2019贵州省普通高中会考数学试题
2019贵州省普通高中会考数学试题

2019贵州省普通高中会考数学试题2019年贵州省普通高中会考数学试题二、填空题:本大题共35个小题,每小题1分,共35分,把答案填在题中的横线上。
1.sin150的值为()A。
-1/2 B。
1/2 C。
-√3/2 D。
√3/22.设集合A={1,2,5,7},B={2,4,5},则AB=()A。
{1,2,4,5,7} B。
{3,4,5} C。
{5} D。
{2,5}3.函数的定义域是()A。
R B。
R-{0} C。
R+ D。
R-4.直线y=3x+6在y轴上的截距为()A。
-6 B。
-3 C。
3 D。
65.双曲线42-32=1的离心率为()A。
2 B。
4 C。
3 D。
56.已知平面向量a=(1,3),b=(x,6),且a//b,则x=()A。
-3 B。
-2 C。
3 D。
27.函数y=sin(2x+1)的最小正周期是()A。
π B。
2π C。
3π D。
4π8.函数f(x)=x-1的零点是()A。
-2 B。
1 C。
2 D。
39.若a<b<0,则下列不等式成立的是()A。
a0 D。
|a|>|b|11.已知数列{an}满足an+1=3an+1,a1=1,则a3=()A。
4 B。
7 C。
10 D。
1312.抛物线y2=4x的准线方程为()A。
x=4 B。
x=1 C。
x=-1 D。
x=213.若函数f(x)=kx+1为R上的增函数,则实数k的值为()A。
(-∞,2) B。
(-2,+∞) C。
(-∞,) D。
(。
+∞)14.已知y=f(x)是定义在R上的奇函数,f(0)=2,则f(-2)=()A。
2 B。
1 C。
0 D。
-115.已知△ABC中,∠A=60°。
∠B=30°。
b=1,则a=()A。
1 B。
2 C。
3 D。
616.不等式(x-3)(x+5)>0的解集是()A。
{x|x-53} C。
{x|35}17.已知在幂函数y=f(x)的图像过点(2,8),则这个函数的表达式为()A。
贵州省普通高中会考数学试题(优质教学)

2019年贵州省普通高中会考数学试题二、填空题:本大题共35个小题,每小题105分,共60分,把答案填在题中的横线上。
1.sin150的值为()A .3-B.3C.12-D.122. 设集合A={1,2,5,7},B={2,4,5},则A B=()A. {1,2, 4,5,7}B. {3,4,5}C .{5} D. {2,5}3. 函数的定义域是()A. B. C. D.4.直线y = 3x + 6 在y 轴上的截距为()A. -6B. -3C. 3D. 65.双曲线2222143x y-=的离心率为()A. 2B. 54 C.53 D.346.已知平面向量xbaxba则,//且),6,(),3,1(=== ()A. -3B. -2C. 3D. 27.函数y=sin(2x+1)的最小正周期是()A. πB. 2πC. 3πD. 4π8. 函数f (x) = x -1的零点是()得分评卷人A. -2B. 1C. 2D. 39. 若a<b <0,则下列不等式成立的是 ( )A. 22a b <B. 22a b ≤C. a-b>0D. |a|>|b|11.已知数列=+==+311,13,1}{a a a a a n n n 则满足 ( )A. 4B. 7C. 10D. 1312.抛物线24y x =的准线方程为 ( )A. x=4B. x=1C. x=-1D. x=213.若函数 f (x) = kx +1为R 上的增函数,则实数 k 的值为( )A.(-∞,2)B.(- 2,+ ∞)C.(-∞,0)D. (0,+ ∞)14.已知)(x f y =是定义在R 上的奇函数,=( ) A. 2 B. 1 C. 0 D. -115.已知 ∆ABC 中,且 A = 60° , B = 30°,b =1,则a = ( )A. 1B. 2C. 3D. 616.不等式0)5)(3(>+-x x 的解集是( )A. }35{<<-x xB.}3,5{>-<x x x 或C. }53{<<-x xD.}5,3{>-<x x x 或17.已知在幂函数)(x f y =的图像过点(2,8),则 这个函数的表达( )A. 3x y =B. 2-=x yC. 2x y =D.3x y -=18.为了得到函数的图像可由函数R x x y ∈=,sin 图像( )A. 向左平移4π个单位长度B. 向右平移4π个单位长度C. 向左平移41个单位长度D. 向右平移41个单位长度19.甲、乙两名同学五场篮球比赛得分情况的茎叶图如图所示,记 甲、乙两名同学得分的众数分别为 m,n,则 m 与 n 的关系是( )A. m=nB. m<nC. m>nD. 不确定20.