copula函数及其应用.doc
copula方法及其应用

copula方法及其应用【最新版3篇】目录(篇1)I.引言A.介绍copula方法的概念B.说明copula方法在概率论和统计学中的重要性II.copula方法的基本原理A.介绍高斯copula和多元正态分布的概念B.阐述copula方法的基本原理和数学模型C.解释如何将copula方法应用到实际问题中III.copula方法的应用A.介绍copula方法在金融中的应用,如风险评估和投资组合优化B.说明copula方法在气象、生物、物理等领域的应用C.讨论copula方法在数据分析和机器学习中的潜在应用IV.结论A.总结copula方法的应用和前景B.指出copula方法面临的挑战和未来发展方向正文(篇1)一、引言在概率论和统计学中,copula方法是一种重要的工具,用于研究高维随机变量的联合分布。
copula方法旨在研究多个随机变量之间的关系,并引入一个连接函数来描述它们之间的耦合结构。
这种耦合结构可以用于构建联合分布模型,以便更好地理解和分析多个随机变量之间的关系。
二、copula方法的基本原理1.高斯copula和多元正态分布:高斯copula是一种具有对称性的耦合函数,它描述了两个随机变量之间的线性关系。
多元正态分布是一种具有明确数学模型的概率分布,它由多个独立的正态分布组成。
2.copula方法的基本原理和数学模型:copula方法的核心思想是通过选择合适的耦合函数来构建联合分布模型。
这种模型可以用于描述多个随机变量之间的依赖关系,并用于概率建模和统计分析。
在copula方法中,我们通常选择一个高斯copula作为连接函数,并将其应用于多元正态分布。
3.实际问题中的应用:将copula方法应用到实际问题中需要考虑到数据的特性和问题的背景。
例如,在金融领域中,我们可以使用copula 方法来评估投资组合的风险和收益,以及进行信用评分。
在气象领域中,我们可以使用copula方法来分析天气模式之间的相关性,以预测天气变化。
copula函数.docx

copula函数1、Sklar定理Sklar定理(二元形式):若H(x,y)是一个具有连续边缘分布的F(x)与G(y)的二元联合分布函数,那么存在唯一的copula函数C使得H(x,y)=C(F(x),G(y))。
反之,如果C是一个copula函数,而F,G是两个任意的概率分布函数,那么由上式定义的H函数一定是一个联合分布函数,且对应的边缘分布函数刚好就是F和G。
Sklar定理告诉我们一件很重要的事情,一个联合分布关于相关性的性质完全由它的copula函数决定,与它的边缘分布没有关系。
在已知H,F,G的情况下,能够算出它们的copula:C(u,v)=H[F-1(u),G-1(v)]2、什么是copula函数?copula函数实际上是一个概率。
假设我们有n个变量(U1,U2,…,UN),这n个变量都定义在[0,1],copula函数C(u1,u2,…,un)即是P{U1<u1,U2<u2,…,Un<un},(这里的n个变量是相互关联的)。
(1)copula是最全面的相关性(2)copula可以有尾部相依性(3)copula定义的C(u1,u2,…,un)=P{U1<u1,U2<u2,…,Un<un}对应的概率密度函数为c(u1,u2,…,un)=∂n C(u1,u2,… ,un)/∂u1∂u2…∂un,fi(x1,x2,…,xn)为联合分布函数F i (x1,x2,…,xn)= Ui的概率密度函数,fi(x1,x2,…,xn)为Ui的概率密度函数,则有:f(x1,x2,…,xn)= c(u1,u2,…,un)*[ f1(x1,x2,…,xn)*…*fn(x1,x2,…,xn)]3、只要满足下面3个条件的函数都是copula函数(以二元为例)(1)定义域为[0,1]*[0,1],值域为[0,1],即C:[0,1]*[0,1]->[0,1](2)C(u,0)=c(0,v)=0;C(u,1)=u;C(1,v)=v(3)0≤∂C/∂u≤1;0≤∂C/∂v≤14、copula函数的种类(1)多元正态分布的copula(高斯copula):(边缘分布是均匀分布的多元正态分布)(2)多元t分布的copula:t-copula(3)阿基米德copula(人工构造)令φ:[0,1]→[0,∞]是一个连续的,严格单调递减的凸函数,且φ(1)=0,其伪逆函数φ[-1] 由下式定义:那么由下式定义的函数C:[0,1]*[0,1]→[0,1]是一个copula,通过寻找合适的函数φ利用上式所生成的copula都是阿基米德类copula,并称φ为其生成函数,且阿基米德类copula都是对称的,即C(u,v)=C(v,u)。
