数学探究型问题

合集下载

数学探究性题目

数学探究性题目

数学探究性题目1.时钟上的数学我们每个同学家里都有大大小小的钟,绝大部分钟都有时针、分针、秒针,时时刻刻都可以听到它们不停的“滴答、滴答”走动的声音,当然他们的走动有快有慢,秒针最快,时针最慢,不知你有没有注意到它们之间的一些数学关系?为了使问题简单起见,我们假设所讨论的时钟只有时针和分针。

问题:在一天之内时针和分针重合多少次?每次发生在什么时候?什么时候两针互相垂直?什么时候两针在一条直线上?如果时针和分针交换它还能表示某一时刻的时间么?希望大家在解决以上问题之后讨论一下是否还有其他有趣的问题。

2.揭穿转摊的骗术在车站,码头附近有时会看到一些碰运气、赌输赢的地摊,这些地摊大多引诱来往过路旅客,用骗术骗取他们的钱财。

转摊就是其中之一。

摊主在一个固定的圆盘上划出若干扇形区域,并顺次标上号码1,2,3,4,5,6,。

,在每一奇数扇区上放上值钱的物品,如名酒,中华香烟等,而在每一个偶数区域上放着廉价的物品,如糖块,小食品等。

圆盘中心安装一根可以转动的轴,轴的顶端有一根悬臂,臂端吊一根线,线头上系一根针。

你如果付给摊主一元钱,就可以随便转动一次,当悬臂停止转动时,针就停在某一区域,按照摊主制订的规则,这一格上的数是几,就从下一格起,按顺时针方向数出几,最后数到哪一格,那一格中的物品就归你,例如:当针指向“6”时,就要从“7”数起,顺时针方向数出“6”,最后应该数到“12”这一格。

参加这种赌博的人认为,圆盘中奇数、偶数格占一半,输赢得机会各占一半,于是就去碰碰运气,然而,不管转多少次,最后总是数到偶数区域中,你只能用自己的很多钱换来几粒糖果等廉价物品。

为什么大家的“运气”都这样不好,你能用数学知识解开这个迷吗?类似的还有1.音乐教室里有7排座位,每排7把椅子,每把椅子上坐一名学生,教师每月都要将座位调换一次,张明同学提出建议:每次交换时,每一名同学都必须与她相邻(前、后、左、右)的某一个同学交换位置,以示公平。

