第九篇解析几何第7讲抛物线
2018课标版文数一轮(9)第九章-平面解析几何(含答案)7-第七节 抛物线

即[2 2 (2λ-1)]2=8(4λ+1), 即(2λ-1)2=4λ+1,解得λ=0或λ=2.
栏目索引
方法指导 求抛物线焦点弦的三种方法: ①定义法:|AB|=x1+x2+p;
2p sin θ 1 k2 ③斜率法:|AB|= 2 ×2p(k为AB的斜率). k
②倾斜角法:|AB|= 2 (θ为AB的倾斜角);
OA · 点,坐标原点为O, =12. OB
(1)求抛物线的方程; (2)当以|AB|为直径的圆与y轴相切时,求直线l的方程. 解析 (1)显然直线l的斜率存在.
栏目索引
2-1 (2014课标Ⅰ,10,5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一 点,|AF|= x0,则x0= ( A.1 B.2 C.4
5 4
) D.8
1 2
1 4
答案 A 由y2=x得2p=1,即p= ,因此焦点F ,设 ,0 ,准线方程为l:x=-
p 2
栏目索引
考点二
抛物线的定义及其应用
典例2 (1)(2016江西赣州模拟)若点A的坐标为(3,2),F是抛物线y2=2x的 焦点,点M在抛物线上移动时,使|MF|+|MA|取得最小值的M的坐标为 ( )
B. ,1 1 2
A.(0,0)
C.(1, 2 )
D.(2,2)
(2)已知M是抛物线x2=4y上一点,F为其焦点,点A在圆C:(x+1)2+(y-5)2=1 上,则|MA|+|MF|的最小值是 .
y2 . , y 2p
栏目索引
1-1 已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两 点,|AB|=12,P为C的准线上一点,则△ABP的面积为 ( A.18
《第七讲 抛物线》教学反思

《第七讲抛物线》教学反思陕州一高数学组马娜11月30日下午第三节课我在1703班进行了公开课《抛物线》,作为高三一轮复习课,本节课分两节知识来讲授,第一节讲授抛物线的标准方程和几何性质,第一节讲授抛物线与直线的相交问题。
本节课我讲授的是第一节,根据教学情况和课下学生接受情况现将本节反思如下:一、教学内容设计:本节课教学重难点是 1.抛物线的定义及其方程,并用定义解决焦点弦问题.2.数形结合解决直线与抛物线相交所组成的几何图形问题.所以我选择了两个突破点:考点一抛物线的定义及应用;考点二抛物线的标准方程和几何性质。
在题目选择上有课前诊断自测、例题、训练题、和课后检测。
教学方式上采用类比的方法让学生主动学习、合作交流,体验数学的发现和创造过程,培养学生数学表达和交流的能力。
同时抓住解析几何的核心─—数形结合,利用平面几何知识结合抛物线定义解决本节重难点。
二、自主课堂方面当前教学我们最应注意的问题就是自主课堂中提倡的理念“将课堂还给学生”,课堂上学生是主体,教师是引导者。
本节课教学我把学习的主动权交给学生,用多媒体创设情境,围绕例题进行变式训练,师生围绕问题展开讨论,学生在质疑、讨论、总结的过程中,理解了抛物线的定义与标准方程,形成了自己的数学思想方法,更触发了学生积极思考、勤奋探索的动力,开发了学生的智慧源泉,实现了举一反三、触类旁通的效果。
虽然在教学中培养学生积极参与的习惯同时也不能忽视学生的发散思维,要恰当引导学生,课堂上突发性的问题,教师要能自如地应对。
二、失误之处1、抛物线的定义“平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫抛物线。
”这里我虽然强调了定点F不在定直线l,但却没有进一步设问“若定点F在定直线l上,则轨迹是什么呢?如果进一步研究可强化学生对抛物线的定义的理解;2、为了课堂的紧凑图形都是由我画在黑板上,在归纳总结时应深化一下,如“知道抛物线的标准方程,如何画抛物线的简图?”,强调画抛物线简图的“三点法”。
高考总复习一轮数学精品课件 第9章 平面解析几何 第7节 第1课时 抛物线的定义、方程与性质

|PF|=-y0+
2
x≥0,y∈R
向右
焦半径(其中 P(x0,y0)) |PF|=x0+2
y轴
F(0,2 )
2
F(0,-2 )
2
2
2
2
2
微点拨1.求抛物线方程时,要依据题设条件,弄清抛物线的对称轴和开口方
向,正确选择抛物线的标准方程.
2.由y2=mx或x2=my(m≠0)求焦点坐标时,只需将x或y的系数除以4,再确定焦
D.y2=16x或y2=8x
解析 因为抛物线的准线方程是
所以点 M 的横坐标是
x=- ,而点
2
M 到准线的距离为 6,
6-2.所以点
又因为点 M 在抛物线上,所以
M 的坐标为(6-2,-4√2).
32=2p 6- ,解得 p=8 或 p=4,
2
故该抛物线的标准方程为 y2=16x 或 y2=8x.
p 的几何意义:焦点 F 到准线 l 的距离
图形 到抛物线顶
点的距离
顶点
对称轴
取决于一
焦点
次项变量
离心率
(x或y)的
准线方程 取值范围
范围
开口方向
原点
x轴
F(2 ,0)
F(-2 ,0)
e=1
x=-
x=
y=-
y=
x≤0,y∈R
向左
|PF|=-x0+
y≥0,x∈R
向上
|PF|=y0+
y≤0,x∈R
F(1,0)到直线3x+4y+7=0的距离,
第七节 抛物线 课件(共48张PPT)

(4)|A1F|+|B1F|=2p. (5)以弦AB为直径的圆与准线相切.
题组一 小题自测 1.(人A选修2-1·习题改编)过点P(-2,3)的抛物线 的标准方程是( ) A.y2=-92x或x2=43y B.y2=92x或x2=43y C.y2=92x或x2=-43y D.y2=-92x或x2=-43y
考点2 抛物线的标准方程与几何性质
角度 求抛物线方程
[例2] (1)抛物线y2=2px(p>0)的焦点为F,O为坐标
原点,M为抛物线上一点,且|MF|=4|OF|,△MFO的面
积为4 3,则抛物线的方程为( )
A.y2=6x
B.y2=8x
C.y2=16x
D.y2=152π
(2)设抛物线C:y2=2px(p>0)的焦点为F,点M在C 上,|MF|=5.若以MF为直径的圆过点(0,2),则C的方 程为( )
1.(2020·全国卷Ⅰ)已知A为抛物线C:y2=2px(p>0)
上一点,点A到C的焦点的距离为12,到y轴的距离为9,
则p=( )
A.2
B.3
C.6 D.9
解析:法一 因为点A到y轴的距离为9,所以可设
点A(9,yA),
所以y2A=18p.又点A到焦点p2,0的距离为12,
所以 9-p22+y2A=12,所以9-p22+18p=122,
A.y2=4x或y2=8x B.y2=2x或y2=8x C.y2=4x或y2=16x D.y2=2x或y2=16x 解析:(1)设M(x,y),因为|OF|=p2,|MF|=4|OF|, 所以|MF|=2p, 由抛物线定义知x+p2=2p,所以x=32p, 所以y=± 3p.