在等比数列===q a a a n 则公比中,,27,1}{41( )A. 31-B. -3C. 3D. 3121.30=α°是sin(α) =21的什么条件 ( ) A. 充分必要 B. 充分不必要 C. 必要不充分 D. 既不充分也不必要 22. 直线l 的倾斜角)3,4(ππα∈,则其斜率的取值范围为( ) A. )1,33( B.)3,1( C.)3,22( D.)22,33( 23.某地区有高中生 1000 名,初中生 6000 人,小学生13000 人,为了解该地区学生的近视情况,从中抽取一个容量为 200 的样本,用下列哪种方法最合适( )A. 系统抽样B. 抽签法C. 分层抽样D. 随机数法24.图是某校 100 名学生数学竞赛成绩的频率分布直方图,则 a 值为A. 0.025B. 0.03C. 0.035D. 0.325、圆221x y +=的圆心到直线x-y+2=0的距离为( )A .1 B. 2 C. 3 D. 226.根据如图所示的程序框图,若输入 m 的值是 8,则输出的 T 值是( )A.3B. 1C.0D.227.经过点(3,0)且与直线 y = -2x + 5 平行的的直线方程为( )A. y + 2x - 6 = 0B. x - 2y - 3 = 0C. x - 2y + 3 = 0D. 2x + y - 7 = 028.若A,B 互为对立事件,则( )A.P(A)+P(B)<1B. P(A)+P(B)>1C. P(A)+P(B)=1D. P(A)+P(B)=029.一个几何体的三视图如图所示,则该几何体的体积为( )A. 227B. 29C. 221D. 229 30.已知 x > 0, y > 0,若 xy = 3,则x + y 的最小值为( )A. 3B.2C. 23D.131.已知 x, y 满足约束条件则 z = x + 2y 的最大值为( ).A. 0 B. 2 C. 3 D. 432.棱长为2 的正方体的内切球的表面积为( )A. 3B. 4C. 3πD. 4π33.从0,1,2,3,4中任取3个数字组成没有重复数字的三位数,共有个数是 ( )A. 10B. 20C. 30D. 6034.已知圆0142:22=++-+y x y x C 关于直线0423:=++by ax l 对称,则由点),(b a M 向圆C 所作的切线中,切线长的最小值是( )A. 2B. 5C. 3D.1335.若函数在 R 上是减函数,则实数 a 取值范围是( )A. (-∞,- 2]B. (-∞,-1]C. [- 2,-1] D .[- 2,+ ∞)二、填空题:本大题共5个小题,每小题3分,共15分,把答案填在题中的横线上。
2019年七月贵州省普通高中毕业会考

2019年七月贵州省普通高中毕业会考数学试卷注意事项:1、 全卷共三大题,计100分,考试时间120分钟;2、 用签字笔或钢笔直接答在试卷中;一、选择题:本大题共12个小题,每小题3分,共36分,每小题给出的四个选项中,只有一项符合题目的要求,把所选项前的字母填在题后括号内。
1、sin150的值为 ( ) (A ) 2-(B ) 2 (C ) 12- (D ) 122、设集合A={1,2,3,5,7},B={3,4,5},则A B =( )(A ) {1,2,3,4,5,7} (B ) {3,4,5} (C ){5} (D ) {1,2}3、不等式|x|<1的解集是 ( ) (A ) {x|x>1} (B ) {x|x<-1} (C ) {x|-1<x<1} (D ) {x|x<-1或x>1}4、双曲线2222143x y -=的离心率为 ( )(A ) 2 (B )54 (C ) 53 (D ) 345、已知向量a=(2,3),b=(3,-2)则a ·b= ( ) (A ) 2 (B ) -2 (C ) 1 (D ) 06、函数y=sin2x 的最小正周期是 ( ) (A ) π (B ) 2π (C ) 3π (D ) 4π7、若a<b<0,则下列不等式成立的是 ( ) (A ) 22a b < (B ) 22a b ≤ (C ) a-b>0 (D ) |a|>|b|8、已知点A (2,3),B (3,5),则直线AB 的斜率为 ( ) (A ) 2 ( B ) -2 (C ) 1 ( D ) -19、抛物线24y x =的准线方程为 ( ) (A ) x=4 ( B ) x=1 (C ) x=-1 (D ) x=210、体积为43π的球的半径为 ( ) (A ) 1 ( B ) 2 ( C ) 3 ( D ) 411、从1,2,3,4,5中任取3个数字组成没有重复数字的三位数,共有个数是 ( ) (A ) 10 ( B ) 20 ( C ) 30 (D ) 6012、圆221x y +=的圆心到直线x-y+2=0的距离为 ( ) (A )1 (B )(C )( D ) 2 二、填空题:本大题共4个小题,每小题3分,共12分,把答案填在题中的横线上。
