜耳公司于1964年率先实现两次转化工艺的应用,又于1971年建成第一座直径4m的沸腾转化器。1972年,法国的于吉纳-库尔曼公司建造的第一座以硫磺为原料的加压法装置投产,操作压力为500kPa,日产550t(100%H2SO4)。1974年,瑞士的汽巴-嘉基公司为处理含0.5%~3.0%SO2的低浓度烟气,开发一种改良的塔式法工艺,并于1979年在联邦德国建成一套每小时处理10km3焙烧硫化钼矿烟气(0.8%~1.5%SO2)的工业装置。

1.2.5 中国硫酸工业的发展1874年,天津机械局淋硝厂建成中国最早的铅室法装置,1876年投产,日产硫酸约2t,用于制造无烟火药。1934年,中国第一座接触法装置在河南巩县兵工厂分厂投产。

1949年以前,中国硫酸最高年产量为 180kt(1942)。1983年硫酸产量达8.7Mt (不包括台湾省),仅次于美国、苏联,居世界第三位。1951年,研制成功并大量生产钒催化剂,此后还陆续开发了几种新品种。1956年,成功地开发了硫铁矿沸腾焙烧技术,并将文氏管洗涤器用于净化作业。1966年,建成了两次转化的工业装置,成为较早应用这项新技术的国家。在热能利用、环境保护、自动控制和装备技术等方面,也取得了丰硕成果。

1.3 接触法制硫酸

接触法硫酸生产工艺的核心是通过SO 2气体与52O V ,催化剂接触,使SO 2转化为SO 3。根据生产原料的不同,硫酸的生产方法有以下几种:硫磺制酸、硫铁矿制酸、冶炼烟气制酸和硫酸盐(磷石膏、硫酸亚铁)制酸等类型。在接触法硫酸工艺生产过程中,有三个基本的化学反应和与之相联系的工序:SO 2气体的制取;SO 2的转化;SO 3的吸收。

1.3.1 SO 2气体的制取

1)生产SO 2:气体的最简单方法是燃烧熔融硫磺

Q SO O S +→+22反应放出的高温位热能用于生产中高压蒸汽。

2)SO 2的第二个来源是焙烧硫化物矿石产生的烟气(硫铁矿制酸或冶炼烟气制酸)

Q SO O F O O S F e e ++→++24322243

23152 或Q SO O F O O S F e e ++→++23222242

15 反应放出的高温位热能同样用于生产中高压蒸汽。

3)磷石膏(石膏)焦炭还原煅烧反应:224222CO SO O C C SO C a a ++→+

4)硫化氢与空气燃烧反应:Q SO O H O S ++→+222212H 。

1.3.2 SO 2的转化

Q 22322+=+SO O SO ,该反应是接触法硫酸生产工艺的核心,它是一个可逆放热反应,在52O V ,催化剂的存在下,高于起燃温度时,反应得以进行。

然而,随着反应的进行,SO 3气体温度升高,平衡向反应式左移,即阻止生成SO 2。为了提高SO 2转化为的总转化率,必需使经过部分反应的气体通过数段催化剂床

层,并且在气体从上一段床层流向下一段时进行中间冷却。

平衡转化率是温度、压力和原始气体混合物组成的隐函数,在原料气组成、压力相同时,随着温度的上升,平衡转化率是下降的;平衡转化率值会随压力的升高而增大;在相同的温度、压力条件下,氧的起始含量b 越大,平衡转化率越高。

1.3.3 SO 3的吸收转化工序

生成的SO 3在填料收塔中被循环的浓硫酸(98.5%)吸收,从气体中除去。反应式 Q SO H O H SO +→+4223

二氧化硫分子和氧分子直接反应的速度很慢,甚至在高温下也难以察觉,这是因为这一气相均相反应的活化能很高的缘故。活化能是两个分子克服碰撞时的量子力学后斥力和破坏旧的化学键所必须的最低能量。反应分子中具有等于或大于这一能量的分子称为活化分子,只有活化分子间的碰撞才有可能发生反应。反应的活化能越低,活化分子在分子总比例中越高,反应速度越快。相反,活化能越高,活化分子越少,则反应速度越慢。

在反应压力和反应物浓度一定的情况下,有两个方法来加快反应速度,一是提高反应温度,增加活化分子数,但随着反应温度的升高,平衡转化率会快速降低;SO 2与O 2即使在800℃的温度下,反应速率仍很低,且此时平衡转化率尚不及20%,完全没有工业意义。二是使用催化剂(或称触媒),使反应物分子先与触媒结合成过渡性的“表面中间化合物”,然后再分解得到生成物和触媒,达到降低反应活化能的目的,加快反应速度。故二氧化硫转化成三氧化硫的反应要实现工业化生产,是在有催化剂存在的条件下进行的。

可以认为,SO 2在固体催化剂(触媒)上转化成SO 3的过程,可以分以下四步进行:

①触媒表面的活性中心吸附氧分子,使氧分子中原子间的键断裂成为活泼的氧原子;

②触媒表面的活性中心吸附SO 2分子;

③被吸附了的SO 2和氧原子之间进行电子的重新排列,化合成为SO 2分子: []触媒触媒?→++32SO O SO

④SO 3分子从触媒表面脱吸下来,进入气相。

以上四步中氧的吸附阶段最慢。

触媒解决了平衡转化率和反应速度对温度要求的矛盾,使SO2转化得以实现工业生产。影响触媒特性的主要因素有:所有活性物质的成分、触媒颗粒中活性物质所占的比例、载体的多孔性以及触媒颗粒的形状和大小,为了获取最佳转化条件,对触媒性能的要求如下:.

①高活性,低起燃温度,在原料气中SO2浓度较高的条件下,能得到较高的转化率,即在原料气中SO2浓度一定的条件下,以最少的触媒用量,获取最大的SO3产量;

②机械强度高;

③具有良好的热稳定性和抗活性衰退的能力;

④要有一定的自由空间率,能容许一定量的矿尘累积而其阻力不上涨太快;

水中除铁工艺

水中铁的存在形式主要有一下几种形式:颗粒状氧化铁、三价铁胶体、二价铁离子。正对不同情况,需要选择不同的除铁方法。目前、水中铁的出去方法重要包括:澄清过滤法、混凝法、化学沉淀法、锰砂过滤法、石灰碱化法。 1、澄清过滤法 水中颗粒状氧化铁可以直接采用澄清过滤的方法除去。 2、混凝法 如果水中铁的形式为三价铁胶体,可以使用混凝剂使胶体失衡,凝结成大颗粒,然后通过澄清过滤工艺除去。 常用的混凝剂有:硫酸铝、聚合氯化铝、氯化铁、硫酸亚铁、碳酸镁、聚合硫酸铁、氯化亚铁等。 3、化学沉淀法 如果水中含有二价铁离子,则需要通过化学氧化的方法将二价铁离子氧化成三价铁。三价铁在水中不稳定,生成难容的Fe(OH)3 。 具体方法如下: 1) 曝气法 通过曝气,使水中充分溶入氧气,经过足够长的反应时间,氧气就可以将二价铁氧化为三价铁。 反应式如下: 2) 其他氧化剂 除了氧气外,还可以使用其他氧化剂来出去水中二价铁离子,比如高锰酸钾和氯气。化学反应式如下: 各种氧化剂用量如下表: 4、锰砂过滤法 如果水中二价铁离子浓度较高,或者对水中铁含量要求比较严格,可以使用锰砂过滤法除去水中的铁。天然锰砂的主要成分是二氧化锰MnO2,它是二价铁氧化