又△MFO的面积为4 3,
解析几何《抛物线》

解析几何【7】抛物线1、抛物线的定义、图像与性质2、直线与抛物线的位置关系联立直线:l y kx m 和抛物线22y px (0p )消y ,整理得 22220k x km p x m .(1)当0k 时,①0 直线与抛物线相交,有两个不同公共交点;②0 直线与抛物线相切,只有一个公共交点;③0 直线与抛物线相离,没有公共交点.(2)当0k 时,则直线是抛物线的对称轴或是与对称轴平行的直线,此时直线与抛物线相交,只有一个公共交点,但不能称为相切.向右向左向上向下0x ,y R 0x ,y R 0y ,x R 0y ,x R图像关于x 轴对称图像关于y 轴对称原点0,0O ,02p F ,02p F 0,2p F 0,2p Fp xp x2p yp y【温馨点睛】1、抛物线的定义实质上给出了一个重要的内容:可将抛物线上的点到焦点的距离转化为到准线的距离,可以使运算化繁为简.2、求抛物线标准方程的两种方法(1)定义法:根据条件确定动点满足的几何特征,从而确定p 的值,得到抛物线的标准方程.(2)待定系数法:根据条件设出标准方程,再确定p 的值,这里要注意抛物线标准方程有四种形式.从简单化角度出发,焦点在x 轴的,设为2y ax (0a ),焦点在y 轴的,设为2x ay (0a ).3、设过抛物线22y px (0p )的焦点,02p F的直线与抛物线交于 11,A x y 、 22,B x y ,直线OA 与212AB x x p ;【例(1)(2)【同类变式】设直线l 的方程为210x By ,倾斜角为 .(1)试将 表示为B 的函数;(2)若263,求B 的取值范围:(3)若 ,21,B ,求 的取值范围.【例(1)(2)(3)【同类变式】求适合下列条件的直线方程.(1)经过点 0,2A ,它的倾斜角的正弦值是35;(2)经过点 5,2B ,且在x 轴上的截距等于在y 轴上截距的2倍;(3)经过点 5,4C ,与两坐标轴围成的三角形面积为5.【考点三】直线过定点问题【例3】已知直线 :2311l a y a x .(1)求证;无论a 为何值,直线l 总经过第一象限;(2)直线l 是否有可能不经过第二象限?若有可能,求出a 的范围;若不可能,说明理由.【同类变式】已知直线方程为 22140m x m y .(1)该直线是否经过定点?若经过,求出该点坐标;若不经过,说明你的理由;(2)当m 为何值时,点 3,4Q 到直线的距离最大,最大值为多少?(3)当m 在什么范围时,该直线与两坐标轴负半轴均相交?【考点四】求与最值有关的直线方程【例4】如图,已知直线l 过点 3,2P ,且与x 轴、y 轴的正半轴分别交于A 、B 两点,求ABO 的面积的最小值及此时直线l 的方程.【同类变式】(1)若本例条件不变,求OA OB 的最小值及此时直线l 的方程;(2)若本例条件不变,求PA PB的最大值及此时直线l 的方程.【真题自测】1.现有下列四个命题:①经过定点 000,P x y 的直线都可以用方程 00y y k x x ;②经过任意两个不同的点 111,P x y 、 222,P x y 的直线都可以用方程121121x x y y y y x x 表示;③不经过原点的直线都可以用方程1x ya b表示:④经过定点0,A b 的直线都可以用方程y kx b 表示..A 0;2..A .B .C .D 3.直线:tan105l x y的倾斜角.4.已知点 2,3A 、 1,4B ,则直线AB 的点法式方程为.5.已知点 3,4A 、 2,2B ,直线20mx y m 与线段AB 相交,则实数m 的取值范围是.6.1212x y y .k ,0k。
抛物线知识点归纳总结

抛物线知识点归纳总结抛物线是解析几何中的一个重要概念,它在物理、数学等领域都有着广泛的应用。
本文将对抛物线的知识点进行归纳总结,帮助读者更好地理解和掌握这一概念。
一、抛物线的定义。
抛物线是平面上到定点的距离与到定直线的距离之差等于常数的动点轨迹。
通俗地讲,抛物线是一种特殊的曲线,其形状呈现出两个对称的平滑弧线。
二、抛物线的标准方程。
1. 抛物线的标准方程通常写作,y=ax^2+bx+c,其中a、b、c为常数,且a≠0。
2. 抛物线开口方向由a的正负决定,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 当抛物线与y轴相交时,x=0,代入方程得到抛物线的顶点坐标。
三、抛物线的性质。
1. 对称性,抛物线关于其顶点对称。
2. 切线性质,抛物线上任意一点处的切线与该点处的切线平行于抛物线的对称轴。
3. 焦点和准线,抛物线的焦点是到定点的距离等于到定直线的距离之差的定点,准线是到定点的距离等于到定直线的距离之差的定直线。
4. 焦距,抛物线焦点到顶点的距离称为抛物线的焦距。
四、抛物线的应用。
1. 物理学中,抛物线运动是一种常见的运动形式,如抛体运动、炮弹发射等都可以用抛物线来描述。
2. 工程学中,抛物线的形状被广泛运用在建筑、桥梁、汽车等设计中,具有良好的结构稳定性。
3. 数学学科中,抛物线是解析几何和微积分中的重要概念,对于理解曲线的性质和方程有着重要意义。
五、抛物线的变形。
1. 抛物线的平移,通过平移变换可以使抛物线的顶点不位于原点,而是位于任意一点,这时抛物线的标准方程需要经过变换。
2. 抛物线的缩放,通过缩放变换可以改变抛物线的大小,使其开口更大或更小。
3. 抛物线的旋转,通过旋转变换可以使抛物线绕着定点旋转一定角度,这时抛物线的标准方程也需要相应的变换。
六、抛物线的求解。
1. 已知顶点坐标和另一点坐标时,可以直接代入抛物线的标准方程求解抛物线的具体方程。
2. 已知焦点和准线时,可以利用焦点和准线的性质来求解抛物线的具体方程。
第九篇解析几何第7讲抛物线