2019年贵州省贵阳市中考(学业)数学真题

2019年贵州省贵阳市初中毕业生学业(升学)考试试题卷数学(全卷共三个大题,满分150分,考试时间120分钟)一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每小题3分,共30分。
1.32可表示为()A.3×2B.2×2×2C.3×3D.3+32.如图是由4个相同的小立方体搭成的几何体,则它的主视图是()A.B.C.D.3.选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式4.如图,菱形ABCD的周长是4cm,∠ABC=60°,那么这个菱形的对角线AC的长是()A.1cm B.2 cm C.3cm D.4cm5.如图,在3×3的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是()A.B.C.D.6.如图,正六边形ABCDEF内接于⊙O,连接BD.则∠CBD的度数是()A.30°B.45°C.60°D.90°7.如图,下面是甲乙两位党员使用“学习强国APP”在一天中各项目学习时间的统计图,根据统计图对两人各自学习“文章”的时间占一天总学习时间的百分比作出的判断中,正确的是()A.甲比乙大B.甲比乙小C.甲和乙一样大D.甲和乙无法比较8.数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,则a的值是()A.3B.4.5C.6D.189.如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE =1,则EC的长度是()A.2B.3C.D.10.在平面直角坐标系内,已知点A(﹣1,0),点B(1,1)都在直线y=x+上,若抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,则a的取值范围是()A.a≤﹣2 B.a<C.1≤a<或a≤﹣2 D.﹣2≤a<二、填空题:每小题4分,共20分。
2019-2020学年贵州省高二12月普通高中学业水平考试数学试题(解析版)

2019-2020学年贵州省高二12月普通高中学业水平考试数学试题一、单选题1.已知{1,1},{0,1}A B =-=,则A ∩B=( ) A .{1} B .{0}C .{}1-D .{}0,1【答案】A【解析】根据集合的交集的概念及运算,可得A B ,得到答案.【详解】由题意,集合{1,1},{0,1}A B =-=,根据集合的交集的概念及运算,可得{1}A B ⋂=. 故选:A. 【点睛】本题主要考查了集合表示,以及集合的交集的概念及运算,其中熟记集合交集的概念及运算是解答的关键,属于容易题.2.在等差数列{}n a 中,12a =,公差1d =,则3a =( ) A .6 B .5C .4D .3【答案】C【解析】根据等差数列的通项公式可得答案. 【详解】3122214a a d =+=+⨯=.故选:C. 【点睛】本题考查了等差数列的通项公式的应用,属于基础题. 3.已知向量(1,1),(2,2)a b ==,则a b +=( ) A .(0,0) B .(3,3)C .(4,4)D .(5,5)【答案】B【解析】利用向量加法坐标运算公式直接计算即可.解:根据向量加法坐标运算公式得:()()()1,12,23,3a b +=+=. 故选:B. 【点睛】本题考查了向量加法的坐标运算,属于基础题.4.某班有男生20人,女生25人,用分层抽样的方法从该班抽取9人参加志愿者活动,则应抽取的女生人数为( ) A .2 B .3C .4D .5【答案】D【解析】先求出女生所占的比例,再求出应抽取的女生人数得解. 【详解】由题得女生所占的比例为25255==20+25459,所以用分层抽样的方法从该班抽取9人参加志愿者活动,则应抽取的女生人数为59=59⨯.故选:D. 【点睛】本题主要考查分层抽样的应用,意在考查学生对该知识的理解掌握水平. 5.如图所示茎叶图的数据中,众数是( )A .18B .23C .25D .31【答案】C【解析】根据茎叶图得到10个数据,再根据众数的概念可得答案. 【详解】根据茎叶图可得10个数据为:15,18,23,23,25,25,25,31,34,36. 因为数据25的个数最多,所以根据众数的概念可知,众数为25.本题考查了由茎叶图求众数,考查了众数的概念,属于基础题. 6.函数1()2f x x =-的定义域是( ) A .{|2}x x < B .{|2}x x >C .RD .{|2}x x ≠【答案】D【解析】由20x -≠,即可得出定义域. 