成三价铁的良好催化剂。当水中有足够氧含量、PH大于5.5时,二价铁与锰砂接触就会很快被氧化为三价铁离子。化学反应式如下: 三价铁沉淀物经过锰砂过滤后被除去。因此,锰砂同时起到催化氧化和过滤两方面作用。经过锰砂过滤后,水中铁含量可降低到0.05mg/L。 锰砂催化过滤法需要足够的氧气,所以需要将原水充分曝气。 5、石灰碱化法 当水中SO42-浓度较大时,不能用曝气法除去水中的二价铁,而必须用石灰碱化法。石灰加入水中后,与水中硫酸亚铁发生反应,化学反应式如下: 当水中PH值大于8时,水中F(OH)2被迅速氧化成F(OH)3沉淀,从而除去水中的铁。

液下泵分类及参数

液下泵分类及参数 液下泵系用聚乙烯醇缩丁醛改性酚醛玻璃纤维,经高温模压成型的酚醛制件,联接管、出液管采用半干法卷制工艺制成的酚醛管,以下是玻璃液下泵概述。 一、液下泵产品介绍: 液下泵与介质接触的零部件,系用聚乙烯醇缩丁醛改性酚醛玻璃纤维,经高温模压成型的酚醛制件,联接管、出液管采用半干法卷制工艺制成的酚醛管,叶轮轴套的装配均用酚醛胶泥和泵轴粘成一体,液下各部装配均用酚醛胶泥粘结,伸入液下全无金属与介质接触,耐腐性能绝对可靠,产品具有轻质、高强、不变形、耐温、耐腐蚀等优良性能,在防腐方面可部分替代含钼不锈钢、钛及钛合金等贵重金属。该耐酸液下泵在传动和旋转方向:泵通过爪型弹性联轴器由电动机直接驱动,从电动机端看泵为顺时针方向旋转。 二、液下泵产品分类: WSY型、FSY型两种型式的液下泵:1.WSY型泵为立式液下旋涡泵。2.FSY型泵为立式液下离心泵,该泵因伸入贮罐,贮槽的深度长短不同,设计液下深度800mm--3000mm 之间任意选择。只要液体高于泵体,即可不灌液而起动送液,平盖板下设有泄漏孔,液体不会向贮罐外泄漏。 三、液下泵主要用途: 液下泵广泛用于化工、石化、冶炼、染料、农药、制药、稀土、化肥等行业,在贮罐上输送不含悬浮固体颗粒,不易结晶,温度不高于100℃的各种非氧化性酸(盐酸、稀硫酸、甲酸、醋酸、丁酸)等腐蚀介质的最理想设备。

四、液下泵的完好标准: (1)液下泵零部件齐全完整,质量符合要求。 (2)液下泵压力、流量平稳,各部温度正常。 (3)液下泵基础、机座牢固完整,质量符合要求。 (4)液下泵防腐符合要求。 (5)液下泵管线、阀门、支架安装合理,标志分明,符合技术要求。 (6)设备平衡无杂音,电流不超过额定值。 (7)认真执行五定、三级过滤润滑管理制度。 (8)设备出力能力达到铭牌规定或满足生产需要。

我国硫酸铝发展现状

硫酸铝的生产现状及应用前景 摘要硫酸铝是近几年山东铝业公司开发的一个产品品种,属于化学品氧化铝的范畴,硫酸铝广泛应用于国民经济各个领域,本文通过研究硫酸铝的主要特性以及硫酸铝的主要应用领域,讨论了硫酸铝的主要应用趋势,并提出了铝盐发展的建议。 关键词硫酸铝碱式聚氯化铝氢氧化铝碳分母液碳分分解率浆内施胶剂水处理ASA AKD 前言: 山东铝业公司自2001年开始生产硫酸铝产品,经过氧化铝厂服务公司作了大量的前期准备工作,试生产成功,并在山东省市场具有了一定的占有率。2003年3月正式成立氧化铝厂铝盐车间,使用质量较差的废品氢氧化铝生产硫酸铝,2004年由氧化铝厂出资对生产线进行了扩产改造,新上生产线一条,达到了万吨生产规模,2004年共生产硫酸铝产品1.3万t,全国估计总产量在300万t以上,普通型的产品在全国范围内基本上是处于供大于求的现状,低铁和高氧化铝含量的产品市场形势较好。2005年6月开始利用氧化铝厂正品白色氢铝生产低铁产品,并推向国内市场。 1.硫酸铝的产品性能及用途 1.1分子式: AL2(SO4)3xH2O 分子量342.15(无水) 1.2性能: 硫酸铝为白色结晶体,比重为1.69,在空气中长期存放易吸潮结块。易溶于水,水溶液成酸性,难容于醇。过保和溶液在常温下结晶为无色单斜晶体13水和物(理论是18水合物,经过生产实践及化验分析确定为13水合物),8.8℃下结晶为27水合物。在86.5℃

下到250℃失去结晶水。无水硫酸铝加热到300℃开始分解,860℃时分解为γ-AL2O3、SO3、SO2等。 1.3用途: 主要用作造纸施胶剂和饮用水、工业用水及废水处理的絮凝剂,还用于生产人造宝石和其他铝盐,氨明矾,钾明矾,精制硫酸铝的原料。另外,还广泛用作优质澄清剂,石油除臭脱色剂、混凝土防水剂和防雨布原料,高级纸张锻白,钛白粉后薄膜处理和催化剂载体的生产。 1.4化学方程式: 2AL(OH)3+3H2SO4+nH2O=AL2(SO4)3.xH2O+Q 1.5工艺流程图: 反应釜 粉碎 包装 冷却结晶 熟化 蒸汽 成品入库

浓硫酸液下泵型号及参数

【GBY型浓硫酸液下泵┃浓硫酸泵】产品: 【GBY型浓硫酸液下泵┃浓硫酸泵】产品简介: GBY型浓硫酸液下泵是根据FY液下泵的性能参数,经材料改进设计而生产的新型浓硫酸液下泵,该泵与国内传统浓硫酸泵相比,具有独特的特点,而且价格低廉。它是硫酸生产中干燥塔、吸收塔循环硫酸泵的最佳选择。 【GBY型浓硫酸液下泵┃浓硫酸泵】型号意义: 【GBY型浓硫酸液下泵┃浓硫酸泵】产品特点: 1、结构合理。 2、材料选择专用铸铁、碳钢二种,经济实用,高效节能。