Copula函数

Copula函数理论Copula理论的是由Sklar在1959年提出的,Sklar指出,可以将任意一个n维联合累积分布函数分解为n个边缘累积分布和一个Copula函数。
边缘分布描述的是变量的分布,Copula函数描述的是变量之间的相关性。
也就是说,Copula函数实际上是一类将变量联合累积分布函数同变量边缘累积分布函数连接起来的函数,因此也有人称其为“连接函数”。
Copula函数是定义域为[0,1]均匀分布的多维联合分布函数,他可以将多个随机变量的边缘分布连.起来得到他们的联合分布。
Copula函数的性质定理1 (Sklar定理1959)令F为一个n维变量的联合累积分布函数,其中各变量的边缘累积分布函数记为F i,那么存在一个n维Copula函数C,使得F(g ,0 C(F1(X1), ,F n(X.)) (1) 若边缘累积分布函数F i是连续的,贝U Copula函数C是唯一的。
不然,Copula函数C只在各边缘累积分布函数值域内是唯一确定的。
对于有连续的边缘分布的情况,对于所有的u [0,1]n,均有C(u) F(F I W), ,F n1(u n)) ⑵在有非减的边缘变换绝大多数的从Sklar定理可以看出,Copula函数能独立于随机变量的边缘分布反映随机变量的相关性结构,从而可将联合分布分为两个独立的部分来分别处理:变量间的相关性结构和变量的边缘分布,其中相关性结构用Copula函数来描述。
Copula函数的优点在于不必要求具有相同的边缘分布,任意边缘分布经Copula 函数连接都可构造成联合分布,由于变量的所有信息都包含在边缘分布里,在转换过程中不会产生信息失真。
Copula函数总体上可以划分为三类:椭圆型、Archimedean (阿基米德)型和二次型,其中含一个参数的Archimedean Copula函数应用最为广泛,多维Archimedean Copula函数的构造通常是基于二维的,根据构造方式的不同可以分为对称型和非对称型两种.三种常用的3-维非对称型Archimedean Copula函数:Frank Archimedean Copula函数,Clayton Archimedean Copula函数,Gumbe Archimedean Copula 函数表1三印常用的A兽非时就*Afctwred即n CopUa医曲名器Copuld C (也A2MFrank或、J*)-1(1-? )(J-e )] ' )(1^ )|M)HJIChyton+ < -t *IM[(U| —1} *llj "1]阳■)[OJIG<岫a A * "J't 4 1 化[L*>[岫Copula函数的应用Copula函数的应用具体包括以下几个步骤:①确定各变量的边缘分布;② 确定Copula函数的参数";③根据评价指标选取Copula函数,建立联合分布;④根据所建分布进行相应的统计分析。
Copula函数的选择及其在金融分析中的若干应用

摘 要Copula理论是一种基于联合分布的建模方法,最大的优点就是把边缘分布和相关结构分离开,它的提出为解决多元联合分布的构建以及变量间的非线性相关性问题提供了一个灵活实用的方法,人们将其广泛的用于金融领域,应用于投资组合、资产定价等方面,对金融数据相关性进行建模、分析有着非常重要的意义和作用。
本文主要讨论了Copula理论在金融领域的应用,分析了基于Copula理论的多金融资产的投资组合优化及风险度量的问题。
主要工作如下:首先介绍Copula函数的相关概念和性质,目前国内外Copula理论研究的进展情况,本文的研究思路、方法及相关应用。
传统的金融数据分析是基于正态分布的假设,但正态假设有其局限性,往往不能满足,本文打破传统的基于正态分布的假设,讨论了Copula理论和Monte Carlo模拟在风险VaR估计中的应用,并选用股票数据实例分析了基于Archimedean Copula的风险VaR估计,结果表明此方法是有效的,而传统的VaR计算方法低估了风险。
并进一步将此方法推广到多维资产的情形,说明与单支股票风险均值相比采用此方法确定的投资组合降低了金融风险。
文章为了进一步提高模型构造的有效性,提出了一种基于Bayes理论的混合Copula构造方法,把多个Copula函数所具有的优点融合到一个混合函数中,通过调整各个函数的权重系数来调整函数尾部相关性强弱,比单个Copula相关结构更为灵活。
另外,将Bootstrap方法引入到Copula中的参数估计中,实例表明采用Bootstrap 方法对参数的估计与实际值比较接近,为我们提供了解决问题的另一种有效的思路。