1.抛物线的定义:平面内与一个定点F和一条定直线l(l不过F)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.其数学表达式:|MF|=d(其中d为点M到准线的距离).2.抛物线的标准方程与几何性质一个结论焦半径:抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝ ⎛⎭⎪⎫p 2,0的距离|PF |=x 0+p 2.两种方法(1)定义法:根据条件确定动点满足的几何特征,从而确定p 的值,得到抛物线的标准方程.(2)待定系数法:根据条件设出标准方程,再确定参数p 的值,这里要注意抛物线标准方程有四种形式.从简单化角度出发,焦点在x 轴的,设为y 2=ax (a ≠0),焦点在y 轴的,设为x 2=by (b ≠0).双基自测1.(人教A 版教材习题改编)抛物线y 2=8x 的焦点到准线的距离是( ). A .1 B .2 C .4 D .8 解析 由2p =8得p =4,即焦点到准线的距离为4. 答案 C2.(2012·金华模拟)已知抛物线的焦点坐标是(0,-3),则抛物线的标准方程是( ).A .x 2=-12yB .x 2=12yC .y 2=-12xD .y 2=12x解析 p2=3,∴p =6,∴x 2=-12y . 答案 A3.(2011·陕西)设抛物线的顶点在原点,准线方程x =-2,则抛物线的方程是( ).A .y 2=-8xB .y 2=-4xC .y 2=8xD .y 2=4x解析 由准线方程x =-2,顶点在原点,可得两条信息:①该抛物线焦点为F (2,0);②该抛物线的焦准距p =4.故所求抛物线方程为y 2=8x .答案 C4.(2012·西安月考)设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ).A .4B .6C .8D .12解析 据已知抛物线方程可得其准线方程为x =-2,又由点P 到y 轴的距离为4,可得点P 的横坐标x P =4,由抛物线定义可知点P 到焦点的距离等于其到准线的距离,即|PF |=x P +p2=x P +2=4+2=6. 答案 B5.(2012·长春模拟)抛物线y 2=8x 的焦点坐标是________.解析 ∵抛物线方程为y 2=8x ,∴2p =8,即p =4.∴焦点坐标为(2,0). 答案 (2,0)考向一 抛物线的定义及其应用【例1】►(2011·辽宁)已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( ). A.34 B .1 C.54 D.74[审题视点] 由抛物线定义将|AF |+|BF |转化为线段AB 的中点到准线的距离即可.解析设抛物线的准线为l,作AA1⊥l于A1,BB1⊥l于B1,由抛物线的定义知|AA1|+|BB1|=|AF|+|BF|=3,则AB的中点到y轴的距离为12(|AA1|+|BB1|)-14=54.答案 C涉及抛物线上的点到焦点(准线)的距离问题,可优先考虑利用抛物线的定义转化为点到准线(焦点)的距离问题求解.【训练1】(2011·济南模拟)已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线准线的距离之和的最小值为().A.172B.3 C. 5 D.92解析由抛物线的定义知,点P到该抛物线的距离等于点P到其焦点的距离,因此点P 到点(0,2)的距离与点P到该抛物线准线的距离之和即为点P到点(0,2)的距离与点P到焦点的距离之和,显然,当P、F、(0,2)三点共线时,距离之和取得最小值,最小值等于⎝⎛⎭⎪⎫0-122+(2-0)2=172.答案 A考向二抛物线的标准方程及性质【例2】►(1)(2011·南京模拟)以原点为顶点,坐标轴为对称轴,并且经过P(-2,-4)的抛物线方程为________.(2)(2010·浙江)设抛物线y2=2px(p>0)的焦点为F,点A(0,2).若线段F A的中点B在抛物线上,则B到该抛物线准线的距离为________.[审题视点] (1)为求抛物线的方程问题,用待定系数法求解,根据题设条件,按焦点所在位置的可能情况,分类讨论.(2)抓住F A的中点B在抛物线上,求出p.解析(1)由于点P在第三象限.①当焦点在x轴负半轴上时,设方程为y2=-2px(p>0),把点P(-2,-4)代入得:(-4)2=-2p×(-2),解得p=4,∴抛物线方程为y2=-8x.②当焦点在y轴负半轴上时,设方程为x2=-2py(p>0),把点P(-2,-4)代入得:(-2)2=-2p×(-4).解得p=12.∴抛物线方程为x2=-y.综上可知抛物线方程为y2=-8x或x2=-y.(2)抛物线的焦点F的坐标为⎝⎛⎭⎪⎫p2,0,则线段F A的中点B的坐标为⎝⎛⎭⎪⎫p4,1,代入抛物线方24+22=324.答案 (1)y 2=-8x 或x 2=-y (2)324求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置,开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.【训练2】 已知F 为抛物线x 2=2py (p >0)的焦点,M 为其上一点,且|MF |=2p ,则直线MF 的斜率为( ).A .-33B .±33 C .- 3 D .±3解析 依题意,得F ⎝ ⎛⎭⎪⎫0,p 2,准线为y =-p 2,过点M 作MN 垂直于准线于N ,过F 作FQ 垂直于MN 于Q ,则|MN |=|MF |=2p ,|MQ |=p ,故∠MFQ =30°, 即直线MF 的倾斜角为150°或30°,斜率为-33或33.【例3】►(2011·江西)已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9. (1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC→=OA →+λOB →,求λ的值. [审题视点] (1)联立方程,利用焦点弦公式求解;(2)先求出A 、B 坐标,利用关系式表示出点C 坐标,再利用点C 在抛物线上求解.解 (1)直线AB 的方程是y =22⎝ ⎛⎭⎪⎫x -p 2,与y 2=2px 联立,从而有4x 2-5px +p 2=0,所以x 1+x 2=5p4,由抛物线定义得:|AB |=x 1+x 2+p =9, 所以p =4,从而抛物线方程是y 2=8x .(2)由p =4,4x 2-5px +p 2=0可简化为x 2-5x +4=0, 从而x 1=1,x 2=4,y 1=-22,y 2=42, 从而A (1,-22),B (4,42);设OC →=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),又y 23=8x 3,即[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0,或λ=2.本题综合考查了直线与抛物线的位置关系、抛物线的标准方程与几何性质、平面向量知识,以及数形结合思想和化归思想.其中直线与圆锥曲线的相交问题一般是联立方程,设而不求,借助根的判别式及根与系数的关系进行转化.【训练3】 设抛物线C :y 2=4x ,F 为C 的焦点,过F 的直线L 与C 相交于A 、B 两点. (1)设L 的斜率为1,求|AB |的大小; (2)求证:OA →·OB→是一个定值.