3、采用开式叶轮,供输送含有颗粒的液体,(颗粒直径不超过泵吸入口直径30%为宜),运行稳定、不堵塞。 【GBY 型浓硫酸液下泵┃浓硫酸泵】选材依据: GBY 型浓硫酸液下泵专用钢铁大量应用于80~100%的硫酸,温度可达60-80℃。钢铁在这一浓度和温度范围的硫酸中,表面能产生保护性的硫酸铁膜层。铸铁不适用于超过100%的发烟硫酸,可能是由于三氧化硫与铁中所含的硅反应,使铸铁变脆。碳钢不适用于100~102%的发烟硫酸,超过102%的酸则又适用,温度限定约为60℃。稀硫酸对钢铁的腐蚀很大,当酸浓度为47%左右时,腐蚀率达到最高值。当酸浓度大于65%时,钢铁的腐蚀率显著降低。但是在65~80%这一段浓度中,最好还是不使用钢铁,以用铅或其它耐稀酸材料更为安全。 硫酸浓度:80%~98% 专用铸铁温度:25~50度之内、专用碳钢温度:25~60度之内。 【GBY 型浓硫酸液下泵┃浓硫酸泵】结构图: 【GBY 型浓硫酸液下泵┃浓硫酸泵】性能参数: 型 号 出口直径 mm 流量 扬程 m 转速 r/min 功率(kw) 液下长度(mm) m 3/h L/s 轴功率 电机功率 GBY25-16 25 3.6 1 16 2900 0.713 2.2 500 至 GBY25-16A 25 3.27 0.91 13 2900 0.713 1.5 GBY25-25 25 3.6 1 25 2900 1.16 3 GBY25-25A 25 3.27 0.91 20 2900 1.16 3 GBY25-41 25 3.6 1 41 2900 2.51 5.5

硫酸生产方法

以硫铁矿为原料的接触法硫酸生产工艺 董子玉 1.概述 (1)硫酸的用途和产品规格 硫酸是重要的化工产品,用途十分广泛。工业硫酸是指SQ与H20以一定比例混合而成的化 合物,分为稀硫酸(H2SQ含量65%和75%)浓硫酸(H2SO含量92.5 %和98%和发烟硫酸(游离S03 含量20%)。 (2)硫酸生产的原料 生产硫酸的原料主要有硫磺、硫铁矿、硫酸盐及含硫工业废物。硫磺是理想原料(含硫99.5%),原料纯,流程简单、投资少、成本低。 硫铁矿是世界上大多数国家生产硫酸的主要原料。分有普通硫铁矿、浮选硫铁矿和含 煤硫铁矿。硫酸盐有石膏(CaSQ)芒硝(N82SQ)和明矶石[KA13(QH)6(SQ4)2]等,这些原料生产硫酸,还可生产其它产品。 含硫废物指冶金厂、石油炼制副产气及低品位燃料燃烧废气中的SQ,炼焦的焦炉气和 合成氨厂半水煤气中的HS,及金属加工的酸洗液、炼厂的废酸与废渣。 (3)硫酸生产的方法 接触法制硫酸基本反应 (1)S0 2的制取将硫铁矿焙烧,制取S02 2.二氧化硫炉气的制造

(1) 硫铁矿的预处理 块状硫铁矿和含煤硫铁矿需破碎和筛分。大矿石破碎至35-45m m以下,再细碎,使碎粒小于3-6mm送入料仓或焙烧炉。 (2) 硫铁矿的焙烧 焙烧操作条件 a .温度焙烧温度控制在850—950r0 b .矿粒度 c .氧浓度氧浓度过高,生成的SO2在Fe2O3的催化作用下变为SO3生成的酸雾多,加重净化负荷。 焙烧设备焙烧是在焙烧炉中进行。焙烧炉有块矿炉、机械炉、沸腾炉等几种型式,我国广泛使用沸腾炉。 (3) 炉气净化 ①净化的目的和指标 工艺流程不同,净化指标有所差别,我国规定的标准(mg?m-3)如下: 水分V 100;尘V 2;砷V 5;氟V 10;酸雾:一级降雾v 35, 二级电降雾v 5。 ②净化原理及设备 根据炉气中杂质的种类和特点,可用U形管除尘、旋风降尘、水洗(或酸洗)、电除尘、

我国硫酸铝生产技术及发展趋势

我国硫酸铝生产技术及发展趋势 摘要:综述了硫酸铝生产技术、除铁技术及节能技术,指出开发新技术、新工艺、新材料,并使其工业化,是硫酸铝行业今后的研究和发展方向。 关键词:硫酸铝生产技术除铁节能 硫酸铝是无机盐基本品种之一,主要用于造纸和净水工业,就其生产规模而言,在我国仅次于芒硝、硅酸钠居于第三位。鉴于硫酸铝生产工艺成熟定型,有关该方面的报道近年来不多,在此仅将硫酸铝的生产方法及最新进展作以简要论述。 一、硫酸铝生产技术 目前工业硫酸铝产品按性状一般分为液体硫酸铝和固体硫酸铝,生产工艺也按此分类。 1.液体硫酸铝的生产工艺简介 液体硫酸铝的生产工艺主要有两种:氢氧化铝法和铝土矿酸浸取法。 氢氧化铝法[1]:氢氧化铝和硫酸在加热条件下反应即得到液体硫酸铝。该方法生产过程简单,不需要高温高压等苛刻条件和沉降、除铁等过程,相对能耗较低,而且生产的液体硫酸铝品质纯净,性能优良。缺点是成本高,价格贵。 铝土矿酸浸取法[2]:铝土矿生产液体硫酸铝的过程相对较复杂,首先需要将铝土矿粉碎到合适的粒度,在压力反应釜中和工业硫酸在加压、加热的条件下,经过几个小时的酸解,使铝土矿中的铝转移到酸解液中,生成硫酸铝溶液,进而生产出硫酸铝产品。铝土矿法生产的硫酸铝产品杂质含量较高,但是原料易得,虽然增加了许多工序,成本仍然较低,因此较便宜。 2..固体硫酸铝的生产工艺简介 2.1 铝矾土硫酸常压浸取Dorr法(常压反应法)[3] 常压浸取Dorr法硫酸铝生产流程为将铝土矿磨细至80%过200目,送入料仓,将98%的硫酸打入高位槽,二者以化学计量首先连续进入1号反应器。1号反应器,2号反应器,3号反应器串连,内衬铅并用蒸汽加热。在近沸点温度下反应,并以此进入2号反应器,3号反应器,使反应趋于完全。由反应器中出来的混合物送入几个串联逆流操作的增稠器中,除去不溶残渣,同时得到充分洗涤,澄清后的硫酸铝液进出蒸发器进行浓缩,然后冷却结晶。 2.2铝土矿硫酸加压反应法[1]