最后,对本文进行了总结,并对一些本文中可以继续探讨研究的方向进行了进一步的前景展望。
关键词:Copula函数;VaR估计;Bootstrap方法;投资组合Selection of Copulas and its Application on FinanceAbstractCopula functions which based on joint distribution provide a flexible and useful statistic tool to construct multivariate joint distribution and solve the nonlinear correlation problem. One of its advantages is the dependence structure of variables no longer depending on the marginal distributions. Copula theory has gained increasing attention in asset pricing, risk management, portfolio management and other applications. In detail, my research is as follows:We first introduce the ideas of copula theory and several copula functions which belong to Archimedean families. Then we discuss the use of Archimedean Copula in VaR and CVaR calculation without the traditional multidimensional normal distribution assumption in financial risk management. Our empirical analysis which based on stock market data uses Monte Carlo simulation method and the results show that the VaR calculated by copula method is larger than traditional method. It means that traditional method underestimated the risk of stock market, and the Monte Carlo simulation based on Copula is effective for financial Market. Then, this method is extended to the multidimensional case, to show that the VaR of proper portfolio is lower than means of risk with single stock.In order to improve the validation of model construction, we introduce a simple Bayesian method to choose the “best” copula which is a mixture of several different copulas. By estimating parameters of each chosen copula and adjusting their weight coefficients in the mixed copula, the model has all the advantages of the chosen copulas and has more flexibility because different weight coefficient combinations describe different asset correlations. In addition, we introduce Bootstrap method to estimate the parameters of Archimedean Copula. The real analysis also shows the estimated parameter