【详解】20x -≠ 2x ∴≠即函数1()2f x x =-的定义域为{|2}x x ≠ 故选:D 【点睛】本题主要考查了求具体函数的定义域,属于基础题. 7.已知等比数列{}n a 的前n 项和为n S ,11a =,公比2q ,则2S =( )A .3B .4C .5D .6【答案】A【解析】由题意12112S a a a a q =+=+,即求2S . 【详解】{}n a 是等比数列,11a =,公比2q,122111123S a a a a q =+=+=+⨯=∴.故选:A . 【点睛】本题考查等比数列求和,属于基础题.8.如图,将一个圆八等分,在圆内任取一点P ,则点P 取自阴影部分的概率为( )5311【解析】根据几何概型概率公式求解,测度为面积. 【详解】设圆面积为1,则阴影部分的面积为38所以在圆内任取一点P ,点P 取自阴影部分的概率为33818=故选:B 【点睛】本题考查几何概型概率,考查基本分析求解能力,属基础题. 9.若向量(1,2),(2,)a b x ==,若//a b ,则x =( ) A .4 B .2C .1D .-1【答案】A【解析】根据平面向量的共线条件,列出方程,即可求解. 【详解】由题意,向量(1,2),(2,)a b x ==,因为//a b ,可得1220x ⨯-⨯=,解得4x =. 故选:A. 【点睛】本题主要考查了向量的坐标表示,以及平面向量的共线条件的坐标表示,着重考查运算与求解能力,属于基础题. 10.tan 45的值是( )A .2B CD .1【答案】D【解析】由tan 451=,即可得出答案. 【详解】tan 451=故选:D 【点睛】本题主要考查了求特殊角的三角函数值,属于基础题.11.执行如图所示的程序框图,若输入的12r πθ==,,则输出l 的值为( )A .2πB .πC .32π D .2π【答案】A【解析】直接按照流程图计算可得答案. 【详解】 因为1r =,2πθ=,则122l r ππθ==⨯=.故选:A. 【点睛】本题考查了程序框图,属于基础题.12.下列函数中,在(0,)+∞上为减函数的是( ) A .()ln f x x = B .1()f x x=C .()2x f x =D .()1f x x =+【答案】B【解析】根据基本初等函数的性质,逐项判定,即可求解. 【详解】由对数函数的性质,可得函数()ln f x x =在(0,)+∞为单调递增函数,不符合题意; 由幂函数的性质,可得函数1()f x x=在(0,)+∞为单调递减函数,符合题意; 由指数函数的性质,可得函数()2x f x =在(0,)+∞为单调递增函数,不符合题意; 由一次函数的性质,可得函数()1f x x =+在(0,)+∞为单调递增函数,不符合题意。
贵州省2019年7月普通高中学业水平考试数学试卷高清答案版

贵州省2019年7月普通高中学业水平考试数 学 试 卷参考公式:柱体体积公式:V=Sh ;锥体体积公式:V=31Sh(S 为底面面积,h 为高)。
第I 卷(第Ⅰ卷包括35小题,每题3分,共计105分)一、选择题:每小题给出的四个选项中,只有一项是符合题意的。
1.已知A={x|x<2},B={1,2,3},则A ∩B=A .{ 1}B .{2}C .{2,3}D .{0,1,3} 2.函数f (x)=2-x 的定义域为A .{x|x ≥1}B .{x ≥2}C .{x|x ≤1}D .{x|x ≤2} 3.以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体是A .圆柱B .圆锥C .圆台D .球体 4.已知向量a =(1,-2),b =(2,3),则a -b =A .(4,-1)B .(2,5))C .(-3,2)D .(-1,-5) 5.设等差数列{a n }的前n 项和是S n ,若首项a 1=1,公差d =2,则S 3=A .7B .9C .11D .13 6.函数f (x)=(k+3)x+1在R 上是增函数,则实数k 的取值范围是A .k>-3B .k<-3C .k>-2D . k<-27.如图,九宫格由九个小正方形组成在该九宫格内随机取一点P ,则点P 在阴影部分的概率为A .91 B .61 C .31 D .21 8.已知向量a =(2,7),则|a |=A .2B .3C .4D .59.各项均为正数的等比数列{a n }满足a 3=1.a 5=36,则a 4=A .3B .4C .5D .6 10.函数y=|x-1|的图象是A B C D11已知直线/:y=4x-5,其斜率为A .1B .2C .3D .412.右图是某城市2017年各月的平均气温(°C)数据的茎叶图,则这组数据的众数为A .17B .19C .21D .2313.