中考数学二轮-专题1-规律探究型问题针对训练

中考数学二轮-专题1-规律探究型问题针对训练

第二部分专题一类型1 数式规律1.(2018·梧州)按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100 个数是( A )A.9 999 B.10 000C.10 001 D.10 0022.(2017·贺州)将一组数 2,2, 6,2 2, 10,…,2 10,按下列方式进行排列:2,2, 6,2 2,10;2 3, 14,4,3 2,2 5;…若2 的位置记为(1,2),2 3的位置记为(2,1),则38这个数的位置记为( B ) A.(5,4) B.(4,4)C.(4,5) D.(3,5)3.(2018·绵阳)将全体正奇数排成一个三角形数阵:135791113 15 17 1921 23 25 27 29…按照以上排列的规律,第25 行第20 个数是( A )A.639 B.637C.635 D.6334.(2018·枣庄)将从 1 开始的连续自然数按以下规律排列:第 1 行1第 2 行234第 3 行98765第 4 行10 11 12 13 14 15 16第 5 行25 24 23 22 21 20 19 18 17则2 018 在第45 行.5 7 9 11 415.(2018·百色)观察以下一列数:3,,,,,…,则第20 个数是 .4 9 16 25 4006.(2016·贵港)已知a=t,a=1,a=1,…,a =1(n为正整数,11+t121-a131-a2n+1 1-a n且t≠0,1),则a2016=-(用含有t的代数式表示).t1 1 17.(218·成都)已知a>,S1=2-134315,…(即a S2S41当n为大于1 的奇数时,S=;当n为大于1 的偶数时,S=-S -1),按此规律,Sa+1- .anSn-1n n-1 2 0181 1 1 18.(2018·咸宁)按一定顺序排列的一列数叫做数列,如数列:,,,,…,则这个数列前 2 018 个数的和为2 018.2 0192 6 12 209.(2016·南宁)观察下列等式:第1 层1+2=3第2 层4+5+6=7+8第3 层9+10+11+12=13+14+15第4 层16+17+18+19+20=21+22+23+24…在上述数字宝塔中,从上往下数,2 016 在第44 层.10.(2018·桂林)将从1 开始的连续自然数按图规律排列:规定位于第m行,第n列的自然数10 记为(3,2),自然数15 记为(4,2)…按此规律,自然数2 018 记为(505,2) .行列第 1 列第 2 列第 3 列第 4 列第 1 行1234第 2 行8765第 3 行910 11 12第 4 行16 15 14 13………………第m行…………类型2 图形累加规律1.(2018·烟台)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按=此规律摆下去,第 n 个图形中有 120 朵玫瑰花,则 n 的值为( C )A .28B .29C .30D .312.(2018·重庆 A 卷)把三角形按如图所示的规律拼图案,其中第①个图案中有 4 个三角形,第②个图案中有 6 个三角形,第③个图案中有 8 个三角形,…,按此规律排列下去, 则第⑦个图案中三角形的个数为( C )A .12B .14C .16D .183.观察下列一组图形中点的个数,其中第 1 个图中共有 4 个点,第 2 个图中共有 10 个点,第 3 个图中共有 19 个点,…,按此规律第 6 个图中点的个数是( C )A .46B .63C .64D .734.(2018·自贡)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第 2 018个图形共有6_055 个○.5.(2018·赤峰)观察下列一组由★排列的“星阵”,按图中规律,第 n 个“星阵”中 的★的个数是n22 .类型 3 图形成倍递变规律3)n -11.(2016·钦州)如图,∠M O N =60°,作边长为 1 的正六边形 A 1B 1C 1D 1E 1F 1,边 A 1B 1,F 1E 1 分别在射线 O M ,O N 上,边 C 1D 1 所在的直线分别交 O M ,O N 于点 A 2,F 2,以 A 2F 2 为边作正六边 形A 2B 2C 2D 2E 2F 2 ,边 C 2D 2 所在的直线分别交 O M ,O N 于点 A 3 ,F 3 ,再以 A 3F 3 为边作正六边形ABCDEF ,…,依此规律,经第 n 次作图后,点 B 到 O N 的距离是 3n -1· 3 .3 3 3 3 3 3n2.如图,在边长为 1 的菱形 A B C D 中,∠DAB =60°.连接对角线 A C ,以 A C 为边作第二个菱形A C C 1D 1,使∠D 1A C =60°.连接 A C 1,再以 A C 1 为边作第三个菱形 A C 1C 2D 2,使∠D 2A C 1=60°,……,按此规律所作的第 n 个菱形的边长是 ( .3.(2018·贵港)如图,直线 l 为 y = 3x ,过点 A 1(1,0)作 A 1B 1⊥x 轴,与直线 l 交于点 B 1,以原点 O 为圆心,O B 1 长为半径画圆弧交 x 轴于点 A 2;再作 A 2B 2⊥x 轴,交直线 l 于点 B 2, 以原点 O 为圆心,O B 2 长为半径画圆弧交 x 轴于点 A 3;……,按此作法进行下去,则点 A n 的 坐标为 (2n -1,0) .4.(2016·梧州)如图,在坐标轴上取点 A 1(2,0),作 x 轴的垂线与直线 y =2x 交于点 B 1,作等腰直角三角形 A 1B 1A 2;又过点 A 2 作 x 轴的垂线交直线 y =2x 交于点 B 2,作等腰直角 三角形 A 2B 2A 3;…,如此反复作等腰直角三角形,当作到 A n (n 为正整数)点时,则 A n 的坐标 是 (2×3n -1,0) .5.(2018·广东)如图,已知等边△OAB ,顶点 A 在双曲线 y = 3(x >0)上,点 B 的坐1 111x标为(2,0).过B1作B1A2∥O A1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(26,0).6.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点A6的坐标是(63,32).类型 4 图形周期变化规律1.(2018·钦州三模)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2018处,则点A2018与点A0间的距离是( C )第 1 题图A.0 B.2C.2 3 D.42.(2018·广州改编)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动 1 m.其行走路线如图所示,第1次移动到A,第2次移动到A,…,第n次移动到A,则△O AA的面积是504_m2.1 2 n 2 2 018第 2 题图3.等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(-6,0),点B在原点,CA =CB =5,把等腰三角形 ABC 沿 x 轴正半轴作无滑动顺时针翻转,第 1 次翻转到位置 ①,第 2 次翻转到位置②,…,依此规律,第 15 次翻转后点 C 的横坐标是 77 .第 3 题图14.(2018·衡阳)如图,在平面直角坐标系中,函数 y =x 和 y =- x 的图象分别为直线2l 1,l 2,过点 A 1(1,- 1)作 x 轴的垂线交 l 1 于点 A 2,过点 A 2 作 y 轴的垂线交 l 2 于点 A 3,过点 2A 3 作 x 轴的垂线交 l 1 于点 A 4,过点 A 4 作 y 轴的垂线交 l 2 于点 A 5,…依次进行下去,则点 A 2 018的横坐标为 21 008 .第 4 题图5.(2017·咸宁) 如图,边长为 4 的正六边形 A B C D E F 的中心与坐标原点 O 重合,A F ∥x 轴,将正六边形 A B C D E F 绕原点 O 顺时针旋转 n 次,每次旋转 60°.当 n =2 017 时,顶点 A 的坐标为 (2,2 3) .第 5 题图。

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析初中数学中,规律探究问题广泛存在于各种数学题型中,包括数列、几何、方程等多个方面。