by Bootstrap method gets closer to actual value. So it is another efficient way to solve our problems.At last, we make a summary of the whole paper, and look into the future of some aspects that could be discussed in the coming days.Key Words:Copulas; VaR estimation; Bootstrap method; portfolio目录摘 要 (1)Abstract (III)第一章 绪论 (1)1.1 研究背景与意义 (1)1.2 国内外研究现状 (2)1.3 论文组织结构 (3)第二章 Copula选择及检验 (4)2.1 Copula函数的基本概念 (4)2.1.1 Copula函数定义及性质 (4)2.1.2 阿基米德Copula (5)2.1.3 相关性度量 (6)2.2 常用的二元Archimedean Copula函数与相关性分析 (8)2.2.1 Gumbel Copula函数 (8)2.2.2 Clayton Copula函数 (9)2.2.3 Frank Copula函数 (10)2.3 Copula模型参数估计 (11)2.3.1 Genest and Rivest的非参数估计法 (11)2.3.2 极大似然估计法(The Maximum Likelihood Method) (12)2.3.3 边缘分布函数推断法(The method of Inference of Functionsfor Margins) (13)2.3.4 典型极大似然法(The Canonical Maximum Likelihood Method) (13)2.4 Copula的检验 (13)2.4.1 Klugman-Parsa法则 (13)2.4.2 Copula分布函数检验法则 (14)2.4.3 非参数检验法则 (14)第三章 基于Copula的VaR分析计算 (15)3.1 VaR的基本概念 (15)3.1.1 VaR的定义 (15)3.1.2 VaR的计算要素 (16)3.2 基于Copula的投资组合VaR的计算 (16)3.2.1 Copula-VaR的解析方法 (16)3.2.2 用Copula变换相关系数的VaR分析方法 (17)3.2.3 基于Copula的蒙特卡洛模拟法 (18)3.2.4 实证分析 (19)3.3 基于三维Copula的VaR计算 (25)3.3.1 多元阿基米德Copula的构造 (25)3.3.2 基于Copula的Monte Carlo模拟法 (26)3.3.3 实证分析 (27)第四章 混合Copula的构造与Bootstrap方法的应用 (30)4.1 混合Copula的构造与应用 (30)4.1.1 基于Bayes理论的混合Copula构造 (30)4.1.2 实证分析 (32)4.2 Bootstrap方法的应用 (35)4.2.1 Bootstrap基本原理 (35)4.2.2 Bootstrap估计Copula参数 (36)第五章 结论与展望 (38)5.1 结论 (38)5.2 展望 (38)参考文献 (39)在校期间研究成果 (42)致 谢 (43)附录 数据 (44)附录 程序 (50)第一章 绪论1.1 研究背景与意义当今金融市场的发展达到了空前的规模,国际化、自由化、证券化、金融创新得到了飞速发展,但其不稳定因素也随之增加,脆弱性体现了出来。
Copula理论及其在金融分析中的应用研究共3篇

Copula理论及其在金融分析中的应用研究共3篇Copula理论及其在金融分析中的应用研究1Copula理论及其在金融分析中的应用研究Copula理论是一种用于描述多维随机变量之间依赖关系的数学工具。
如今,Copula理论已经成为金融工程领域中不可或缺的工具,由于金融市场的非线性、非对称性和异质性,传统的统计方法不能有效地解决金融问题,而Copula理论在解决金融问题方面的表现得到了广泛认可。
本文将介绍Copula理论的基本原理、Copula函数的类型以及其在金融分析中的应用研究。
一、Copula理论的基本原理Copula理论来源于统计学领域,它可以用来描述多维随机变量之间的相互关系,其中一个重要的应用就是对金融市场中的多维相关进行建模和预测。
Copula理论的核心是Copula函数。