角a 的顶点与原点O 重合,始边与x 轴的非负半轴重合,若a 的终边经过点P(2,2),则tan a 的值为A .1B .2C .3D .4 14.幂函数f (x)=x a 的图象经过点(2,4),则f (x)的解析式为A .f (x)=x -1B . f(x)=xC . f(x)=x 2D . f(x)=x 3 15.已知sin a =31,则sin(a +2 )的值为 A .-31 B .31 C .-61 D .6116.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .若A=60°,a =3,b=1,则BA .30°B .45°C .60°D .135°17.某班有男生30名,女生24名.现用分层抽样的方法从全班同学中抽取若干名同学参加一项活动,若男生抽取5名,则女生抽取的人数为A .2B .3C .4D .518.如图,在直二面角A-BC-D 中,M ,N 分别是线段AB ,AC 的中点,则直线MN 与平面BCD 的位置关系是A .直线M 在平面BCD 内B .直线MN 与平面BCD 平行C .直线MN 与平面BCD 相交1 1xy 01 1xy1 1xy1 1xyAB CDMND .以上位置关系均有可能 19.已知函数f (x)=e x +e -x ,则f (x)为A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数20.掷一枚质地均匀的骰子一次,出现点数不大于5的的概率为A .31 B .21 C .32D .65 21.已知a ,b ,c 均为实数,且a >b ,则以下选项正确的是A .a 2>b 2B . ac> bcC .a-c>b-cD .ba 11> 22.计算sin17°cos28°+cos17°sin28°的结果等于A .-23 B .-22 C .22 D .2323.已知log a 4=1,则a 的值为A .3B .4C .5D .624已知e 1与e 2为两个不共线的向量,则与e 1+2e 2平行的向量是A .e 1+ e 2B .2 e 1+ e 2C .2 e 1+3 e 2D .2 e 1+4 e 2 25.△ABC 的内角A ,B ,C 对边分是a ,b ,c ,a =3,b =5,c =7,则C 的大小为A .120°B .90°C . 45°D .30° 26.函数f (x)=x 3-10的零点所在的区间是A .(0,1)B .(1,2)C .(2,3)D .(3,4) 27.甲与乙进行象棋比赛,甲获胜的概率为31,甲与乙和棋(平局)的概率为61,则乙获胜的概率为A .21 B .41 C .61D .8128.若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≥+≥+≤-0,2y -x 0,y x ,02x ,则z=3x+y 的最大值是A .-2B .4C .8D .10 29.已知a =30.2,b =30.5,c =30.9,则a ,b ,c 的大小关系为A .a<b<cB . c<a<bC . a<c<bD .b<c<a30.为了落实“振兴乡村战略”,某市拟定从2018年至2023年,年投入“振兴乡村战略”的项目资金从200亿元增加到300亿元,则这几年间该市投入该项目资金的年平均增长率x 应满足的关系式为A.200(1+x)=300B .200x=300C .200(1+x)5=300D .200x 5=300 31.将函数y=cos 2x-sin 2x 的图象上所有点向左平移6π个单位长度,所得图象的函数解析式为A .y=cos(2x+6π) B . y =cos(2x-6π) C .y=cos(2x+3π) D . y=cos(2x-3π)32.已知正实数a ,b 满足a +b =2,则b a 11+,的最小值是A .2B .49C .38D .82533.△ABC 的内角A ,B ,C 的对边分别是a ,b ,c .若△ABC 的面积是)(123222a cb -+则A=A .90°B .60°C .45°D .30° 34.定义bc ad dc b a -=,则函数f (x)=132cos 2sin x x 的图象的一个对称中心为A .(4π,0) B .(3π,0) C .(125π,0) D .(32π,0)35.若函数f (x)=x 2-2x+m 在区间[1,n]上的值域仍为[1,n] ( n>1),则m+n 的值为A .3B .4C .3或4D .0第Ⅱ卷(第Ⅱ卷包括8小题,共45分)二、填空题:本大题共5小题,每小题3分,共15分。
贵州省2019年普通高等学校高三招生适应性考试数学(文)

贵州省2019年普通高等学校高三招生适应性考试数学试题(文科)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷(本试卷共l2小题,每小题5分,共60分)注意事项:1.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上。