国内十大泵行业十大液下泵公司液下泵品牌总榜

1.上海阳光泵业制造有限公司 上海阳光泵业是集设计/生产/销售泵、给水设备及泵用控制设备于一体的大型综合性泵业集团,是中国泵行业的龙头企业。总资产达38亿元,在上海、浙江、河北、辽宁、安徽等省 市拥有7家企业,5个工业园区,占地面积67万平方米,建筑面积35万平方米。上海阳光获 得了“上海市质量金奖”、“上海市科技百强企业”、“上海市名牌产品”、“中国质量信用AAA级”、“全国合同信用等级AAA级”、“质量、信誉、服务三优企业”、“中国最具竞争 力的商品商标”、“五星级服务认证”等荣誉,连续多年入选全国机械500强。高端人才和 高素质的员工队伍是阳光发展的动力。集团现有员工4500余人,其中工程技术人员500多名,主要由国内知名水泵专家教授、博士硕士、中高级工程师、高级工艺师组成,形成了具有创新思维的梯队型人才结构。科技创新,是阳光基业长青的生命之源。集团是上海市高新技术企业、上海市知识产权示范企业和上海市专利示范企业。上海市级的“企业技术中心”,每年以销售总额的5%,用于技术创新和新产品研发。 2.河北远东泵业制造有限公司 河北远东泵业制造有限公司坐落于铸造名乡—河北省泊头市。公司占地面积38650平方米,建筑面积20300平方米,是国内著名的集设计、铸造、生产、于一体的容积泵专业制造厂家。公司始建于1984年有二十几年专业研制经验。目前产品设计采用国际先进水平实体设计软件;产品研发、制造、检验、交付按照ISO9001质量管理体系控制过程质量;产品制造广泛使用加 工中心、数控机床、专用精机、高精设备;检测设备拥有万能工具显微镜、渐开线检测仪、光 学投影仪、万能测齿仪、脉冲辉光离子氮化炉等大型检测设备,并建有试验站。本厂以高的产品水平、优质的售后服务、恪守信用而在市场上倍受欢迎,产品畅销不衰,赢得了用户的普遍赞誉。公司已通过ISO9001:2000国际质量体系认证,中国船级社CCS型式认证,法国船级社BV产品工厂认证,美国船级社ABS产品质量认证,成为中石油物资资源市场成员、中石化物 资资源市场成员。河北省知名产品生产企业,船用泵产品承制企业。 3.江苏盘古泵业有限公司 江苏盘古泵业有限公司是一家专业致力于无泄漏磁传动泵,氟塑料、工程塑料、不锈钢耐腐蚀泵阀及防腐设备开发设计、生产和销售的现代化大型制造企业,总部位于中国东部地区重要的中心城市、全国重要的科研教育基地和综合交通枢纽---南京市;生产基地坐落于震惊中外的“皖南事变”发生地、历史悠久的江南名镇—安徽泾县茂林镇,占地面积5万平方米,其中建筑面积达上3万平方米,年产值数亿元。

硫酸铝锆板反应釜

硫酸铝制备技术 一、硫酸铝制备方法: 目前,国内制备硫酸铝两种方法:铝土矿法+硫酸、氢氧化铝+硫酸 第一种:有铁硫酸铝制备方法:用硫酸直接处理铝土矿(或粘土)的方法而制得硫酸铝,其化学反应式为: H2Al(SiO4)2·H2O+3H2SO4=Al2(SO4)3+2H4SiO4+H2O 特点:原材料铝土矿便宜,但铁含量高,且不易脱除,目前,山东等铝土矿资源丰富的地方大量生产。 第二种:无铁硫酸铝制备方法:氢氧化铝+硫酸制备 2Al(OH)3+3H2SO4 = Al2(SO4)3 + 6H2O + Q 氢氧化铝粉出厂已脱铁,铁含量低,故硫酸铝铁含量低。 生产的硫酸铝有固体硫酸铝和液体硫酸铝。固体硫酸铝的Al2O3含量15.8~17%,而氢氧化铝粉中Al2O3含量64~65%,运1吨氢氧化铝粉相当运4吨固体硫酸铝。而本地浓硫酸价格相对便宜,所以,用氢氧化铝粉和浓硫酸反应生产成本低。 二、硫酸铝的反应形式 - 1 -

硫酸铝反应形式有两种:一种常压反应(老基地),一种带压反应(新基地) 常压反应所用设备一般用玻璃钢反应釜,通蒸汽一般有两种:一种通过故泡器通蒸汽(催化剂长岭分公司),故泡器起到搅拌的作用;另一种直接通蒸汽,用工业风搅拌(齐鲁)。 带压反应所有设备一般有三种:搪瓷反应釜、搪铅通过胶泥贴耐酸瓷砖、锆反应釜(国内第一家,存在风险)。 带压反应的理论基础 热量衡算: (1)、2Al(OH)3+3H2SO4 = Al2(SO4)3 + 6H2O + Q 2 3 1 6 Q -1284kj/mol -194.5Kcal/mol -3435Kj/mol -285.83Kj/mol Q=△RH=-285.83*6-3435+1284*2+3*194.5*4.18=-142.95kj/mol 故此反应为放热反应 整年反应的热量为Q反: Q反=-142.95*25000*50*3.353*1000/342=-1751869000Kj/年 (2)对产物Al2(SO4)3 (1年的产量)从0℃升至140℃所需要的热量Q Al2(SO4) 3 Q Al2(SO4)3=CM△T 其中C=0.35Kcal/Kg.℃ Q Al2(SO4)3=CM△T =0.35*4.2*25000*50*3.353*(140-0)=862559250kj/年 对水的吸热(从0℃升至140℃)所需要的热量Qk 100℃蒸汽r1=539Kcal/kg,H1=639.1Kcal/kg - 2 -

硫酸稀释工序操作规程完整

硫酸稀释工序操作规程 1、岗位任务: 1.1将98%的浓硫酸稀释为30%左右合格的稀硫酸,将合格的稀硫酸、液碱、氨水用泵送至反应和老化工序。 1.2严格操作,及时启动应急系统,防止环境污染。 2、理化性质及稀释计算 2.1浓硫酸是一种无色无味油状液体。常用的浓硫酸中H2SO4的质量分数为98.3%,其密度为1.84g·cm-3,是一种高沸点难挥发的强酸,易溶于水,能以任意比与水混溶。浓硫酸溶解时放出大量的热,且容易产生酸雾。 2.2稀释计算 V2=V1*C1*ρ1*(1/C2-1) 式中V1——浓硫酸体积 C1——浓硫酸浓度 ρ1——浓硫酸密度 V2——需加水的体积 C2——稀硫酸浓度 3、工艺流程简述 3.1浓硫酸稀释 浓硫酸通过液下泵从浓硫酸罐中抽出,用操作室浓硫酸流量计前球阀控制浓硫酸流量在要求值。

水净化来粗滤水通过粗滤水流量计前球阀控制粗滤水在要求流量后进入酸雾吸收器喷淋器,粗滤水吸收酸雾后变成稀酸水,从吸收器底部通过倒U管自然流入浓硫酸稀释冷却器。 稀酸水和浓硫酸在稀释冷却器上部混合,稀释后热稀硫酸进入石墨换热器管程进行冷却,稀释时产生的酸雾进入酸雾吸收器通过鼓泡和喷淋吸收将酸洗涤下来。 冷却至指标的稀硫酸进入稀硫酸罐,及时分析稀硫酸浓度并调整浓硫酸或粗滤水流量,确保稀硫酸浓度在工艺指标围,如罐浓度不合格,可采用在罐加计算后需要量的浓硫酸或粗滤水,并用稀硫酸泵循环30分钟,直至分析合格。合格后的稀硫酸根据调度指令送到反应、老化工序。 3.2烧碱和氨水的输送 根据调度指令及时将烧碱或氨水用泵送到反应、老化工序,并告之其浓度。 工艺流程图见附图 4、工序设备一览表(见表一)