Copula函数可以描述多个随机变量之间的依赖关系,它不仅可以提供相关系数(Pearson相关系数)以及协方差矩阵的信息,而且还可以捕捉多维依赖的非线性和异方性特点,并且避免了传统Pearson相关系数的局限性。
在Copula理论中,随机变量的边缘分布和Copula函数之间是相对独立的,也就是说,Copula函数只考虑变量之间的依赖关系,而不涉及其边缘分布的性质。
二、Copula函数的类型Copula函数有多种类型,其中常用的有以下几种:1.高维正交Copula函数这种函数可以用于高维随机变量的计算和预测,它的参数较少,能够处理非常大的维度和复杂的相互关系。
2.高维Epanechnikov Copula函数这种函数适合用于处理变量的边缘分布不一致的情况,能够解决非线性关系、长尾效应等一些问题。
3.高维t-分布Copula函数这种函数可以用于处理金融市场中的极端事件,即尾部厚的情况,它更能够刻画金融市场的风险。
三、Copula理论在金融分析中的应用研究Copula理论在金融工程领域中具有广泛的应用,以下是其最常见的应用:1.风险度量Copula理论是计算不同组合投资的风险的重要手段。
14Copula函数及其应用

这与线性相关性中的相关系数有着极为相似的形式。 此外,
X ,Y C 12
[0,1]2
uvdC (u, v) 3 12
[0,1]2
C (u, v)dudv 3
即可将 X ,Y 理解为X,Y联合分布与独立时分布之间的平 均距离。
Kendall’s tau及Spearman’s rho作为度量相关性指标的合理性
t-分布Copula函数
t-分布Copula函数是正态Copula函数的变形。 定义5 正态分布随机变量 X1 , , X n 的均值分别为 0, 2 方差分别为1,协方差矩阵为R。Y为 分布随机变量, ( X1 , , X n ) 自由度为 ,与 独立。则随机变量 U t ( X ),i I 的分布函数 C (u , , u )为Copula函数, Y 称为自由度为 ,协方差矩阵为R的t-分布Copula函数。
LY (t ) : E[etY ] ety dG( y) ety g ( y)dy : Lg (t ),t 0
0 0
L (t ) : e ( y)dy (t ),t 0
ty 0
(14.10)
(3)Y的分布由Laplace变换唯一确定。
n
n
是一列连续随机变量,有Copula函数 C C , n
定理6 若为连续随机变量,Copula函数为,则 Kendall’s tau和Spearman’s rho满足定义13所述要求。
Kendall’s tau与Spearman’s rho的关系
几种不同生成元的Copula函数:
定义9 (1)Clayton Copula:
(t ) (t 1),
连接函数(Copula)理论及其在金融中的应用

连接函数(Copula)理论及其在金融中的应用Copula 理论及其在金融中的应用摘要:Copula 是一种常用于描述多维随机变量之间依赖关系的函数,它不仅能够描述变量的相互关联,还能够将变量的边际分布与依赖关系分离开来。
在金融领域,Copula 理论广泛应用于风险管理、衍生品定价和投资组合优化等领域。
本文介绍了 Copula 理论的基本概念、分类和性质,并探讨了其在金融中的应用和优势。
关键词:Copula 理论,依赖关系,金融,风险管理,衍生品定价,投资组合优化一、引言在金融中,随机变量之间的依赖关系是研究风险管理、衍生品定价和投资组合优化等领域的重要基础。
然而,在实际应用中,研究者通常会遇到两个问题。
第一个问题是如何描述多维随机变量之间的依赖关系。
传统的做法是使用相关系数或协方差矩阵来描述变量之间的线性关系,但是这种做法忽略了变量之间的非线性因素,不能完全反映变量之间的依赖关系。
第二个问题是如何将变量的边际分布和依赖关系分开来。
从统计学的角度来看,边际分布和依赖关系是不同的概念,它们之间的关系不应该混淆。
然而,在现实应用中,变量的边际分布和依赖关系通常是同时存在的,不加区分的分析会导致结果的误解。
为了解决这些问题,Copula 理论被提出作为一种描述多维随机变量之间依赖关系的方法。
该理论不仅能够描述变量的相互关联,还能够将变量的边际分布与依赖关系分离开来。
在本文中,我们将介绍 Copula 理论的基本概念、分类和性质,并探讨其在金融中的应用和优势。
二、Copula 理论的基本概念Copula 是从多元随机变量的联合分布函数中提取出依赖结构的工具,其主要思想是通过一个单独的函数来描述变量之间的依赖关系,从而将边际分布与依赖关系分离开来。