(1)解 ∵F (1,0),∴直线L 的方程为y =x -1,设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y =x -1,y 2=4x 得x 2-6x +1=0,∴x 1+x 2=6,x 1x 2=1. ∴|AB |=(x 2-x 1)2+(y 2-y 1)2 =2·(x 1+x 2)2-4x 1x 2 =2·36-4=8.(2)证明 设直线L 的方程为x =ky +1, 由⎩⎨⎧x =ky +1,y 2=4x得y 2-4ky -4=0. ∴y 1+y 2=4k ,y 1y 2=-4, OA →=(x 1,y 1),OB →=(x 2,y 2). ∵OA →·OB →=x 1x 2+y 1y 2 =(ky 1+1)(ky 2+1)+y 1y 2 =k 2y 1y 2+k (y 1+y 2)+1+y 1y 2 =-4k 2+4k 2+1-4=-3. ∴OA →·OB→是一个定值. 阅卷报告14——忽视“判别式”致误【问题诊断】 由于“判别式”是判断直线与圆锥曲线是否有公共点的重要方法,在解决直线与圆锥曲线相交的问题时,有时不需要考虑判断式,致使有的考生思维定势的原因,任何情况下都没有考虑判别式,导致解题错误. 【防范措施】 解题后任何情况下都来检验判别式Δ.【示例】►(2010·福建)已知抛物线C :y 2=2px (p >0)过点A (1,-2). (1)求抛物线C 的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由. 实录 (1)将点A (1,-2)代入y 2=2px ,得p =2,故所求抛物线C 的方程为y 2=4x , 其准线方程为x =-1.错因 遗漏判别式的应用.(2)假设存在直线l ,设l :y =-2x +t , 由直线OA 与l 的距离d =55, 得|t |5=15,解得t =±1. 故符合题意的直线l 存在,其方程为2x +y -1=0或2x +y +1=0.所以p =2.故所求的抛物线C 的方程为y 2=4x ,其准线方程为x =-1. (2)假设存在符合题意的直线l ,其方程为y =-2x +t , 由⎩⎨⎧y =-2x +t ,y 2=4x ,得y 2+2y -2t =0. 因为直线l 与抛物线C 有公共点, 所以Δ=4+8t ≥0,解得t ≥-12.另一方面,由直线OA 与l 的距离d =55, 可得|t |5=15,解得t =±1.因为-1∉⎣⎢⎡⎭⎪⎫-12,+∞,1∈⎣⎢⎡⎭⎪⎫-12,+∞,所以符合题意的直线l 存在,其方程为2x +y -1=0.【试一试】 (2012·杭州模拟)在直角坐标系xOy 中,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,F 2也是抛物线C 2:y 2=4x 的焦点,点M 为C 1与C 2在第一象限的交点,且|MF 2|=53. (1)求C 1的方程;(2)平面上的点N 满足MN →=MF 1→+MF 2→,直线l ∥MN ,且与C 1交于A 、B 两点,若OA →·OB →=0,求直线l 的方程.[尝试解答] (1)由C 2:y 2=4x ,知F 2(1,0), 设M (x 1,y 1),M 在C 2上, 因为|MF 2|=53,所以x 1+1=53,所以M ⎝ ⎛⎭⎪⎫23,263. M 在C 1上,且椭圆C 1的半焦距c =1, 于是⎩⎪⎨⎪⎧49a 2+83b2=1,b 2=a 2-1,消去b 2并整理得9a 4-37a 2+4=0. 解得a =2⎝ ⎛⎭⎪⎫a =13不合题意,舍去.故b 2=4-1=3.故椭圆C 1的方程为x 24+y 23=1.(2)由MF 1→+MF 2→=MN →,知四边形MF 1NF 2是平行四边形,其中心为坐标原点O , 因为l ∥MN ,所以l 与OM 的斜率相同. 故l 的斜率k =26323= 6.设l 的方程为y =6(x -m ).由⎩⎪⎨⎪⎧x 24+y23=1,y =6(x -m )消去y 并整理得9x 2-16mx +8m 2-4=0. 设A (x 1,y 1),B (x 2,y 2). 则x 1+x 2=16m9,x 1x 2=8m 2-49. 因为OA →⊥OB →,所以x 1x 2+y 1y 2=0.所以x 1x 2+y 1y 2=x 1x 2+6(x 1-m )(x 2-m ) =7x 1x 2-6m (x 1+x 2)+6m 2 =7·8m 2-49-6m ·16m9+6m 2 =19(14m 2-28)=0. 所以m =±2.此时Δ=(16m )2-4×9(8m 2-4) =-32m 2+144=-32×2+144>0.故所求直线l 的方程为y =6x -23,或y =6x +2 3.。
2022届高考一轮复习第9章解析几何第7节抛物线课时跟踪检测理含解

第九章 解析几何第七节 抛物线A 级·基础过关 |固根基|1.(2019届沈阳质检)抛物线x 2=4y 的焦点到准线的距离为( ) A .1 B .2 C .4D .8解析:选B 由x 2=2px 的焦点到准线的距离为p ,得x 2=4y 中的焦点到准线的距离为2,故选B . 2.(2019届广东七校第二次联考)已知抛物线y 2=24ax(a>0)上的点M(3,y 0)到其焦点的距离是5,则该抛物线的方程为( )A .y 2=8x B .y 2=12x C .y 2=16xD .y 2=20x解析:选A 抛物线y 2=24ax(a>0)的准线方程为x =-6a ,点M(3,y 0)到其焦点的距离是5,根据抛物线的定义可知,点M(3,y 0)到准线的距离也为5,即3+6a =5,∴a=13,∴y 2=8x ,故选A .3.(2019届石家庄市质检)已知抛物线y 2=4x 的焦点为F ,过点F 和抛物线上一点M(2,22)的直线l 交抛物线于另一点N ,则|NF|∶|FM|等于( )A .1∶2B .1∶3C .1∶ 2D .1∶ 3解析:选A 解法一:由题意知抛物线y 2=4x 的焦点F 的坐标为(1,0),M(2,22),∴直线l 的方程为y =22(x -1).由⎩⎨⎧y 2=4x ,y =22(x -1),得2x 2-5x +2=0,解得x =2或x =12,∴点N 的横坐标为12.∵抛物线y 2=4x 的准线方程为x =-1,∴|NF|=32,|MF|=3,∴|NF|∶|MF|=1∶2,故选A .解法二:由题意知抛物线y 2=4x 的焦点F 的坐标为(1,0),M(2,22),∴直线l 的方程为y =22(x-1).由⎩⎨⎧y 2=4x ,y =22(x -1),得y 2-2y -4=0,解得y =22或y =-2,∴点N 的纵坐标为- 2.过点M 作MM′⊥x 轴,垂足为M′,过点N 作NN′⊥x 轴,垂足为N′,则△MM′F∽△NN′F,∴|NF|∶|MF|=|NN′|∶|MM′|=|-2|∶22=1∶2,故选A .