硫酸生产工艺流程知识分享

硫酸生产工艺流程简述 本项目采用以硫铁矿为原料的接触法硫酸生产工艺。它的主要工序包括硫铁矿的焙烧、炉气的净化、气体的干燥、二氧化硫的转化和三氧化硫的吸收。基本工艺流程图如下: 1-沸腾焙烧炉;2-空气鼓风机;3-废热锅炉;4-旋风除尘器;5-文氏管;6-泡沫塔;7-电除雾器;8-干燥塔;9-循环槽及酸泵;10-酸冷却器;11-二氧化硫鼓风机;12,13,15,16-气体换热器;14-转化器;17-中间吸收塔;18-最终吸收塔;19-循环槽及酸泵;20-酸冷却器 经过破碎和筛分的硫铁矿或经过干燥的硫铁矿,送入沸腾焙烧炉l下部的沸腾床内,与经空气鼓风机2从炉底送人的空气进行焙烧反应。生成的二氧化硫炉气从沸腾炉顶部排出,进入废热锅炉3。矿渣则从沸腾床经炉下部的排渣口排除。

炉气在废热锅炉内冷却到约3500C,用以生产3.82Mpa、450摄氏度的过热蒸汽。主要的蒸汽蒸发管束设在废热锅炉内。装设在焙烧炉沸腾床内的冷却管也作为废热锅炉热力系统的一部分,与锅炉的汽包连接,用以回收部分焙烧反应热。 从废热锅炉出来的炉气,还含有相当数量的矿尘,经旋风除尘器4初步除尘后,进入净化系统。废热锅炉、旋风除尘器除下的矿尘,与沸腾焙烧炉排出的矿渣一起送往堆渣场,等待进一步处理或出售。净化系统包括文氏管5、泡沫塔6和电除雾器7。文氏管对炉气进行除尘和降温,炉气经文氏管后,其中绝大部分矿尘被除去。泡沫塔对炉气进一步除尘、降温。在文氏管和泡沫塔中,炉气中所含的微量三氧化硫,从硫酸蒸汽形态转变成酸雾;砷、硒和其他一些金属的氧化物则成为固态粒子,从气相中分离出来;它们一部分与炉气中残存的微量矿尘一起被洗涤除去,另一部分随气体进入电除雾器,在高压静电作用下被清除干净。 通常,控制出净化系统的炉气温度在400C以下,以保证干燥-吸收系统的水平衡。 净化系统中排出的高含尘的稀酸送入污水处理系统,经CN 过滤器处理后抽回系统循环使用。 经过净化的气体,在干燥塔8中被循环淋洒的浓硫酸干燥。干燥酸的浓度一般维持在93%左右。由于在气体被浓硫酸干燥的过程中放出大量热量,所以在干燥塔硫酸循环系统中设有酸冷却器10,用冷却水把热量移走,为了减少气体夹带硫酸雾沫对

功能有机物络合分离硫酸铝中铁的研究

功能有机物络合分离硫酸铝中铁的研究 【摘要】:初级硫酸铝产品可用于造纸、净水等一般生产过程,而精制硫酸铝广泛用于纺织、食品、催化剂载体生产等高端领域。其中,铁含量是影响硫酸铝产品应用的一项关键质量指标。近来,硫酸分解低品位铝土矿、煤矸石生产硫酸铝工艺是一种简便、经济的方法,但由于此类铝土矿、煤矸石中含铁较多,这使得硫酸铝产品中铁含量高,不能满足催化、高端纺织、造纸等领域对硫酸铝的技术要求。课题组前期研究也表明,以硫酸铝为载体原料制备镍活性组分的加氢催化剂,可应用于生产1,4-丁二醇及顺酐加氢反应中,但低浓度铁的存在直接影响着含镍硫酸铝原料的使用,影响到催化剂的催化性能,因此,探讨含镍硫酸铝中铁去除技术具有重要的理论和实践意义。文献报道硫酸铝中铁去除的方法主要有:重结晶法、萃取法、无机沉淀法、有机络合沉淀法、有机络合吸附法等方法。其中,有机络合沉淀法由于有机络合剂对铁离子选择性强、用量少、生成沉淀颗粒大、易于分离、工艺简单,在铁的去除实践中被认为是一种具有发展潜力的除铁技术;有机络合吸附法是通过嫁接或共聚方法将有机基团引入到二氧化硅等材料中,获得有机基团修饰的功能化材料,在水污染治理、催化和生物化学等领域具有广泛的应用前景。论文选择功能有机络合试剂,采用沉淀法和吸附法两种工艺研究硫酸铝中铁的分离,通过详尽考察功能有机络合物用量、溶液酸度、吸附时间、温度等条件对铁去除的影响,建立吸附动力学、热力学模型,获得功能有机物对硫酸铝中铁的吸附、

络合、分离规律。具体研究成果如下:1、有机络合沉淀法除去硫酸铝中铁以二乙基二硫代氨基甲酸钠(DDTC).N-亚硝基-苯胲铵(CP)、N-苯甲酰-N-苯基羟胺(BPHA)三种功能有机物为铁的络合沉淀剂,详细考察了功能有机试剂的用量、反应时间、反应温度、溶液酸度等因素对铁去除效果的影响。结果表明:1)在DDTC络合剂添加使用量0.88%,pH为2.5-3.0,室温反应5min条件下,铁去除率可达94%,铝损失率为约为13%-15%,铁残留量低于50mg/L;2)在CP络合剂添加量1.4%、pH为0.3,60℃反应1h条件下,铁去除率超过95%,铝损失率约10%,铁残留量低于50mg/L;3)在溶液酸度1.0mol/L,BPHA使用量1.4%、60℃反应1h条件下,铁去除率大于96.1%,铝损失率小于5%,铁残留量低于50mg/L;2、氨基改性蜂窝吸附剂除去硫酸铝中铁采用后嫁接方法,将氨基功能基团成功锚定到商品化蜂窝材料表面,获得氨基改性蜂窝吸附剂(HN),并应用到硫酸铝中铁的分离。结果表明,用不同HN吸附剂进行吸附动力学研究,吸附动力学符合拟二级吸附速率方程,吸附等温线符合Sips模型,在30℃时最大吸附量为0.6196mg/g;随着Fe(Ⅲ)初始浓度增加14倍,去除率和分配系数分别下降2倍、9.6倍。3、氨基改性蜂窝吸附剂除去含镍硫酸铝中铁吸附动力学符合拟二级吸附速率方程,吸附等温线符合Sips模型,在30℃时最大吸附量为0.784mg/g。随着HN上氨基含量的增加,对铁离子的吸附能力增强,达到吸附平衡时,溶液中铁离子浓度趋于稳定;随着溶液pH的降低,HN 材料对溶液中铁离子的吸附能力降低;在30℃、pH2吸附条件下,随着Fe(Ⅲ)初始浓度增加9.6倍,去除率和分配系数分别下降3.7倍、26