2.答题前,请认真阅读答题卡上的“注意事项”。
在每小题给出的四个选项中。
只有一项是符合题目要求的。
一、选择题(1)设全集U=R ,若A={x |2)0x -<(},B={x|ln(1)y x =-},则()U AB ð=(A )(-2,1) (B )(-2,1](C )[1,2)(D )(1,2)(2)sin45o cosl5o +cosl35o sinl5o的值为(A )12-(B )12(C )-(D )(3)已知sin (4πα+)=23,则cos (4πα-)的值等于(A ) 23-(B )23(C (D ) (4)设{n a }为递增等比数列,2010a 和2011a 是方程4x 2—8x+3=0的两根,则2012a = (A ) 9 (B ) 10(C )92(D ) 25(5)将函数2sin()36x y π=+的图象按向量a=(4π-,2)平移后所得图象的函数为 (A ) 2sin()234x y π=+- (B ) 2sin()234x y π=++(C ) 2sin()2312x y π=-- (D ) 2sin()2312x y π=++(6)若非零向量a 、b 、c 满足a+b+c=0,,且c 与b 的夹角为l50o ,则向量a 与c 的夹角为 (A )150o (B )90o 或l20o (C )90o 或150o (D )60o (7)下面四个命题:①“直线a ∥直线b”的充分条件是“直线a 平行于直线b 所在的平面”; ②“直线l ⊥平面α”的充要条件是“直线l ⊥平面α内无数条直线”; ③“直线a 、b 不相交”的必要不充分条件是“直线a 、b 为异面直线”;④“平面α∥平面β”的必要不充分条件是“平面α内存在不共线三点到平面β的距离相等”. 其中正确命题的序号是 (A )①② (B ) ②③(C ) ③④(D ) ④(8)若直线100ax by (ab )+-=>平分圆222220x y x y +---=,则12a b+的最小值等于 (A )(B )(C ) 2(D ) 5(9)若变量x ,y 满足约束条件360203x y x y x y --≤⎧⎪-+≥⎨⎪+≥⎩,且0z kx y(k )=+>的最大值为14,则k =(A )1(B )2(C )23(D )539(10)已知双曲线2222100x y (a ,b )a b-=>>的焦点为F 1、F 2,M 为双曲线上一点,若120FM F M =,且tan 1212MF F ∠=,则双曲线的离心率为 (A(B )12(C )(D )56(11)某校为全面实施素质教育,大力发展学生社团,2019级高一新生中的五名同学准备参加“文学社”、“戏剧社”、“动漫社”、“爱心社”四个社团,若每个社团至少有一名同学参加,每名同学必须参加且只能参加一个社团,若同学甲不参加“动漫社”,则不同的参加方法的种数为 (A ) 72 (B ) 108 (C ) 180 (D ) 216 (12)若y f (x )=是定义在R 上的函数,且满足:①f (x )是偶函数;②1f (x )-是奇函数,且当0<x ≤1时,f (x )lg x =,则方程2012f (x )=在区间(-6,10)内的所有实数根之和为 (A ) 8 (B ) 12(C ) 16(D ) 24第Ⅱ卷(本试卷共l0小题。
贵州省2019年7月普通高中学业水平考试数学试卷WORD

19.设数列 满足
20.已知 则有 的终边在
21.如图,正方体 中,
直线 所成的角是
22.已知向量
月份
1
2
3
4
用水量
4.5
4
3
2.5
23.右表是某厂 月份用水量的统计数据,其月份 与用水量 (单位:百吨)之间具有线性相关关系,则根据该统计数据求是的回归过点
24.《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数.那以 与 的最大公约数是
25.为了得到函数 的图象,只需把 图象上所有点
26. 且与直线 平行的直线方程是
27.如图,在矩形 将矩形绕边所在直线旋转一周形成一个圆柱,则该圆柱的体积为
28.不等式 的解集是
29.已知实数 满足约束条件 ,则实数对 可以是
30.已知直线 的方程分别是 ,若 ,则 的值为
31.函数的图象大致为
32.若
33.已知圆 ,则直线 截圆 所得的弦长为
34. 三个内角 所对边分别是 .若 ,则角 的最大值是
35.已知 为定义在 上的奇函数,当 时, 设方程 有四个互不相等的实根,则实数 的取值范围是
第Ⅱ卷
(第Ⅱ卷包括8小题 ,共计45分)
二、填空题:本大题共5小题,每小题3分,共15分.把答案填在答题卡上.