解决这类问题需要灵活运用数学知识和思维方法,下面将就规律探究问题的类型及解题技巧进行分析。

(一)数列型规律探究问题1. 根据已知的数列前几项,找出数列的通项公式。

首先观察数列的前几项,如果发现相邻两项之间的差或比具有规律性,那么可以尝试构建通项公式。

对于等差数列,可以通过计算相邻两项的差值来确定数列的公差,从而得到通项公式。

同理,对于等比数列,可以通过计算相邻两项的比值来确定数列的公比,从而得到通项公式。

2. 根据数列的规律,推断数列中某一位置上的数值。

有时候,问题并没有直接给出数列的前几项,而是给出了数列的规律,并要求求解数列中某一位置上的数值。

这时候,可以根据已知的规律,通过迭代或递推的方式来推断数列中任意位置上的数值。

1. 根据已知的图形形状,找出图形的特点。

有时问题给出了一个图形,需要根据图形的特点找到规律。

这时可以通过观察图形的边数、角度等特征来确定规律。

正多边形的内部角度和是固定的,可以根据这个规律,计算某个正多边形的内部角度和。

2. 根据图形的特点,求解未知的参数。

有时问题给出了一个图形的部分信息,需要求解图形的某些未知参数。

问题给出了一个三角形的三个角度,需要求解这个三角形的形状。

根据三角形的内角和等于180°的性质,可以得到这个三角形的剩余角度,从而确定三角形的形状。

1. 根据已知的关系式,建立方程解决问题。

有时问题给出了一个数学关系,需要找到满足这个关系的解。

问题可能给出了两个数的和或差,需要求解这两个数。

可以通过设一元方程,利用方程的解来求解这个问题。

在解决规律探究问题时,可以运用以下一些技巧:1. 观察法:通过观察题目给出的信息或图形,找出规律,再推测未知的信息或图形。

2. 假设法:根据已知条件进行一些假设,然后进行推理、计算,最后验证假设的结果是否符合题目要求。

中考数学复习第二讲《开放探究型问题》经典题型含答案

中考数学复习第二讲《开放探究型问题》经典题型含答案

中考数学复习专题第二讲开放探究型问题【要点梳理】开放探究型问题的内涵:所谓开放探究型问题是指已知条件、解题依据、解题方法、问题结论这四项要素中,缺少解题要素两个或两个以上,需要通过观察、分析、比较、概括、推理、判断等探索活动来确定所需求的条件或结论或方法.(1)常规题的结论往往是唯一确定的,而多数开放探究题的结论是不确定或不是唯一的,它是给学生有自由思考的余地和充分展示思想的广阔空间;(2)解决此类问题的方法,可以不拘形式,有时需要发现问题的结论,有时需要尽可能多地找出解决问题的方法,有时则需要指出解题的思路等.对于开放探究型问题,需要通过观察、比较、分析、综合及猜想,展开发散性思维,充分运用已学过的数学知识和数学方法,经过归纳、类比、联想等推理的手段,得出正确的结论.在解开放探究题时,常通过确定结论或补全条件,将开放性问题转化为封闭性问题.【学法指导】三个解题方法(1)条件开放型问题:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻,是一种分析型思维方式.它要求解题者善于从问题的结论出发,逆向追索,多途寻因;(2)结论开放型问题:从剖析题意入手,充分捕捉题设信息,通过由因导果,顺向推理或联想、类比、猜测等,从而获得所求的结论;(3)条件和结论都开放型:此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,需将已知的信息集中进行分析,探索问题成立所必须具备的条件或特定的条件应该有什么结论,通过这一思维活动得出事物内在联系,从而把握事物的整体性和一般性.【考点解析】条件开放型问题(2017贵州安顺)如图,DB∥AC,且DB=AC,E是AC的中点,(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?【考点】LC:矩形的判定;L7:平行四边形的判定与性质.【分析】(1)要证明BC=DE,只要证四边形BCED是平行四边形.通过给出的已知条件便可.(2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.【解答】(1)证明:∵E是AC中点,∴EC=AC.∵DB=AC,∴DB∥EC.又∵DB∥EC,∴四边形DBCE是平行四边形.∴BC=DE.(2)添加AB=BC.( 5分)理由:∵DB AE,∴四边形DBEA是平行四边形.∵BC=DE,AB=BC,∴AB=DE.∴▭ADBE是矩形.结论开放型问题(2017广西河池)(1)如图1,在正方形ABCD中,点E,F分别在BC,CD 上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE ⊥BF于点M,探究AE与BF的数量关系,并证明你的结论.【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:AB=BC,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴=,∴AB=BC.存在开放型问题(2017广东)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证: =;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【考点】SO:相似形综合题.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C 四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBC=∠DCE=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y= []2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.综合开放型问题(2017山东泰安)如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E 是AB的中点,F是AC延长线上一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE 是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)若ED=EF,ED与EF垂直吗?若垂直给出证明.【考点】LO:四边形综合题.【分析】(1)根据平行四边形的想知道的AD=AC,AD⊥AC,连接CE,根据全等三角形的判定和性质即可得到结论;(2)根据全等三角形的性质得到CF=AD,等量代换得到AC=CF,于是得到CP=AB=AE,根据平行四边形的判定定理即可得到四边形ACPE为平行四边形;(3)过E作EM⊥DA交DA的延长线于M,过E作EN⊥FC交FC的延长线于N,证得△AME≌△CNE,△ADE≌△CFE,根据全等三角形的性质即可得到结论.