年产10万吨无铁硫酸铝生产线项目可行性研究报告完整立项报告

年产10万吨无铁硫酸铝生产线项目可行性研究报告完整立项报告 中咨国联出品

目录 第一章总论 (9) 1.1项目概要 (9) 1.1.1项目名称 (9) 1.1.2项目建设单位 (9) 1.1.3项目建设性质 (9) 1.1.4项目建设地点 (9) 1.1.5项目负责人 (9) 1.1.6项目投资规模 (10) 1.1.7项目建设规模 (10) 1.1.8项目资金来源 (12) 1.1.9项目建设期限 (12) 1.2项目建设单位介绍 (12) 1.3编制依据 (12) 1.4编制原则 (13) 1.5研究范围 (14) 1.6主要经济技术指标 (14) 1.7综合评价 (16) 第二章项目背景及必要性可行性分析 (18) 2.1项目提出背景 (18) 2.2本次建设项目发起缘由 (20) 2.3项目建设必要性分析 (20) 2.3.1促进我国年产10万吨无铁硫酸铝生产线产业快速发展的需要 (21) 2.3.2加快当地高新技术产业发展的重要举措 (21) 2.3.3满足我国的工业发展需求的需要 (22) 2.3.4符合现行产业政策及清洁生产要求 (22) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (22) 2.3.6增加就业带动相关产业链发展的需要 (23) 2.3.7促进项目建设地经济发展进程的的需要 (23) 2.4项目可行性分析 (24) 2.4.1政策可行性 (24) 2.4.2市场可行性 (24) 2.4.3技术可行性 (24) 2.4.4管理可行性 (25) 2.4.5财务可行性 (25) 2.5年产10万吨无铁硫酸铝生产线项目发展概况 (25) 2.5.1已进行的调查研究项目及其成果 (26) 2.5.2试验试制工作情况 (26) 2.5.3厂址初勘和初步测量工作情况 (26)

粗苯加工工艺流程图

第一节粗苯精制苯基本原理 精苯车间加工的原料是外购粗苯和轻苯。其主要组分是苯及同系物、苯、甲苯、二甲苯等占80%—95%,此外还有脂肪烃、环烷烃、不饱合化合物以及少量硫化物、吡啶碱类、酸类如洗油的低沸点馏份。 粗苯的各种主要组份皆在180℃前馏出。 由于粗苯、轻苯是一种比较复杂的混合物,故其本身用途不大、但经加工以后所得的多和纯产品的却是重要的化工原料,具有很高的经济价值。粗苯精制的目的在于获得尽可能多的苯族纯产品,同时对其它组份尽可能加以综合得用。 (一)硫酸洗涤净化法基本原理 粗苯中含有5—12%的不饱合化合物及其它杂质,并主要分布在14℃以后和79℃以前馏出物中。 粗苯经两苯塔是除去140℃以后重苯中的不饱合化合物,以获得轻苯和重苯两种产品。 轻苯初馏的目的是切除79℃以前不饱合化合物及二硫化碳。所得混合馏份还含有与苯族产品沸点相接近不饱合化合物及硫化物杂质,可以采用化学方法加以净化。 1、经常使用的是硫酸洗涤净化法,其主要化学方法如下: (1)不饱合化合物的聚合反应 不饱合化合物在硫酸作用下很容易发生聚合反应,低沸点化合物易生成粘度大,不溶于混合份及硫酸的极深度的聚合物。引起化合物的夹带损失。所以必须先经过初馏除去低沸点不饱合化合物。高沸点不饱合化合物聚合程度较差,一般只生成可溶混合份的二聚物,三聚物。 (2)加成反应 硫酸各不饱合化合物还能生成酸式脂和中式脂,前者溶于硫酸中,后者溶于混合份中。低沸点不饱合化合物与硫酸生成中性脂,在吹苯中,中性脂加热分解,放出腐蚀设备的酸性物质,故初馏时尽可能地把低沸点物质清除。 (3)清除噻吩反应 噻吩在浓硫酸的催化作用下能和高沸点不饱合化合物共聚生成溶于混合物的共聚物,反应迅速完全,噻吩还能直接溶于硫酸中,但溶解速度很慢。 (4)苯族烃和不和化合物共聚反应 苯族烃在浓酸的催化作用下和不饱合化合物发生共聚反应生成能溶解于混合物的共聚物。(5)苯族烃的磺化反应 苯族烃与浓硫酸作用能发生磺化反应而造成苯族烃的损失。 2、影响硫酸洗涤的方要因素 (1)反应温度 最适宜的反应温度为35—45℃,温度过低反应缓慢而达不到净化要求,温度过高苯族烃磺化反应以及不饱合化合物的共聚反应加剧,因而使苯族烃损失增加。 (2)硫酸浓度 硫酸浓度过低达不到净化要求,浓度过高磺化反应加剧,苯族烃损失增加,因此先择较适宜的硫酸浓度为93—95%。 (3)硫酸和混合份的比例 在保证洗涤质量要求的前提下,酸油比例愈小愈好。不仅降低酸耗,而且可以减轻苯族烃的磺化反应。 (4)反应时间 酸洗净化反应所需时间与反应温度、硫酸浓度、酸油化、搅拌合程度等因素有关。一般反应时间为十分左右,时间过短,反应效果差,势必增加酸耗,时间过长,磺化反应加剧,苯族烃损失增加,所以反应器必须立即加水,使浓硫酸反应终止。

发烟硫酸生产工艺及市场分析样本

发烟硫酸生产工艺及市场分析1 产品概述 发烟硫酸, 即三氧化硫的硫酸溶液, 化学式: H 2SO 4 ·xSO 3 。无色至浅棕色粘 稠发烟液体, 其密度、熔点、沸点因SO 3 含量不同而异。当它暴露于空气中时, 挥发出来的SO 3 和空气中的水蒸汽形成硫酸的细小露滴而冒烟, 因此称之为发烟硫酸。 发烟硫酸中的物质成分复杂, 除了硫酸和三氧化硫外, 还有焦硫酸 ( H 2S 2 O 7 ) 、二聚硫酸( H 4 S 2 O 8 ) 、三聚硫酸( H 6 S 3 O 12 ) 及H 4 S 3 O 15 、 H 2 S 3 O 10 、 ( H 2SO 4 ) 4~20 等各种各样的硫酸聚合物。 1.1 物化性质( 从《化工百科全书》硫酸中摘录) 第一部分: 化学品名称 化学品中文名称: 发烟硫酸 化学品英文名称: sulphuric acid fuming; Oleum 技术说明书编码: 934 CAS No.: 8014-95-7 [RTECS号] : WS5605000 [UN编号] : 1831 [危险货物编号] : 81006 [IMDG规则页码] : 8231 第二部分: 成分/组成信息 有害物成分: 发烟硫酸CAS No. 8014-95-7 第三部分: 危险性概述 危险性类别: 第8类腐蚀品第1项酸性腐蚀品( 《常见危险化学品的分类及标志》(GB13690-92)) 侵入途径: 经呼吸道吸入, 经食道食入, 或身体接触。 健康危害: 对皮肤、粘膜等组织有强烈的刺激和腐蚀作用。蒸气或雾可引起结膜炎、结膜水肿、角膜混浊, 以致失明; 引起呼吸道刺激症状, 重者发生