解法三:∵M(2,22)是抛物线上的点,且抛物线y 2=4x 的准线方程为x =-1,∴|MF|=3.又1|MF|+1|NF|=2p =1,∴|NF|=32,∴|NF|∶|MF|=1∶2,故选A .解法四:设直线l 的倾斜角为α,则|MF|=p 1-cos α,|NF|=p1+cos α,∴|NF|∶|MF|=(1-cosα)∶(1+cos α),又M(2,22),F(1,0),∴tan α=22,∴cos α=13,∴|NF|∶|MF|=1∶2,故选A .4.(2019届江西五校联考)过抛物线C :y 2=2px(p>0)的焦点F 且倾斜角为锐角的直线l 与抛物线C 交于A ,B 两点,过线段AB 的中点N 且垂直于l 的直线与抛物线C 的准线相交于点M ,若|MN|=|AB|,则直线l 的倾斜角为( )A .15°B .30°C .45°D .60°解析:选B 分别过A ,B ,N 作抛物线准线的垂线,垂足分别为A′,B′,N′,由抛物线的定义知|AF|=|AA′|,|BF|=|BB′|,所以|NN′|=12(|AA′|+|BB′|)=12|AB|.因为|MN|=|AB|,所以|NN′|=12|MN|,即在△MNN′中,cos ∠MNN ′=12,所以∠MNN′=60°,即直线MN 的倾斜角为120°.又直线MN 与直线l 垂直且直线l 的倾斜角为锐角,所以直线l 的倾斜角为30°,故选B .5.(2019届郑州市第二次质量预测)已知抛物线C :y 2=2x ,过原点O 作两条互相垂直的直线分别交抛物线C 于A ,B 两点(A ,B 均不与坐标原点重合),则抛物线的焦点F 到直线AB 距离的最大值为( )A .2B .3C .32D .4解析:选C 设直线AB 的方程为x =my +t ,A(x 1,y 1),B(x 2,y 2),把直线AB 的方程代入抛物线的方程得y 2-2my -2t =0,Δ=4m 2+8t>0,所以y 1+y 2=2m ,y 1y 2=-2t.由题意得OA⊥OB,所以x 1x 2+y 1y 2=0,即y 212×y 222+y 1y 2=0,得y 1y 2=-4,所以-2t =-4,即t =2,故直线AB 恒过定点(2,0),则抛物线的焦点F ⎝ ⎛⎭⎪⎫12,0到直线AB 的距离的最大值为2-12=32,故选C . 6.(2019届湖南岳阳二模)过抛物线x 2=4y 的焦点F 作直线,交抛物线于P 1(x 1,y 1),P 2(x 2,y 2)两点,若y 1+y 2=6,则|P 1P 2|=( )A .5B .6C .8D .10解析:选C 过P 1作P 1M ⊥准线l ,垂足为M ,过P 2作P 2N ⊥准线l ,垂足为N ,由抛物线定义知|P 1F|=|P 1M|=y 1+1,|P 2F|=|P 2N|=y 2+1,∴|P 1P 2|=|P 1F|+|P 2F|=y 1+y 2+2=8,故选C .7.(2019届江西五校协作体2月联考)已知点A(0,2),抛物线C :y 2=2px(p>0)的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,若|FM||MN|=55,则p 的值等于( )A .18B .14C .2D .4解析:选C 过点M 向准线作垂线,垂足为P ,由抛物线的定义可知,|MF|=|MP|,因为|FM||MN|=55,所以|MP||MN|=55,所以sin ∠MNP =55,则tan ∠MNP =12.又∠OFA+∠MNP=90°(O 为坐标原点),所以tan∠OFA =2= 2 12p ,则p =2,故选C .8.(2019届沈阳市第一次质量监测)抛物线y 2=6x 上一点M(x 1,y 1)到其焦点的距离为92,则点M 到坐标原点的距离为________.解析:由y 2=6x ,知p =3,由抛物线定义得,x 1+p 2=92,即x 1=3,代入y 2=6x 中,得y 21=18,则|MO|=x 21+y 21=33(O 为坐标原点).答案:3 39.(2020届成都摸底)已知抛物线C :y 2=2px(p >0)的焦点为F ,准线为l ,若位于x 轴上方的动点A 在准线l 上,线段AF 与抛物线C 相交于点B ,|AF||BF|-|AF|=1,则抛物线C 的标准方程为________.解析:如图,设直线l 与x 轴交于点D ,过点B 作BE⊥l 于点E ,则|DF|=p.由抛物线的定义知|BE|=|BF|.设|BE|=|BF|=m ,因为△AEB∽△ADF,所以|AF||AB|=|DF||BE|,即|AF||AF|-|BF|=|DF||BF|,所以|AF||AF|-m =p m ,所以|AF|=pm p -m .由|AF||BF|-|AF|=1,得pmp -m m -pmp -m=1,解得p =1,所以抛物线C 的标准方程为y 2=2x. 答案:y 2=2x10.(2019届河北省“五个一名校”高三考试)如果点P 1,P 2,P 3,…,P 10是抛物线y 2=2x 上的点,它们的横坐标依次为x 1,x 2,x 3,…,x 10,F 是抛物线的焦点,若x 1+x 2+x 3+…+x 10=5,则|P 1F|+|P 2F|+|P 3F|+…+|P 10F|=________.解析:由抛物线的定义可知,抛物线y 2=2px(p>0)上的点P(x 0,y 0)到焦点F 的距离|PF|=x 0+p 2,在y 2=2x 中,p =1,所以|P 1F|+|P 2F|+…+|P 10F|=x 1+x 2+…+x 10+5p =10.答案:1011.(2019届昆明市高三诊断测试)过点E(-1,0)的直线l 与抛物线C :y 2=4x 交于A ,B 两点,F 是抛物线C 的焦点.(1)若线段AB 中点的横坐标为3,求|AF|+|BF|的值; (2)求|AF|·|BF|的取值范围.解:(1)设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=6. 由抛物线的定义知|AF|=x 1+1,|BF|=x 2+1, 则|AF|+|BF|=x 1+x 2+2=8. (2)设直线l 的方程为x =my -1,由⎩⎪⎨⎪⎧x =my -1,y 2=4x 得y 2-4my +4=0. 由Δ=16m 2-16>0,得m 2>1,则y 1+y 2=4m ,y 1y 2=4. 由抛物线的定义知|AF|=x 1+1,|BF|=x 2+1, 则|AF|·|BF|=(x 1+1)(x 2+1)=m 2y 1y 2=4m 2. 因为m 2>1,所以|AF|·|BF|>4. 故|AF|·|BF|的取值范围是(4,+∞).12.