【解答】(1)证明:在▱ABCD中,∵AD=AC,AD⊥AC,∴AC=BC,AC⊥BC,连接CE,∵E是AB的中点,∴AE=EC,CE⊥AB,∴∠ACE=∠BCE=45°,∴∠ECF=∠EAD=135°,∵ED⊥EF,∴∠CEF=∠AED=90°﹣∠CED,在△CEF和△AED中,,∴△CEF≌△AED,∴ED=EF;(2)解:由(1)知△CEF≌△AED,CF=AD,∵AD=AC,∴AC=CF,∵DP∥AB,∴FP=PB,∴CP=AB=AE,∴四边形ACPE为平行四边形;(3)解:垂直,理由:过E作EM⊥DA交DA的延长线于M,过E作EN⊥FC交FC的延长线于N,在△AME与△CNE中,,∴△AME≌△CNE,∴∠ADE=∠CFE,在△ADE与△CFE中,,∴△ADE≌△CFE,∴∠DEA=∠FEC,∵∠DEA+∠DEC=90°,∴∠CEF+∠DEC=90°,∴∠DEF=90°,∴ED⊥EF.【真题训练】训练一:(2017日照)如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即AD=BC(答案不唯一),可使四边形ABCD 为矩形.请加以证明.训练二:(2017湖北荆州)如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.训练三:如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.训练四:(2017广东)如图,在平面直角坐标系中,O为原点,四边形ABCO 是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB 为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证: =;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.训练五:(2017•黑龙江)在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.参考答案:训练一:(2017日照)如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即AD=BC(答案不唯一),可使四边形ABCD 为矩形.请加以证明.【考点】LC:矩形的判定;KD:全等三角形的判定与性质.【分析】(1)由SSS证明△DCA≌△EAC即可;(2)先证明四边形ABCD是平行四边形,再由全等三角形的性质得出∠D=90°,即可得出结论.【解答】(1)证明:在△DCA和△EAC中,,∴△DCA≌△EAC(SSS);(2)解:添加AD=BC,可使四边形ABCD为矩形;理由如下:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AE,∴∠E=90°,由(1)得:△DCA≌△EAC,∴∠D=∠E=90°,∴四边形ABCD为矩形;故答案为:AD=BC(答案不唯一).训练二:(2017湖北荆州)如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.【考点】LB:矩形的性质;KD:全等三角形的判定与性质;Q2:平移的性质.【分析】(1)由矩形的性质得出AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,得出AD=EC,由SAS即可得出结论;(2)由AC=BD,DE=AC,得出BD=DE即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,∴AD=EC,在△ACD和△EDC中,,∴△ACD≌△EDC(SAS);(2)解:△BDE是等腰三角形;理由如下:∵AC=BD,DE=AC,∴BD=DE,∴△BDE是等腰三角形.训练三:如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【考点】L9:菱形的判定;KX:三角形中位线定理;L7:平行四边形的判定与性质.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.训练四:(2017广东)如图,在平面直角坐标系中,O为原点,四边形ABCO 是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB 为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证: =;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【考点】SO:相似形综合题.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C 四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBC=∠DCE=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y= []2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.训练五:(2017•黑龙江)在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;L8:菱形的性质;R2:旋转的性质.【分析】图2:根据四边形ABCD是正方形,得到AO=OC,BO=OD,AC⊥BD,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,等量代换得到AO=BO,OC′=OD′,∠AOC′=∠BOD′,根据全等三角形的性质得到AC′=BD′,∠OAC′=∠OBD′,于是得到结论;图3:根据四边形ABCD是菱形,得到AC⊥BD,AO=CO,BO=DO,求得OB=√3OA,OD=√3OC,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,求得OD′=√3OC′,∠AOC′=∠BOD′,根据相似三角形的性质得到BD′=√3AC′,于是得到结论.【解答】解:图2结论:AC′=BD′,AC′⊥BD′,理由:∵四边形ABCD是正方形,∴AO=OC,BO=OD,AC⊥BD,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴AO=BO,OC′=OD′,∠AOC′=∠BOD′,在△AOC′与△BOD′中,{AO=BO∠AOC′=∠BOD′OC′=OD′,∴△AOC′≌△BOD′,∴AC′=BD′,∠OAC′=∠OBD′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′;图3结论:BD′=√3AC′,AC′⊥BD’理由:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∵∠ABC=60°,∴∠ABO=30°,∴OB=√3OA,OD=√3OC,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴OD′=√3OC′,∠AOC′=∠BOD′,∴OBOA =OD′OC′=√3,∴△AOC′∽△BOD′,∴BD′AC′=OBOA=√3,∠OAC′=∠OBD′,∴BD′=√3AC′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′.【点评】本题考查了正方形的性质,菱形的性质,全等三角形的判定和性质,相似三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.。