长轴液下泵的参数介绍 通大

液下泵生产工艺配方技术-长轴液下泵 长轴液下泵性能参数 液下泵参数;长轴液下泵参数;YW液下排污泵技术参数 液下泵概述 YW型长轴液下无堵塞排污泵为立式液下式结构,工作时泵体浸在水中,液下深度可达0.5~5m,并采用独特的单叶片或双叶片叶轮结构,能有效通过泵口径5倍的纤维物质及直径为口径50%的固体颗粒。产品执行JB/T6525-92《离心式污水泵的技术条件》标准。 液下泵目录: 1-BG42463 立式外置液下泵 2-BG42463 悬臂液下泵 3-BG42463 管式耐腐蚀液下泵 4-BG42463 耐腐蚀液下泵 5-BG42463 一种多功能液下泵 6-BG42463 悬臂液下泵分体联接轴 7-BG42463 自吸式液下泵 8-BG42463 氟塑料合金液下泵 9-BG42463 立式外置型液下泵 10-BG42463 液下泵 11-BG42463 软轴液下泵 12-BG42463 带浮体的双吸液下泵 13-BG42463 耐腐蚀塑料液下泵 14-BG42463 液下泵 15-BG42463 全塑液下泵 16-BG42463 机械密封液下泵 17-BG42463 无飞溅酸碱液下泵 18-BG42463 液下泵 19-BG42463 无轴封轴向力平衡液下泵 20-BG42463 一种改进的液下泵 21-BG42463 一种轴流式液下泵 22-BG42463 耐腐蚀液下泵 23-BG42463 悬臂液下泵密封轴套 24-BG42463 耐腐蚀双蜗壳悬臂液下泵 25-BG42463 外装式悬臂液下泵回流装置 26-BG42463 分段式液下泵传动管 27-BG42463 磁力液下泵 28-BG42463 耐腐液下泵 29-BG42463 高温浓硫酸液下泵 30-BG42463 柔性轴多级离心液氯液下泵 31-BG42463 钛液下泵 32-BG42463 复合型耐腐蚀液下泵 33-BG42463 一种改进的液下泵 34-BG42463 高温浓硫酸液下泵耐磨轴套 35-BG42463 高温浓硫酸液下泵耐磨衬套

年产5万吨硫酸生产工艺

年产5万吨硫酸生产工艺 )

目录 第一章 (1) 概述 (1) 硫酸的性质 (1) 第二章 (1) 硫酸的生产方法 (1) 接触法制造硫酸 (2) 接触法生产硫酸由下列四个工序组成 (2) 接触法的优缺点 (3) 硝化法制造硫酸 (3) 硝化法制造硫酸可归纳为三个重要过程 (4) 硝化法的优缺点 (4) 第三章硫酸生产全工段工艺简介 (4) SO2气体的制取 (4) 炉气的净化 (5) SO2气体的转化 (5) 一次转化一次吸收 (5) 二次转化二次吸收 (6) 沸腾转化 (6) SO3气体的吸收 (7) 尾气的处理 (7) 氨法 (7) 碱法 (7) 金属氧化物法 (8) 活性炭法 (8) 控制SO2排放的其他方法 (8) 第四章 (9) 两次吸收法生产硫酸的流程图 (9) 流程说明 (9)

干燥系统流程说明 (9) 一吸系统流程说明 (9) 二吸系统流程说明 (10)

第一章 概述 硫酸是一种普通的化工产品,也是一种古老的化学品,据了解,早在17世纪就有化学家利用“铅室法”将燃烧硫磺所得的二氧化硫和进行反应而生产出约70%左右的稀硫酸,到18世纪又有化学家利用铂催化剂(今用钒催化剂)与较高浓度的二氧化硫空气中的氧气反应而生产出浓度达98%的硫酸。由于硫酸在工业上有广泛的用途,因此它被号称为“工业之母”,硫酸的产量也常用来作为评定一个国家工业经济发展水平的重要指标。 硫酸的性质 硫酸是(SO 3)和水(H 2O )化合而成。化学上一般把一个分子的三氧化硫与一个分子的水相结合的物质称为无水硫酸。无水硫酸就是指的100%的硫酸(又称纯硫酸)。纯硫酸的化学式用“H 2SO 4”来表示,分子量为。 硫酸是基础化学工业中重要的产品之一。硫酸的性质决定了它用途的广泛性,硫酸主要用于生产化学肥料、合成纤维、涂料、洗涤剂、致冷剂、饲料添加剂和石油的精炼、有色金属的冶炼,以及钢铁、医药和化学工业。 第二章 硫酸的生产方法 生产硫酸最古老的方法是用绿矾(FeSO 4·7H 2O )为原料,放在蒸馏釜中锻烧而制得硫酸。在煅烧过程中,绿矾发生分解,放出二氧化硫和三氧化硫,其中三 氧化硫与水蒸气同时冷凝,便可得到硫酸。 2(FeSO 4·7H 2O ) 煅烧???→Fe 2O 3+SO 2+SO 3+14H 2O

锐钛矿酸浸液铝铁分离及高纯氧化铝制备试验研究

锐钛矿酸浸液铝铁分离及高纯氧化铝制备试验研究贵州晴隆锐钛矿为大型含钪锐钛矿,含TiO2 5.30%、 Sc2O3 84.70g/t,矿石主要由锐钛矿、褐铁矿、高岭石、绢云母、石英等组成,由于原矿的嵌布粒度细微,多小于10μm,且多种矿物之间呈相互浸染状,常规的选矿工艺难以突破,为实现该大型含钪锐钛矿中钛、钪的回收,进行化学处理,浸出试验研究获得Al2O334.40g/L、TFe 25.30g/L、TiO2 7.69 g/L、Sc2O3 12.74mg/L、H2SO4 231.64g/L的浸出液,钪、钛、铁、铝的浸出率分别达到99.98%、96.06%、99.23%、99.36%,为钪、钛的提取奠定了基础。由于浸出液中铝、铁的浓度较高,温度较低时,铝、铁容易“凝聚”,给钪、钛的提取及后续的处理带来了困难。 论文以该锐钛矿浸出液为研究对象,进行铝铁分离及高纯氧化铝的制备研究,为浸出液中钪、钛的提取创造条件,并对铝的综合回收利用提供重要的技术支撑。硫酸铝铵结晶法分离铝铁的试验研究结果表明:在初始铝浓度为35g/L、 NH4+/Al3+摩尔比为1.2、结晶终点温度为25℃、结晶时间为30min、搅拌速度为300r/min的条件下锐钛矿硫酸浸出液中铝的结晶率为83.07%,铁的夹杂率为13.84%;硫酸铝铵粗产品中含铝(以 Al2O3计)为10.80%,含铁(以TFe计)为1.323%。 采用硫酸铝铵结晶法能高效分离锐钛矿酸浸液中的铝铁。硫酸铝铵提纯试验研究结果表明:采用重结晶法对硫酸铝铵粗产品进行初步除铁,在液固比为 1.3ml/g、结晶终点温度为25℃、结晶时间为30min、搅拌速度为400r/min的条件下除铁率达到95.06%,铝的结晶率为83.35%,经过一次重结晶硫酸铝铵中铁的

浓硫酸液下泵型号参数及用途

浓硫酸液下泵型号参数及用途 一、浓硫酸液下泵产品概述: 浓硫酸液下泵是根据FY液下泵的性能参数,经材料改进设计而生产的新型浓硫酸液下泵,该泵与国内传统浓硫酸泵相比,具有独特的特点,而且价格低廉。它是硫酸生产中干燥塔、吸收塔循环硫酸泵的最佳选择。 二、浓硫酸液下泵主要特点: 1、结构合理。 2、材料选择专用铸铁、碳钢二种,经济实用,高效节能。 3、采用开式叶轮,供输送含有颗粒的液体,(颗粒直径不超过泵吸入口直径30%为宜),运行稳定、不堵塞。 三、浓硫酸液下泵选材依据: 专用钢铁大量应用于80~100%的硫酸,温度可达60-80℃。钢铁在这一浓度和温度范围的硫酸中,表面能产生保护性的硫酸铁膜层。铸铁不适用于超过100%的发烟硫酸,可能是由于三氧化硫与铁中所含的硅反应,使铸铁变脆。碳钢不适用于100~102%的发烟硫酸,超过102%的酸则又适用,温度限定约为60℃。 稀硫酸对钢铁的腐蚀很大,当酸浓度为47%左右时,腐蚀率达到最高值。当酸浓度大于65%时,钢铁的腐蚀率显著降低。但是在65~80%这一段浓度中,最好还是不使用钢铁,以用铅或其它耐稀酸材料更为安全。 硫酸浓度:80%~98%专用铸铁温度:25~50度之内、专用碳钢温度:25~60度之内。