(2019届郑州市第一次质量预测)已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点,过A ,B 分别向抛物线的准线作垂线,垂足分别为M ,N.R 为准线上一点.(1)若AR∥FN,求|MR||MN|的值;(2)若点R 为线段MN 的中点,设以线段AB 为直径的圆为圆E ,判断点R 与圆E 的位置关系.解:由已知,得F(1,0),设直线l 的方程为x =my +1,与抛物线y 2=4x 联立,得⎩⎪⎨⎪⎧y 2=4x ,x =my +1,消去x ,得y 2-4my -4=0.设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4. 由题知M(-1,y 1),N(-1,y 2),设R(-1,y R ).(1)∵AR∥FN,即AR →∥FN →,AR →=(-1-x 1,y R -y 1),FN →=(-2,y 2),∴0=(-1-x 1)y 2+2(y R -y 1)=(-2-my 1)y 2+2(y R -y 1)=-2(y 1+y 2)-my 1y 2+2y R =-4m +2y R ,∴y R =2m =y 1+y 22,∴R 是MN 的中点,∴|MR||MN|=12.(2)若R 是MN 的中点,则R(-1,2m),RA →·RB →=(x 1+1,y 1-2m)·(x 2+1,y 2-2m)=(my 1+2,y 1-2m)·(my 2+2,y 2-2m)=(my 1+2)(my 2+2)+(y 1-2m)(y 2-2m)=(m 2+1)y 1y 2+4m 2+4=-4(m 2+1)+4m 2+4=0.∴RA →⊥RB →,即RA⊥RB, ∴点R 在以AB 为直径的圆E 上.B 级·素养提升 |练能力|13.(2019届湖南五市十校联考)在平面直角坐标系xOy 中,抛物线C :y 2=4x 的焦点为F ,准线为l ,P 为抛物线C 上一点,PQ 垂直l 于点Q ,M ,N 分别为PQ ,PF 的中点,直线MN 与x 轴交于点R ,若∠NFR =60°,则|FR|=( )A .2B . 3C .2 3D .3解析:选A 如图,连接MF ,QF ,设准线l 与x 轴交于H ,∵y 2=4x 的焦点为F ,准线为l ,P 为C 上一点,∴|FH|=2,|PF|=|PQ|.∵M,N 分别为PQ ,PF 的中点,∴MN∥QF.∵PQ 垂直l 于点Q ,∴PQ ∥OR.∵|PQ|=|PF|,∠NFR=60°,∴△PQF 为等边三角形,∴MF⊥PQ.又M 为PQ 的中点,∴F 为HR 的中点,∴|FR|=|FH|=2.故选A .14.(2019届郑州市第二次质量预测)已知抛物线C :y 2=4x 的焦点为F ,直线l 过焦点F 与抛物线C 交于A ,B 两点,且直线l 不与x 轴垂直,线段AB 的垂直平分线与x 轴交于点T(5,0),O 为坐标原点,则S △AOB =( )A .2 2B . 3C . 6D .3 6解析:选A 由题意知,抛物线的焦点为F(1,0),设直线l :y =k(x -1)(k≠0),A(x 1,y 1),B(x 2,y 2),将直线y =k(x -1)代入y 2=4x ,化简整理得k 2x 2-(2k 2+4)x +k 2=0,所以x 1+x 2=2+4k 2,x 1x 2=1,y 1+y 2=k(x 1+x 2)-2k =2k +4k -2k =4k ,所以AB 的中点为⎝ ⎛⎭⎪⎫1+2k 2,2k ,AB 的垂直平分线方程为y -2k =-1k ⎝ ⎛⎭⎪⎫x -1-2k 2.由于AB 的垂直平分线与x 轴交于点T(5,0),所以0-2k =-1k ⎝ ⎛⎭⎪⎫5-1-2k 2,化简得k =±1,即直线AB 的方程为y =±(x-1).点O 到直线AB 的距离d =|1|1+1=22,又|AB|=1+1|x 1-x 2|=1+1(x 1+x 2)2-4x 1x 2=2×36-4=8,所以S △AOB =12×22×8=22,故选A .15.(2019届洛阳市第二次联考)如图,已知在平面直角坐标系xOy 中,点S(0,3),SA ,SB 与圆C :x 2+y 2-my =0(m>0)和抛物线x 2=-2py(p>0)都相切,切点分别为M ,N 和A ,B ,SA∥ON,则点A 到抛物线准线的距离为( )A .4B .2 3C .3D .3 3解析:选A 连接OM ,∵SM,SN 是圆C 的切线,∴|SM|=|SN|,|OM|=|ON|.又SA∥ON,∴SM∥ON,∴四边形SMON 是菱形,∴∠MSN=∠MON.连接MN ,由切线的性质得∠SMN=∠MON,则△SMN 为正三角形,又MN 平行于x 轴,所以直线SA 的斜率k =tan 60°= 3.设A(x 0,y 0),则y 0-3x 0= 3 ①.又点A 在抛物线上,∴x 2=-2py 0 ②.由x 2=-2py ,得y =-x 22p ,y′=-1p x ,则-1px 0= 3 ③,由①②③得y 0=-3,p =2,所以点A 到抛物线准线的距离为-y 0+p2=4,故选A .16.(2020届湖北部分重点中学联考)已知点A(0,1),抛物线C :y 2=ax(a >0)的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若|FM|∶|MN|=1∶2,则实数a 的值为________.解析:依题意得抛物线的焦点F 的坐标为⎝ ⎛⎭⎪⎫a 4,0,过M 作抛物线的准线的垂线,垂足为K ,由抛物线定义知|MF|=|MK|.因为|FM|∶|MN|=1∶2,所以|KN|∶|KM|=3∶1.又k FN =0-1a 4-0=-4a ,k FN =-|KN||KM|=-3,所以-4a =-3,解得a =433.答案:43317.(2019届昆明市教学质量检测)已知抛物线y 2=4x 上一点P 到准线的距离为d 1,到直线l :4x -3y +11=0的距离为d 2,则d 1+d 2的最小值为________.解析:如图,设抛物线的准线为m ,焦点为F ,分别过点P ,F 作PA⊥m,PM⊥l,FN⊥l,垂足分别为A ,M ,N.连接PF ,因为点P 在抛物线上,所以|PA|=|PF|,所以(d 1+d 2)min =(|PF|+|PM|)min =|FN|.点F(1,0)到直线l 的距离|FN|=|4+11|42+(-3)2=3,所以(d 1+d 2)min =3.答案:3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7讲抛物线【2013年高考会这样考】1.考查抛物线定义、标准方程.2.考查抛物线的焦点弦问题.3.与向量知识交汇考查抛物线的定义、方程、性质等.