中考数学专题复习函数过程探究性问题

中考数学专题复习函数过程探究性问题

中考数学专题复习函数过程探究性问题学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、解答题1.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数2241x y x -=+的性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在给出的图中补全该函数的大致图象; x… -5-4-3-2 -1 0 1 2 3 4 5 …2241x y x -=+… -2126 -1217 -12 0 324 0 …(2)请根据这个函数的图象,写出该函数的一条性质;(3)已知函数332y x =-+的图象如图所示.根据函数图象,直接写出不等式2234321x x x --+>+的解集.(近似值保留一位小数,误差不超过0.2)2.探究函数性质时,我们经历了列表、描点、连线函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数|26|y x x m =+-++性质及其应用的部分过程,请按要求完成下列各小题. x…2-1-0 1 2 3 4 5 …y (6)54a 2 1b 7 …(1)写出函数关系式中m 及表格中a ,b 的值:m =________,=a _________,b =__________;(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象,并根据图象写出该函数的一条性质:__________; (3)已知函数16y x=的图象如图所示,结合你所画的函数图象,直接写出不等式16|26|x x m x+-++>的解集.3.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数261xy x =+性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充..完整,并在图中补全..该函数图象; x… -5 -4-3 -2 -1 0 1 2 3 4 5 …261xy x =+…1513-2417-125--3 0 3 12524171513…(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在相应的括号内打“√”,错误的在相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y 轴;( )①该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3;( )①当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大;( ) (3)已知函数21y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式26211xx x >-+的解集(保留1位小数,误差不超过0.2).4.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数2122=-+yx的图象并探究该函数的性质.x①-4-3-2-101234①y①23-a-2-4b-4-21211-23-①(1)列表,写出表中a,b的值:a=____ ,b=.描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数2122=-+yx的图象关于y轴对称;①当x=0时,函数2122=-+yx有最小值,最小值为-6;①在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数21033y x=--的图象如图所示,结合你所画的函数图象,直接写出不等式212210233xx-<--+的解集.5.在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题"的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义(0)(0)a aaaa≥⎧=⎨-⎩<.结合上面经历的学习过程,现在来解决下面的问题在函数3y kx b=-+中,当2x=时,4y=-;当0x=时,y 1.=-(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象井并写出这个函数的一条性质;(3)已知函1y32x=-的图象如图所示,结合你所画的函数图象,直接写出不等式1323kx b x-+≤-的解集.6.函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数2||y x =-的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数2||2y x =-+和2| 2|y x =-+的图象如图所示. x … ﹣3 ﹣2 ﹣1 0 1 2 3 …y …﹣6﹣4﹣2﹣2﹣4﹣6…(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A ,B 的坐标和函数-2|2|y x =+的对称轴.(2)探索思考:平移函数2||y x =-的图象可以得到函数2||2y x =-+和2|2|y x =-+的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数2|3|1y x =--+的图象.若点()11,x y 和(22,)x y 在该函数图象上,且213x x >>,比较1y ,2y 的大小.参考答案:1.(1)从左到右,依次为:311221,,,221726--,图见解析;(2)该函数图象是轴对称图象,对称轴是y 轴;(3)0.3,12x x <-<< 【解析】 【分析】(1)直接代入求解即可;(2)根据函数图象,写出函数的性质即可; (3)根据图象交点写出解集即可. 【详解】解:(1)表格中的数据,从左到右,依次为:311221,,,221726--.函数图象如图所示.;(2)①该函数图象是轴对称图象,对称轴是y 轴;①该函数在自变量的取值范围内,有最大值,当0x =,函数取得最大值4;①当0x <是,y 随x 的增大而增大;当0x >是,y 随x 的增大而减小;(以上三条性质写出一条即可)(3)当0.2x =-时,33 3.32x -+=,224 3.81x x -≈+;当0.4=-x 时,33 3.62x -+=,224 3.311x x -≈+;所以0.3x =-是2234321x x x --+=+的一个解;由图象可知1x =和2x =是2234321x x x --+=+的另外两个解;①2234321x x x --+>+的解集为0.3,12x x <-<<.【点睛】本题考查函数图象和性质,能够从表格中获取信息,利用描点法画出函数图象,并结合函数图象解题是关键.2.(1)2-;3;4;(2)作图见解析;当3x <时,y 随x 的增大而减小,当3x >时,y 随x 的增大而增大;(3)0x <或4x > 【解析】 【分析】(1)将表格中的已知数据任意选择一组代入到解析式中,即可求出m ,然后得到完整解析式,再根据表格代入求解其余参数即可;(2)根据作函数图象的基本步骤,在网格中准确作图,然后根据图象写出一条性质即可;(3)结合函数图象与不等式之间的联系,用函数的思想求解即可. 【详解】(1)由表格可知,点()3,1在该函数图象上,①将点()3,1代入函数解析式可得:13236m =+-⨯++, 解得:2m =-,①原函数的解析式为:|26|2y x x =+-+-; 当1x =时,3y =; 当4x =时,4y =; 故答案为:2-;3;4;(2)通过列表-描点-连线的方法作图,如图所示;根据图像可知:当3x <时,y 随x 的增大而减小,当3x >时,y 随x 的增大而增大;故答案为:当3x <时,y 随x 的增大而减小,当3x >时,y 随x 的增大而增大; (3)要求不等式16|26|x x m x+-++>的解集, 实际上求出函数|26|y x x m =+-++的图象位于函数16y x=图象上方的自变量的范围, ①由图象可知,当0x <或4x >时,满图条件, 故答案为:0x <或4x >.【点睛】本题考查新函数图象探究问题,掌握研究函数的基本方法与思路,熟悉函数与不等式或者方程之间的联系是解题关键.3.(1)95-,95;(2)①× ①√ ①√;(3)x <−1或−0.3<x <1.8.【解析】 【分析】(1)代入x=3和x=-3即可求出对应的y 值,再补全函数图象即可; (2)结合函数图象可从增减性及对称性进行判断; (3)根据图象求解即可. 【详解】解:(1)当x=-3时,2618911x y x -==++95=-,当x=3时,2618911x y x ===++95, 函数图象如下:(2)①由函数图象可得它是中心对称图形,不是轴对称图形; 故答案为:× ,①结合函数图象可得:该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3; 故答案为:√ ,①观察函数图象可得:当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大; 故答案为:√.(3)1x <-,0.28 1.78(0.280.2 1.780.2)x x -<<-±<<±26211xx x =-+时,()2(1)2310x x x +--=得11x =-,2 1.8x ,30.3x ≈-, 故该不等式的解集为: x <−1或−0.3<x <1.8. 【点睛】本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键. 4.(1)1211-,6-,作图见解析;(2)①√;①√;①×;(3)x <-4或-2<x <1. 【解析】 【分析】(1)把对应的x 的值代入即可求出a 和b 的值,通过描点,用平滑的曲线连接,即可作出图象;(2)观察图象即可判断;(3)找出函数2122=-+y x 的图象比函数21033y x =--的图象低时对应的x 的范围即可. 【详解】(1)当3x =-时,212121132a =-=-+;当0x =时,1262b =-=-; ①1211a =-,6b =-, 故答案为:1211-,6-. 所画图象,如图所示.(2)①观察图象可知函数2122=-+y x 的图象关于y 轴对称,故该说法正确; ①观察图象可知,当x =0时,函数2122=-+y x 有最小值,最小值为6-,故该说法正确; ①观察图象可知,当0x <时,y 随x 的增大而减小,当0x >时,y 随x 的增大而增大,故该项题干说法错误.(3)不等式212210233x x -<--+表现在图象上面即函数2122=-+y x 的图象比函数21033y x =--的图象低,因此观察图象,即可得到212210233x x -<--+的解集为:x <-4或-2<x <1.【点睛】本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.5.(1)3342y x =--;(2)见解析,当2x ≥时,y 随x 的增大而增大;当2x <时,y 随x 的增大而减小;(3)14x ≤≤.【解析】【分析】(1)根据在函数y=|kx -3|+b 中,当x=2时,y=-4;当x=0时,y=-1,可以求得该函数的表达式;(2)根据(1)中的表达式可以画出该函数的图象并写出它的一条性质;(3)根据图象可以直接写出所求不等式的解集.【详解】解:(1)由题意,可得23431k b b ⎧-+=-⎪⎨-+=-⎪⎩ 324k b ⎧=⎪∴⎨⎪=-⎩ ∴函数的解析式为:3342y x =-- (2)当2x ≥时,y 随x 的增大而增大;当2x <时,y 随x 的增大而减小;(3)14x ≤≤;【点睛】本题考查一次函数的应用、一元一次不等式与一次函数的关系,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.6.(1)见解析;(2)见解析;(3)见解析.【解析】【分析】(1)根据图形即可得到结论;(2)根据函数图形平移的规律即可得到结论;(3)根据函数关系式可知将函数2||y x =-的图象向上平移1个单位,再向右平移3个单位得到函数2|-3|1y x =-+的图象.根据函数的性质即可得到结论.【详解】解:(1)(0,2)A ,(2,0)B -,函数2| 2|y x =-+的对称轴为2x =-;(2)将函数2||y x =-的图象向上平移2个单位得到函数2||2y x =-+的图象; 将函数2||y x =-的图象向左平移2个单位得到函数2|2|y x =-+的图象;(3)将函数2||y x =-的图象向上平移1个单位,再向右平移3个单位得到函数2|3|1y x =--+的图象.所画图象如图所示,当213x x >>时,12y y >.【点睛】本题考查了一次函数与几何变换,一次函数的图象,一次函数的性质,平移的性质,正确的作出图形是解题的关键.。