共30分.解答应写出文字说明、证明过程或推演步骤.
41.已知函数 ,
(1)求 的值;
(2)若 ,试求 的取值范围.
42.如图,在四棱锥 中,四边形 是矩形, 是正三角形,且
(1) 求三棱锥 的体积;
(2)若 分别是 的中点,求证: .
43.已知数列 的前 项和
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
105
20佃年贵州省普通高中会考数学试题
填空题:本大题共35个小题,每小题 共60分,把答案填在题中的横线上。
.3
A. {1,2, 4, 5, 7}
B. {3,4, 5} C ∙{5}
D. {2,5}
3.函数f 0∂ =石二 1的定义域是
()
A. ⅛∣-≥i}
B.
C.嗚CX
D.阖以壬
4直线y = 3x 6在y 轴上的截距为() A. -6 B. -3 C. 3 D. 6
2 2
X_ 一匕=1
5双曲线42 32 的离心率为
B. 2
C.
D. 2
2.设集合A={1,2,
5,7},B={2,4,5},则 AUB =
1. Sin 150;的值
为
9. 若a<b <0,则下列不等式成立的是 2 2 2 2
A. a b
B. a <b
C. a-b>0
D. ∣a ∣>∣b ∣ 11已知数列 2n}满足a 1 =1,a n 卑=3a n +1,贝U a 3 = A. 4 B. 7 C. 10 D. 13
f (X ) = kx 1为R 上的增函数,则实数 k 的值为() A. (-: , 2) B.(- 2, :) C. (-: , 0) D. (0,二) 14.已知y =f (χ)是定义在R 上的奇函数,[「釘-kiflF =( A. 2 B. 1 C. 0 D. -1
15.已知 ABC 中,且 A = 60° , B = 30° ,b =1,则 a = ()
16.不等式(x-3)(x P 0的解集是()
12.抛物线 2
y =4X 的准线方程为
A. x=4
B. x=1
C. x=-1
D. x=2
13.若函数 A. 1
B. -2
C. 3
D. 6
A. {x -5 X 3}
B.
{xx -5,或 X 3}
C.
{x-3c X v5}
D.
{xx -3,或 X 5}
19•甲、乙两名同学五场篮球比赛得分情况的茎叶图
如图所示,记 甲、乙两名同学得分的众数分别为 m,n,则m 与n 的关系是()
1
21.〉=30 ° 是 Sin (:•) = i 的什么条件 ()
A. e-3,1)
B.(1,∖3)
C.(¥「3) D .存,甞)
3
3 2
23. 某地区有高中生 1000名,初中生 6000人,小学生13000人, 为了解该地区学生的近视情况,从中抽取一个容量为 200的样本,
用下列哪种方法最合适()
A.系统抽样
B.抽签法
C.分层抽样
D.随机数法
24. 图是某校100名学生数学竞赛成绩的频率分布直方 图,则a 值为
A. 0.025
B. 0.03
C. 0.035
D. 0.3
2 2
25、 圆X y =1的圆心到直线x-y+2=0的距离为(
)
甲
乙
2 0
7
2 7 7 6 2 2 3
0 4
A. m=n
B. m<n
C. m>n
D.不确定
20.在等比数列
{a n }
中,
a 1 =1,a 4 =27,则公比 q =( A. -- B. -3 C. 3 3 D.