【复习指导】熟练掌握抛物线的定义及四种不同的标准形式,会根据抛物线的标准方程研究得出几何性质及会由几何性质确定抛物线的标准方程;掌握代数知识,平面几何知识在解析几何中的作用.基础梳理1.抛物线的定义:平面内与一个定点F和一条定直线l(l不过F)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.其数学表达式:|MF|=d(其中d为点M到准线的距离).2.抛物线的标准方程与几何性质标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0) p的几何意义:焦点F到准线l的距离图形顶点O(0,0)对称y=0x=0轴焦点F⎝⎛⎭⎪⎫p2,0F⎝⎛⎭⎪⎫-p2,0F⎝⎛⎭⎪⎫0,p2F⎝⎛⎭⎪⎫0,-p2离心率e=1准线方程x=-p2x=p2y=-p2y=p2范围x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R开口方向向右向左向上向下焦半径|PF|=x+p2|PF|=-x0+p2|PF|=y+p2|PF|=-y0+p2一个结论焦半径:抛物线y2=2px(p>0)上一点P(x0,y0)到焦点F⎝⎛⎭⎪⎫p2,0的距离|PF|=x0+p2.两种方法(1)定义法:根据条件确定动点满足的几何特征,从而确定p的值,得到抛物线的标准方程.(2)待定系数法:根据条件设出标准方程,再确定参数p的值,这里要注意抛物线标准方程有四种形式.从简单化角度出发,焦点在x轴的,设为y2=ax(a≠0),焦点在y轴的,设为x2=by(b≠0).双基自测1.(人教A版教材习题改编)抛物线y2=8x的焦点到准线的距离是( ).A.1 B.2 C.4 D.8解析由2p=8得p=4,即焦点到准线的距离为4.答案C2.(2012·金华模拟)已知抛物线的焦点坐标是(0,-3),则抛物线的标准方程是( ).A.x2=-12y B.x2=12yC.y2=-12x D.y2=12x解析p2=3,∴p =6,∴x2=-12y.答案A3.(2011·陕西)设抛物线的顶点在原点,准线方程x=-2,则抛物线的方程是( ).A.y2=-8x B.y2=-4x C.y2=8x D.y2=4x解析由准线方程x=-2,顶点在原点,可得两条信息:①该抛物线焦点为F(2,0);②该抛物线的焦准距p=4.故所求抛物线方程为y2=8x.答案C4.(2012·西安月考)设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是( ).A.4 B.6 C.8 D.12解析据已知抛物线方程可得其准线方程为x=-2,又由点P到y轴的距离为4,可得点P的横坐标x P=4,由抛物线定义可知点P到焦点的距离等于其到准线的距离,即|PF|=x P+p2=x P+2=4+2=6.答案B5.(2012·长春模拟)抛物线y2=8x的焦点坐标是________.解析∵抛物线方程为y2=8x,∴2p=8,即p=4.∴焦点坐标为(2,0).答案(2,0)考向一抛物线的定义及其应用【例1】►(2011·辽宁)已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为( ).A.34B.1 C.54D.74[审题视点] 由抛物线定义将|AF|+|BF|转化为线段AB的中点到准线的距离即可.解析设抛物线的准线为l,作AA1⊥l于A1,BB1⊥l于B1,由抛物线的定义知|AA1|+|BB1|=|AF|+|BF|=3,则AB的中点到y轴的距离为12(|AA1|+|BB1|)-14=54.答案C涉及抛物线上的点到焦点(准线)的距离问题,可优先考虑利用抛物线的定义转化为点到准线(焦点)的距离问题求解.【训练1】(2011·济南模拟)已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线准线的距离之和的最小值为( ).A.172B.3 C. 5 D.92解析 由抛物线的定义知,点P 到该抛物线的距离等于点P 到其焦点的距离,因此点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和即为点P 到点(0,2)的距离与点P 到焦点的距离之和,显然,当P 、F 、(0,2)三点共线时,距离之和取得最小值,最小值等于⎝ ⎛⎭⎪⎫0-122+2-02=172. 答案 A考向二 抛物线的标准方程及性质【例2】►(1)(2011·南京模拟)以原点为顶点,坐标轴为对称轴,并且经过P (-2,-4)的抛物线方程为________.(2)(2010·浙江)设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.[审题视点] (1)为求抛物线的方程问题,用待定系数法求解,根据题设条件,按焦点所在位置的可能情况,分类讨论.(2)抓住FA 的中点B 在抛物线上,求出p . 解析 (1)由于点P 在第三象限.①当焦点在x 轴负半轴上时,设方程为y 2=-2px (p >0), 把点P (-2,-4)代入得:(-4)2=-2p ×(-2), 解得p =4,∴抛物线方程为y 2=-8x .②当焦点在y 轴负半轴上时,设方程为x 2=-2py (p >0),把点P (-2,-4)代入得:(-2)2=-2p ×(-4).解得p =12.∴抛物线方程为x 2=-y .综上可知抛物线方程为y 2=-8x 或x 2=-y .(2)抛物线的焦点F 的坐标为⎝ ⎛⎭⎪⎫p 2,0,则线段FA 的中点B 的坐标为⎝ ⎛⎭⎪⎫p 4,1,代入抛物线方程得1=2p ×p4,解得p =2,故点B 的坐标为⎝ ⎛⎭⎪⎫24,1,故点B 到该抛物线准线的距离为24+22=324. 答案 (1)y 2=-8x 或x 2=-y (2)324求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置,开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.【训练2】 已知F 为抛物线x 2=2py (p >0)的焦点,M 为其上一点,且|MF |=2p ,则直线MF 的斜率为( ).A .-33B .±33C .- 3D .±3解析 依题意,得F ⎝ ⎛⎭⎪⎫0,p 2,准线为y =-p 2,过点M 作MN 垂直于准线于N ,过F 作FQ垂直于MN 于Q ,则|MN |=|MF |=2p ,|MQ |=p ,故∠MFQ =30°, 即直线MF 的倾斜角为150°或30°,斜率为-33或33. 答案 B考向三 抛物线的综合应用【例3】►(2011·江西)已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9..