小学数学一年级上册第二单元《跷跷板》探究问题

小学数学一年级上册第二单元《跷跷板》探究问题


B2.观察书第23页“练一练”第1题,说一说,谁最轻?谁最重?为什么?


C.你能将轻重的知识运用于生活实际中吗?
C1.观察书第23页“练一练”第3题,说一说,谁比谁轻?谁比谁重?为什么?




C2.观察书第23页“练一练”第2题,将南瓜,萝卜,茄子按从轻到重的顺序排一排。


C3.一个苹果的重量相当于两个杏儿的重量,你知道谁比谁轻,谁比谁重吗?为什么?
教材版本:
北师大版
学 科:小学数学
册 数:
一年级上册
单 元 数:
第二单元
知识领域:
图形与几何
内容专题:
测量
情境课题:
跷跷板
知识课题
轻重的比较
探究问题
学习过程
一级探究问题
二级探究问题
首学
互学
群学
共学
A.你能在操作、观察中比较两个物体的轻重吗?
A1.观察书第22页第一个小绿点图,说一说,谁比谁轻?谁比谁重?为什么?




A2.掂一掂准备好的两种物品,说一说,谁比谁轻?谁比谁重?


A3.观察书第22页第三个小绿点图的天平,说一说,谁比谁轻?谁比谁重?为什么?


A4.你知道书第23页“练一练”第1题两图表示什么意思吗?个物体的轻重吗?
B1.观察书第22页第一个小绿点图,说一说,谁最轻?谁最重?为什么?