Copula 的基本定义是:设 $X_1, X_2, ..., X_d$ 为 $d$ 个随机变量,它们的边际分布函数分别为 $F_1, F_2, ..., F_d$,联合分布函数为$H$,则称 $C(u_1, u_2, ..., u_d)$ 为 $X_1, X_2, ..., X_d$ 的Copula 函数,其中 $u_i = F_i(x_i)$ 是 $X_i$ 的分位数。
Copula理论及其在金融分析中的应用研究

二、Copula方法与金融市场风险管理
以信用违约掉期(CDS)为例,投资者可以使用Copula方法来评估不同信用 等级之间的相关性以及信用事件的可能性。基于这些信息,投资者可以制定出更 为精确的风险控制策略,如分散投资、设置止损点等。在实际应用中,投资者还 需要考虑市场环境、政策变化等因素,以不断优化投资策略。
一、Copula方法与投资组合构建
一、Copula方法与投资组合构建
投资组合构建是投资者在特定风险水平下追求最高收益的过程。Copula方法 通过全面考量各个资产之间的相关性,为投资者提供了一种有效的资产配置方式。
一、Copula方法与投资组合构建
首先,Copula方法能够根据历史数据估计出资产之间的相关性矩阵。在这个 过程中,Copula函数起着关键作用,它可以描述变量之间的依赖关系。通过选择 适当的Copula函数,投资者可以更好地理解资产之间的相关程度。
一、Copula方法与投资组合构建
其次,使用Copula方法可以构建多元化的投资组合。基于Copula函数,投资 者可以计算出不同资产组合的预期收益和风险水平。这使得投资者能够在保证收 益的同时,有效地分散投资风险。
一、Copula方法与投资组合构建
以Gaussian Copula为例,投资者可以根据资产的历史数据计算出相关系数 矩阵。然后,通过优化算法,找到能够最大化收益并最小化风险的资产组合。在 实际应用中,投资者还需要考虑交易成本、税收等因素,以制定更为全面的投资 策略。
内容摘要
在结果与讨论中,我们将对Copula方法在金融风险管理中的应用进行客观描 述和解释,并对结果进行可行性分析。首先,我们发现不同Copula模型在拟合不 同类型风险数据时具有不同的优劣。例如,Gaussian Copula模型在拟合信用风 险数据方面表现较好,而t-Copula模型在拟合市场风险数据方面更具优势。此外, 我们还发现不同风险的Copula模型在估计参数时存在一定的不确定性。这要求我 们在实际应用中需谨慎处理参数估计的不确定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
copula函数及其应用
陆伟丹2012214286
信息与计算科学12-2班Copula函数及其应用Copula函数是一种〃相依函数"或者“连接函数",它将多维变量的联合分布函数和一维变量的边际分布函数连接起来,在实际应用中有许多优点。
首先,由于不限制边缘分布的选择,可运用Copula理论构造灵活的多元分布。
其次,运用Copula理论建立模型时,可将随机变量的边缘分布和它们之间的相关结构分开来研究,它们的相关结构可由一个C opu 1 a函数来描述。
另外,如果对变量作非线性的单调增变换,常用的相关性测度——线性相关系数的值会发生改变,而由Cop u1 a函数导出的一致性和相关性测度的值则不会改变。
此外,通过C o p u1 a函数,可以捕捉到变量间非线性、非对称的相关关系,特别是容易捕捉到分布尾部的相关关系。
正是这些性质与特点使得C opu 1 a为研究变量问的相关性提供了一种新方法,使得投资组合风险管理度量方法有了一个新的突破。
Copula函数是现代概率论研究的产物,在2 0世纪5 0年代由S k1 a r( 19
5 9 )首先提出,其特点在于能将联合分布的各边缘分布分离出来,从而简化建模过程,降低分析难度,这也是著名的S k 1 a r定理。
S c hwe i z e r Sklar( 1983) 对其进行了阶段性的总结,在概率测度空间理论的框架内,介绍了C opu1 a函数的定义及Copula函数的边缘分布等内容。
J oe ( 1 9 9 7 )又从相关性分析和多元建模的角度进行了论述,展示了Copula 函数的性质,并详尽介绍了Copula函数的参数族。
Ne 1 s e n(1999 )在其专著中比较系统地介绍了C o pula的定义、
构建方法、Archimedean Copula及相依性,成为这一研究领域的集大成者。
D a v i d s i on R A, Res nick S 1.( 1984)介绍了C o p u 1 a的极大似然估计和矩估计。
而J o e , H .提出了二步极大似然估计,并说明它比极大似然估计更有效。