A.充分必要
B.充分不必要
C.必要不充分
D.既不充分也不必要
22. 直线l 的倾斜角
,则其斜率的取值范围为 )
01)4
α (In 2 0.01
°
50 60 70 SO 如
A .1 B. 2C. 3D. 2
26. 根据如图所示的程序框图,若输入m的值是8,则输出的T值
是()
A.3
B. 1
C.0
D.2
27. 经过点(3,0)且与直线y - -2x • 5平行的的直线方程为()
28. 若A,B 互为对立事件,则()
33. 从0, 1, 2, 3, 4中任取3个数字组成没有重复数字的三位数, 共有个数是
()
A. 10
B. 20
C. 30
D. 60
2 2
34. 已知圆C:X y ^2x 4y ^0关于直线l:3ax Jby+0对称,则由 点M^b )向圆C 所作的切线中,切线长的最小值是(
)
A. 2
B. 5
C. 3
D. 13
A. y 2x - 6 二 0
B. X - 2y - 3 = 0
C. X - 2y 3 二 0
D. 2x y - 7 二 0
A.P(A)+P(B)<1
B. P(A)+P(B)>1
C. P(A)+P(B)=1
D. P(A)+P(B)=0
29.—个几何体的三视图如图所示,贝S 该几何体的体积为(
A. 27
B. 9
C. 21
D. 29
2 2 2 2
30.已知 X 0, y 0,若Xy 二3,则X y 的最小值为() A. 3
B.2
C. 2 3
D.1
31.已知 x, y 满足
B. 2 32.棱长为 A. 3
Λ>0 j>0 .V +j<2
C. 3 约束条件则Z = X 2y 的最大值为
D. 4
2的正方体.汀匸亠上E ;:的内切球的表面积为() B. 4 C. 37
D. 4 二
值范围是()
A. J : , - 2
B. — - , -1
C. I.- 2, -11 D .〔- 2,亠」 二、填空题:本大题共5个小题,每小题 共15分,把答案填在题中的横线上。
36.由一组样本数据(x i , y i )(i =1,2,3,4,5)求得的回归直线方程是y = X • 3 ,已知
X i 的平均数X =2 ,则y 的平均数y = ________________;
37. 已知函数f (x )=a+l0g 3χ的图象过点A (3, 4),则a= ________ 38. 在三角形 ABC 中,BC=2,CA=1,∠B = 3θ',贝卩 / A = _________
39.已知直 l 1 : y = 2x 3, 12 : y = kx 5,且 I 1 _ I 2,则 k = ___________________
N *) f (1) f (2) f (3) f (2019)=
三、解答题:本大题共3个小题,每小题10分, 共30分,解答题应写出文字说明、说明过程或 推演步骤。
41
已知…叮,Sin -5,求tan ;「
得分
评卷人
得分
评卷人
在R 上是减函数,则实数a 取
3分,
,(n 35.若函数
40.已知 f ( n ) = sin
n
二 2
42.如图,在正方体 ABCD-A ιBιGD ι中,DA=DC=DD 讦2,求异面直 线A i B 与B i C 所成角的余弦值。
1
43.已知定义在R 上的函数f(x) =2x •歹。
(1) 判断f(x)的单调性并证明;
(2) 已知不等式f(x) mt^2mt 1,对所有X Rt R 恒成立,求m 的取值范围
5
5
3
A. 2
B. 4
C. 3
D. 4
6.已知平面向量 a =(1,3), b =(x ,6),且a // b ,则X = A. -3 B. -2 C. 3 D. 2
7. 函数y=sin(2x+1)的最小正周期是 A. : B. 2二 C. 3二 D. 45 * 7 * * * * * 8. 函数f (x) H X -1的零点是() A. -2 B. 1 C. 2 D. 3
17. 已知在幕函数y "(x )的图像过点(2,8),则 这个函数的表达() 3/2
,
A. y %
B. ^X
C. y =x
D. y = -x 3 18. 为了得到函数― 一 的图像可由函数 y ~nx ,x∙ R
图像()
π
π
A.向左平移4个单位长度
B.向右平移4个单位长度
1
丄
C.向左平移4个单位长度
D.向右平移4个单位长度
C i。