四、浓硫酸液下泵型号定义: 五、浓硫酸液下泵使用注意事项: 拆卸与装配 1、如更换或检查叶轮,可关闭出阀门,卸去法兰连接螺栓和底板连接螺栓,用起重工具将泵吊出容器。

2、将底板垂直在固定的支架上,卸去泵体的所有螺栓,取出泵盖和叶轮螺母,用双锤轻击泵体,即可卸下叶轮。 3、更换流动轴承则底板不动,只要卸去电机及相应支架,卸去泵联轴器、压盖、圆螺母,取也轴套体。 4、装配与拆卸的次序相反,注意轴上配件的同心度。 安装、使用、维修 1、泵组装后,盘动联轴器,看是否转动灵活。检查是否有金属摩擦声,各部件螺母是否旋紧。 2、检查泵轴和电机轴的同心度,上下联轴器外圆左右差数不得超过0.1mm,联轴器端面间隙保持1~2.5mm。 3、无密封自吸泵的吸入口到容器底部之间距离为吸入口径的2~3倍。泵体与器壁距离应大于口径的2.5倍。 4、泵的出液管路,应另设支架支撑,其重量不允许支撑在泵上。 5、检查电机的旋转方向,使泵的旋转方向符合指示方向。 6、关闭出口管路上的闸阀,接通冷却水管。 7、超动电机,慢慢开启出口管闸阀到需要的位置,投入正常运转。 8、经常检查泵与电机的情况,轴承温升不应超过75℃,轴承盒内应加足够黄油。

硫酸生产工艺

二、二氧化硫催化氧化制硫酸 1. 生产方法和工艺过程 在硫酸生产历史上,出现过三种生产方法,即塔式法、铅室法和接触法。 (1)塔式法和铅式法是古老的生产方法。在中间装填瓷圈的塔型结构的设备或中空的铅室中进行,所用催化剂是二氧化氮,氧化过程可用下列反应式表示: SO2+NO2+H2O=H2SO4+NO SO2+N2O3+H2O=H2SO4+2NO 2NO+O2=2NO2 NO2+NO=N2O3

由此制得的硫酸浓度只有65%~75%,仅用作生产肥料(如过磷酸钙等),工业应用因浓度不高而受到限制。而且含硝化物硫酸对设备的腐蚀相当严重。 (2)接触法在20世纪50年代后建厂,现在基本上取代了塔式法和铅室法。该法是将焙烧制得的SO2与固体催化剂(开始是铂,后改用V2O5,现为含铯钒催化剂)接触,在焙烧炉气中剩余氧的参与下(通常还需配入适当空气或富氧以控制O2/SO2值恒定),SO2被氧化成SO3,后者与水作用可制得浓硫酸(98.5%)和发烟硫酸(含游离SO3 20%左右)。 接触法生产硫酸经过以下四个工序。 A 焙烧矿石(或硫磺)制备SO2化学反应式如下: 4FeS2+11O2=2Fe2O3+8SO2(硫铁矿焙烧) S+O2→SO2↑(硫磺焙烧)

硫铁矿分普通硫铁矿(其中大部分为黄铁矿,亦含有白铁矿、磁铁矿,含硫量在25%~53%之间)、浮选硫铁矿(与有色金属伴生,含硫量32%~40%)和含煤硫铁矿(是煤矿的杂质,含硫量达40%)三种,主要成分有FeS,FeS2,Fe2O3,Fe3O4和FeO等,矿物中还含有铅、镁、钙、钡的碳酸酸,砷、硒、铜、银、金等化合物。在氧量过剩的情况下,为使矿物中的硫全部转化成SO2,焙烧温度需在600℃以上,此时烧渣中,铁主要以Fe2O3存在(尚有少量Fe3O4)。 上述碳酸盐分解生成氧化物后又与炉气中SO3反应生成硫酸盐。砷和硒化合物转化为氧化物,在高温下升华逸入炉气中成为对制酸有害的杂质。矿石中的氟化物在焙烧过程中转变成气态SiF4,也进入炉气中。 B 炉气精制目的是除去各种杂质,如三氧化二砷、二氧化硒、氟化氢、矿尘、水蒸气和酸雾等。其中三氧化二砷使钒催化剂中毒和催化剂中的钒逃逸,二氧化硒使钒催化剂中毒和使成品酸带色,氟化氢(由SiF4水解产生)则会腐蚀设备。它们在低温下(30~60℃)很容易用水或酸洗涤炉气而除去。

液下泵性能及技术参数

液下泵性能及技术参数 液下泵系用聚乙烯醇缩丁醛改性酚醛玻璃纤维,经高温模压成型的酚醛制件,联接管、出液管采用半干法卷制工艺制成的酚醛管,以下是玻璃液下泵概述。 一、液下泵产品介绍: 液下泵与介质接触的零部件,系用聚乙烯醇缩丁醛改性酚醛玻璃纤维,经高温模压成型的酚醛制件,联接管、出液管采用半干法卷制工艺制成的酚醛管,叶轮轴套的装配均用酚醛胶泥和泵轴粘成一体,液下各部装配均用酚醛胶泥粘结,伸入液下全无金属与介质接触,耐腐性能绝对可靠,产品具有轻质、高强、不变形、耐温、耐腐蚀等优良性能,在防腐方面可部分替代含钼不锈钢、钛及钛合金等贵重金属。该耐酸液下泵在传动和旋转方向:泵通过爪型弹性联轴器由电动机直接驱动,从电动机端看泵为顺时针方向旋转。 二、液下泵产品分类: WSY型、FSY型两种型式的液下泵:1.WSY型泵为立式液下旋涡泵。2.FSY型泵为立式液下离心泵,该泵因伸入贮罐,贮槽的深度长短不同,设计液下深度800mm--3000mm 之间任意选择。只要液体高于泵体,即可不灌液而起动送液,平盖板下设有泄漏孔,液体不会向贮罐外泄漏。 三、液下泵主要用途: 液下泵广泛用于化工、石化、冶炼、染料、农药、制药、稀土、化肥等行业,在贮罐上输送不含悬浮固体颗粒,不易结晶,温度不高于100℃的各种非氧化性酸(盐酸、稀硫酸、甲酸、醋酸、丁酸)等腐蚀介质的最理想设备。

四、液下泵的完好标准: (1)液下泵零部件齐全完整,质量符合要求。 (2)液下泵压力、流量平稳,各部温度正常。 (3)液下泵基础、机座牢固完整,质量符合要求。 (4)液下泵防腐符合要求。 (5)液下泵管线、阀门、支架安装合理,标志分明,符合技术要求。 (6)设备平衡无杂音,电流不超过额定值。 (7)认真执行五定、三级过滤润滑管理制度。 (8)设备出力能力达到铭牌规定或满足生产需要。

相关文档
最新文档