在选择最适合我们要求的Copula 函数上,最常用的方法是拟合优度检验,W. B reymannn ,A.Dias , P ・ Embrecht s ( 2 0
0 3 ), S t u a r t A . KI u g m a n, RahulParsa .( 1 9 9 9 )等者0 提出了模型选择检验以及拟合的方法。
2 0世纪9 0年代以前,由于受技术条件的限制,Copu a 1理论一直没有得到很好的应用。
随着计算机技术的发展.Copula函数才广泛应用在金融硏究中。
Embrecht sP .Resnick S .Samorod nitsk yG ( 1 9 9 9 )首次将C opu 1 a理论引入金融领域z以许多具体例子来拟合多元联合分布和构建变量之间的相依结构;Robe r t De Matteis(2001)对C o p u1 a ,特别是对A rchimedea nCopula及其应用做了比较详尽的总结,依据Copula 生成函数的不同,把Ar c h imedeanCopu 1 a分成不同的类:A.Juri(2002)提出了尾部事件的C opu 1 a收敛理论指出可以用来描述尾部相关的Copula函数包涵了尾部相关的全部信息,因此它可以更全面更深入地刻画变量之问的尾部相关关系。
Bouye/E.etal.( 2000 )/ Emb r e cht S/P.etal.( 2001)对Copula函数在风险管理中的应用问题进行了比较深入地探讨;Ang r A Chen # J .( 2 0 0 1 )在关于C opu 1 a函数的研究文献中报道了股票之间的非对称相关现象;Pa t t on A J .( 2 0 0 1 )构造了马克/美元和日元/美元汇率的对数收益的二元C o p u 1 a模型,并与相应的B E K K模型做了比较,结果表明C opu 1 a模型可以更好地描述金融市场间的相关关系;L i ( 1 9 9 9 )将C。
p u 1 a用于违约相关关系的研究,指出C r ed i t Me t r i c s的通过资产相关关系研究违约相关关系的方法与借助一个正态Copula函数硏究相关关系是等价的;Roma no ,C.(2002)对意大利股市收益率进行了Copu 1 a分析,并检验了其准确性:Davide Wa 1 t e r ( 2 0 0 3 )用Copula 对一些信用衍生品的定价和风险分析进行了研究,发现t・Copula较合适于金融数据分析;Lucia no Mare na(2005)给出Copula函数在衍生产品定价和金融风险管理的应用。
此夕卜,还有众多的学者对C opu 1 a函数在金融中的应用做了大量研究。
国内学者对Copula理论的研究起步较晚。
张尧庭(2 0 0 2 )从理论上探讨了Copula 在金融上应用的可行性,指出Copula是度量金融风险的绝佳方法;张明恒(2 0 0 4 )研究了多资产V a R的C opu1 a计算方法;吴振翔等(2004,2006)硏究TCopu1 a相依结构下多资产的组合投资问题;陈守东、胡铮洋、孑L繁利(2 0 0 6 ) 选取了三个有代表性的Copula函数对金融时间序列建模,计算投资组合的VaR值, 将Copul a方法的计算结果与传统的帀态模拟结果比较表明,Copu 1 a方法对金融风险的度量要明显优于正态方法。
韦艳华、张世英(2 0 04)建立了Copula .GA RCH模型对上海股市各板块指数收益率序列问的条件相关性进行了分析,结果表明各序列间有很强的正相关关系;李秀敏、史道济(2 0 0 6 )用混合相关结构函数C opu 1 a 对上海、深圳股票市场进行相关分析研究,用极值分布刻画了每支股票的边缘分布,用两步估计法对Copula的参数进行了估计,分析结果表明,混合C。
p u1 a相关结构比单个C opu 1 a更能够捕捉金融市场问相关性变化规律;李悦、程希骏( 2 0 0 6 )通过分析C opu1 a的尾部相关性揭示了上证指数和恒生指数的相关性;梁冯珍、钟君、史道济( 2 0
0 7 )通过随机模拟,以1 9 9 6・200 5年的上证综指和深圳成指同数据为样本,研究了两种不同的风险测度(V a R和方差)与相关性之间的关系;罗付岩、
邓光明( 2 0 0 7 )用条件时变相关模式的Copula模型来估计组合风险值,利用上证和深证指数组合进行实证硏究,并与固定相关模式下的Copula模型进行比较,结果表明:相对于常相关模式,条件时变相关模式具有较好的表现。
包卫军、胡杰(200 8 )采用多元G umbe1Copu 1 a模拟投资组合的C VaR,对多元投资组合的风险进行测度。