中考数学总复习第40课 探索型问题

中考数学总复习第40课 探索型问题

- b =1,
2a
a=-1,
∴ -b2=1, 解得 b=2.
4a
即当顶点坐标为(1,1)时,a=-1.
- b =m, 2a
a=- 1 ,
当顶点坐标为 (m ,m ),m ≠0
时,
-b2=m , 4a
解得
b=2.
m
∴a 与 m 之间的关系式是:a=-m1 或 am+1=0.]
(2)∵a≠0,
∴y=ax2+bx=a
专题解读
1.探索型问题: 探索是人类认识客观世界过程中最生动,最活跃的思维活 动.探索问题主要考查学生探究、发现、总结问题的能力,主 要包括: (1)规律探索型问题; (2)结论探索型问题; (3)存在性探索型问题; (4)动态探索型问题. 2.解答探索型问题的注意事项: 由于探索型问题的题型新颖,综合性强,思维能力要求高,结 构独特,因此解题时并无固定模式,它要求解题者具有较扎实 的基本功,较强的观察力,丰富的想象力及综合分析问题的能 力.解题时要注意问题情境,注重思维的严密性,注意寻找问 题解决的切入口.有时也可采用以下方法来寻找突破口:(1)利 用特殊值(特殊点,特殊数量,特殊线段等)进行归纳,概括;(2) 反演推理法(反证法);(3)分类讨论法;(4)类比猜想法.
3,4 3
3,
-2 P2 3
3,4 3
3
;当∠PAO=90°时,P3
34 9
3,4 3
3 ;当∠POA=90°时,
-16 3,4 3
P4 9
3.
名师点拨
存在性探索问题是运用几何计算进行探索的综合型 问题,要注意相关的条件,可以先假设结论成立,然后通 过计算求相应的值,再作存在性的判断.
【预测演练 3】 如图 40-7,在△ABC 中,AB=AC=10 cm,BC=12 cm, 点 D 是 BC 边的中点.点 P 从点 B 出发,以 a(cm/s)(a>0)的速度沿 BA 匀速向点 A 运动;点 Q 同时以 1 cm/s 的速度从点 D 出发,沿 DB 匀 速向点 B 运动,其中一个动点到达端点时,另一个动点也随之停止运 动,设它们运动的时间为 t(s). (1)若 a=2,△BPQ∽△BDA (点 P 与点 D 对应),求 t 的值; (2)设点 M 在边 AC 上,四边形 PQCM 为平行四边形. ①若 a=5,求 PQ 的长; 2 ②是否存在实数 a,使得点 P 在∠ACB 的平分线上?若存在,请求 出 a 的值;若不存在,请说明理由.

数学探究性问题

数学探究性问题

装 订 线数学探究性问题(1)一、“类比、归纳”型探究性问题:1、已知如图AB ∥CD ,P 为任意一点,请用一个等式来表示,∠B 、∠D 、∠P 之间的数量关系,并说明你们的理由。

2、已知AB ∥CD ,P 1、、P 2、P3、P4、…… P n 为任意n 点,请用一个等式来表示,∠B 、∠D 、∠P 1、、∠P 2、∠P 3、∠P 4、…… ∠P n 之间的数量关系。

3、如果上面的n 个点P ,一内一外交替摆放,情况又会怎样?(注意奇偶性)CDDC A23234p 523AA2421装 订 线4、探究规律:如图1,已知直线m//n ,A 、B 为直线n 上两点,C 、P 为直线m 上两点。

(1)请写出图1中,面积相等的各对三角形:_______________________;(2)如果A 、B 、C 为三个定点,点P 在m 上移动,那么,无论P 点移动到任何位置,总有_________与△ABC 的面积相等。

理由是:____________________________。

解决问题:如图2,五边形ABCDE 是张大爷十年前承包的一块土地的示意图。

经过多年开垦荒地,现已变成如图3所示的形状,但承包土地与开垦荒地的分界小路(即图3中折线CDE )还保留着。

张大爷想过E 点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多。

请你用有关的几何知识,按张大爷的要求设计出修路方案。

(不计分界小路与直路的占地面积) (1)写出设计方案,并在图3中画出相应的图形;(2)说明方案设计理由。

5、“聪明线”的定义:如果一条线段,经过多边形的一个顶点,并且把这个多边形的面积二等分,我们就把这样的线段叫作这个多边形的“聪明线”。

如:AD 是△ABC 的中线,则△ABD 与△ACD 等底等高,因此△ABD 与△ACD 的面积相等,线段AD 就是 △ABC 的“聪明线” 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


第1个图
第2个图
第3个图
方法二:每个图形,可看成是序列数与3的倍数
又多1枚棋子
2020/5/10
12
2.图形规律
归纳与猜想
例5(2008海南省)用同样大小的黑色棋子按图所示
的方式摆图形,按照这样的规律摆下去,则第n个图
形需棋子
枚(用含n的代数式表示).

第1个图
方法三:
2020/5/10
第2个图
本题难点是,变化的部分太多,有三处发生变
化:分子、分母、分式的符号。学生很容易发现各
部分的变化规律,但是如何用一个统一的式子表示
出分式的符号的变化规律是难点.
7
1.数式规律
归纳与猜想
例3:(05年陕西)观察下列各式:
1×3=12+2×1;
2×4=22+2×2;
3×5=32+2×3;……
请你将猜方想法到总的结:规律用正整数n n 1
的方式摆图形,按照这样的规律摆下去,则第n个图
形需棋子
枚(用含n的代数式表示).
…第1Βιβλιοθήκη 图第2个图第3个图
方法一:除第一个图形有4枚棋子外,每多一个图形,
多3枚棋子. 4+3(n-1)=3 n+1
2020/5/10
11
2.图形规律
归纳与猜想
例5(2008海南省)用同样大小的黑色棋子按图所示
的方式摆图形,按照这样的规律摆下去,则第n个图 形需棋子 3n+1 枚(用含n的代数式表示).
表示出来横:向_熟__悉_代__数_式__、_算_.式的结构;
纵向观察、对比,研究各式之间的
关系,寻求变化规律;
2020/5/10
按要求写出算式或结果。
8
2.图形规律
归纳与猜想
例4:(2008黑龙江哈尔滨)观察下列图形:
它们是按一定规律排列的,依照此规律,第20
个图形共有 3n 个★.
三角形每条边上的
(1)写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示;
(2)猜想并写出与第 n 个图形相对应的等式.
2020/5/10
14
复练2:
[06] 观察下面的点阵图形和与之相对应的等式,探究其中的规律: (1)请你在④和⑤后面的横线上分别写出相对应的等式:

4×0+1=4×1-3;

4×1+1=4×2-3;
2020/5/10
2
规律型问题

实 验操作题

型 问
存在型问题

动态型问题
2020/5/10
3
1.条件的不确定性 2.结构的多样性 3.思维的多向性 4.解答的层次性 5.过程的探究性 6.知识的综合性
2020/5/10
4
规律探索试题是中考中的一棵常青树,一直 受到命题者的青睐,主要原因是这类试题没有固 定的形式和方法,要求学生通过观察、分析、比 较、概括、推理、判断等探索活动来解决问题.
2020/5/10
16
实验操作型问题是让学生在实际操作 的基础上设计问题,主要有:⑴裁剪、折 叠、拼图等动手操作问题,往往与面积、 对称性质相联系;⑵与画图、测量、猜想、 证明等有关的探究型问题。
2020/5/10
17
实验操作型问题
折纸与剪纸
主要考查: (1)全等、相似、平移、对称、旋转、翻折等几何
2020/5/10
5
1.数式规律
归纳与猜想
例1:(2008 湖北十堰)观察下面两行数: 2, 4, 8, 16, 32, 64, … ① 5, 7, 11, 19, 35, 67, … ② 根据你发现的规律,取每行数的第10个数,求得
它们的和是(写出最后的结果) 2051 .
分析:第一行的第10个数是 210 1024 ,第二行
方法一: 3(n+1)-3=3n
星数相同,再减去
2020/5/10
三个顶点的数
9
2.图形规律
归纳与猜想
例4:(2008黑龙江哈尔滨)观察下列图形:
3
6
9
12
它们是按一定规律排列的,依照此规律,第20
个图形共有 3n 个★.
2020/5/10
10
2.图形规律
归纳与猜想
例5(2008海南省)用同样大小的黑色棋子按图所示

4×2+1=4×3-3;

___________________;

___________________;
2020/5/10
……
……
(2)通过猜想,写出与第 n 个图形相对应的等式.
返表一
15
探究规律题的一般步骤为: (1)观察(发现特点) (2)猜想(可能的规律) (3)实验(用具体数值代入猜想)
2020/5/10
1
探究型问题是近年中考比较常见的题目,解
答这类问题的关键是牢固掌握基本知识,加强
“一题多解”、“一题多变”等的训练;需要有 较 强的发散思维能力、创新能力。具体做题时,
要仔细分析题目的有关信息、合情推理、联想,
并要运用类比、归纳、分类讨论等数学思想全 面考虑问题,有时还借助图形、实物或实际操 作来打开思路。
第3个图
方法总结:
2n+(n+1)=3n+认提1 真取数观式察信息研究仿图照案数(式形规)
律得到结论
13
复练1:
[05]
观察右面的图形(每个正方形的边长均为 1)和相应的等式,探究其中的规律:
① 1 1 1 1
22
② 2 2 2 2 33
③ 3 3 3 3
44
④ 4 4 4 4
55
……
……
A.正三角形
C.正五边形
2020/5/10
B.正方形
D.温正馨六边提形示:看清步骤,仔细操作. 20
温馨提示:带齐工具。
试一试:
复练(08山东):将一正方形纸片按下列顺序折叠, 然后将最后折叠的纸片沿虚线剪去上方的小三角 形.将纸片展开,得到的图形是( )C
操作变换的若干方法和技巧; (2)综合运用相关知识解决应用问题.
分割与拼合
2020/5/10
展开与叠合
18
动手操作型的折纸与剪纸,图形的分割与拼合、几何体 的展开与叠合,几乎触及了每份试卷,从单一的选择、填空, 到综合性较强的探索猜想、总结规律,判断论证存在与否, 以及分类讨论等综合题,几乎无处不在.
的每个数总比第一行同一位置上的数大3,所以第
二行的第10个数是1024+3=1027.
2020/5/10
6
1.数式规律
归纳与猜想
例2:(2008北京)一组按规律排列的式子:
b2 , a
b5 a2
,
b8 a3
,
b11 …(ab≠0), a4
其中第7个式子是

第n个式子是
(n为正整数).
2020/5/10
1.基础题型
2020/5/10
19
1.折纸问题
操作与探究
基础 题型
例6(2008泰州)如图,把一张长方形纸片对折,折痕为AB,
再以AB的中点O为顶点把平角∠AOB三等分,沿平角的三等分
线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,
那么剪出的等腰三角形全部展开铺平后得到的平面图形一定
是(

解题策略1:重过程——“折”.
相关文档
最新文档