(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC→=OA →+λOB →,求λ的值.[审题视点] (1)联立方程,利用焦点弦公式求解;(2)先求出A 、B 坐标,利用关系式表示出点C 坐标,再利用点C 在抛物线上求解.解 (1)直线AB 的方程是y =22⎝ ⎛⎭⎪⎫x -p 2,与y 2=2px 联立,从而有4x 2-5px +p 2=0,所以x 1+x 2=5p4,由抛物线定义得:|AB |=x 1+x 2+p =9, 所以p =4,从而抛物线方程是y 2=8x .(2)由p =4,4x 2-5px +p 2=0可简化为x 2-5x +4=0, 从而x 1=1,x 2=4,y 1=-22,y 2=42, 从而A (1,-22),B (4,42);设OC →=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22), 又y 23=8x 3,即[22(2λ-1)]2=8(4λ+1), 即(2λ-1)2=4λ+1,解得λ=0,或λ=2.本题综合考查了直线与抛物线的位置关系、抛物线的标准方程与几何性质、平面向量知识,以及数形结合思想和化归思想.其中直线与圆锥曲线的相交问题一般是联立方程,设而不求,借助根的判别式及根与系数的关系进行转化.【训练3】 设抛物线C :y 2=4x ,F 为C 的焦点,过F 的直线L 与C 相交于A 、B 两点. (1)设L 的斜率为1,求|AB |的大小; (2)求证:OA→·OB →是一个定值. (1)解 ∵F (1,0),∴直线L 的方程为y =x -1,设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =x -1,y 2=4x 得x 2-6x +1=0,∴x 1+x 2=6,x 1x 2=1. ∴|AB |=x 2-x 12+y 2-y 12=2·x 1+x 22-4x 1x 2=2·36-4=8.(2)证明 设直线L 的方程为x =ky +1, 由⎩⎪⎨⎪⎧x =ky +1,y 2=4x得y 2-4ky -4=0. ∴y 1+y 2=4k ,y 1y 2=-4, OA →=(x 1,y 1),OB →=(x 2,y 2). ∵OA →·OB →=x 1x 2+y 1y 2 =(ky 1+1)(ky 2+1)+y 1y 2 =k 2y 1y 2+k (y 1+y 2)+1+y 1y 2 =-4k 2+4k 2+1-4=-3. ∴OA→·OB →是一个定值. 阅卷报告14——忽视“判别式”致误【问题诊断】 由于“判别式”是判断直线与圆锥曲线是否有公共点的重要方法,在解决直线与圆锥曲线相交的问题时,有时不需要考虑判断式,致使有的考生思维定势的原因,任何情况下都没有考虑判别式,导致解题错误. 【防范措施】 解题后任何情况下都来检验判别式Δ.【示例】►(2010·福建)已知抛物线C :y 2=2px (p >0)过点A (1,-2).(1)求抛物线C的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由.实录 (1)将点A (1,-2)代入y 2=2px ,得p =2,故所求抛物线C 的方程为y 2=4x , 其准线方程为x =-1.错因 遗漏判别式的应用.(2)假设存在直线l ,设l :y =-2x +t , 由直线OA 与l 的距离d =55,得|t |5=15,解得t =±1.故符合题意的直线l 存在,其方程为2x +y -1=0或2x +y +1=0. 正解 (1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1, 所以p =2.故所求的抛物线C 的方程为y 2=4x ,其准线方程为x =-1. (2)假设存在符合题意的直线l ,其方程为y =-2x +t , 由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x ,得y 2+2y -2t =0. 因为直线l 与抛物线C 有公共点, 所以Δ=4+8t ≥0,解得t ≥-12.另一方面,由直线OA 与l 的距离d =55,可得|t |5=15,解得t =±1.因为-1∉⎣⎢⎡⎭⎪⎫-12,+∞,1∈⎣⎢⎡⎭⎪⎫-12,+∞,所以符合题意的直线l 存在,其方程为2x +y -1=0.【试一试】 (2012·杭州模拟)在直角坐标系xOy 中,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,F 2也是抛物线C 2:y 2=4x 的焦点,点M 为C 1与C 2在第一象限的交点,且|MF 2|=53.(1)求C 1的方程;(2)平面上的点N 满足MN →=MF 1→+MF 2→,直线l ∥MN ,且与C 1交于A 、B 两点,若OA →·OB →=0,求直线l 的方程.[尝试解答] (1)由C 2:y 2=4x ,知F 2(1,0), 设M (x 1,y 1),M 在C 2上, 因为|MF 2|=53,所以x 1+1=53,得x 1=23,y 1=263.所以M ⎝ ⎛⎭⎪⎫23,263.M 在C 1上,且椭圆C 1的半焦距c =1,于是⎩⎨⎧49a 2+83b2=1,b 2=a 2-1,.消去b 2并整理得9a 4-37a 2+4=0. 解得a =2⎝ ⎛⎭⎪⎫a =13不合题意,舍去.故b 2=4-1=3.故椭圆C 1的方程为x 24+y 23=1..(2)由MF 1→+MF 2→=MN →,知四边形MF 1NF 2是平行四边形,其中心为坐标原点O , 因为l ∥MN ,所以l 与OM 的斜率相同.故l 的斜率k =26323= 6.设l 的方程为y =6(x -m ).由⎩⎪⎨⎪⎧x 24+y 23=1,y =6x -m消去y 并整理得9x 2-16mx +8m 2-4=0. 设A (x 1,y 1),B (x 2,y 2). 则x 1+x 2=16m 9,x 1x 2=8m 2-49.因为OA →⊥OB →,所以x 1x 2+y 1y 2=0.所以x 1x 2+y 1y 2=x 1x 2+6(x 1-m )(x 2-m ) =7x 1x 2-6m (x 1+x 2)+6m 2 =7·8m 2-49-6m ·16m 9+6m 2=19(14m 2-28)=0. 所以m =± 2.此时Δ=(16m )2-4×9(8m 2-4) =-32m 2+144=-32×2+144>0.故所求直线l 的方程为y =6x -23,或y =6x +2 3. 如有侵权请联系告知删除,感谢你们的配合!。