初中数学探究型问题
初中数学教学实践探究题(3篇)

第1篇一、题目背景随着新课程改革的深入推进,初中数学教学面临着新的挑战和机遇。
如何提高初中数学教学质量,培养学生的数学思维能力和创新能力,成为了广大教师关注的焦点。
为了探究初中数学教学的有效方法,本文从以下几个方面进行实践探究。
二、研究目的1. 分析初中数学教学现状,找出存在的问题。
2. 探索初中数学教学的有效策略,提高教学质量。
3. 培养学生的数学思维能力和创新能力。
三、研究内容1. 初中数学教学现状分析(1)教学目标不明确,教学内容繁杂。
(2)教学方法单一,忽视学生的主体地位。
(3)评价方式单一,忽视学生的个性化发展。
2. 初中数学教学策略探究(1)优化教学目标,明确教学重点。
(2)丰富教学方法,激发学生学习兴趣。
(3)创新评价方式,关注学生个性化发展。
3. 培养学生的数学思维能力和创新能力(1)加强数学思维训练,提高学生解决问题的能力。
(2)开展数学实践活动,培养学生的创新能力。
(3)鼓励学生质疑,激发学生的探究欲望。
四、研究方法1. 文献研究法:查阅相关文献,了解初中数学教学现状和有效策略。
2. 观察法:观察课堂教学,分析教师的教学方法和学生的学习状态。
3. 实验法:通过教学实践,验证教学策略的有效性。
4. 问卷调查法:对学生进行问卷调查,了解学生对教学策略的满意度。
五、实践探究过程1. 优化教学目标(1)明确教学重点,突出知识的内在联系。
(2)关注学生的认知规律,合理安排教学内容。
(3)注重培养学生的数学思维能力。
2. 丰富教学方法(1)采用多种教学方法,如启发式教学、探究式教学、合作学习等。
(2)运用多媒体技术,提高课堂教学效果。
(3)创设问题情境,激发学生学习兴趣。
3. 创新评价方式(1)采用多元化评价方式,如课堂表现、作业完成情况、实践活动等。
(2)关注学生的个性化发展,鼓励学生展示自己的特长。
(3)建立学生成长档案,记录学生的进步过程。
4. 培养学生的数学思维能力和创新能力(1)加强数学思维训练,如逻辑推理、归纳总结、类比联想等。
中考数学复习 专题2 规律探索型问题数学课件

2.解图形规律探索题的方法: 第一步:标序号:记每组图形的序数为“1,2,3,…,n”; 第二步:数图形个数:在图形数量变化时,要记出每组图形的表示个数; 第三步:寻找图形数量与序号数 n 的关系:针对寻找第 n 个图形表示的数量时,先将后 一个图形的个数与前一个图形的个数进行比对,通常作差(商)来观察是否有恒定量的变化, 然后按照定量变化推导出第 n 个图形的个数; 函数法:若当图形变化规律不明显时,可把序号数 n 看作自变量,把第 n 个图形的个数 看作函数,设函数解析式为 y=an2+bn+c(初中阶段设二次函数完全可以解决),再代入三组 数值进行计算出函数解析式(若算出 a=0 就是一次函数)即可.
【点评】本题考查了图形的变化类问题,解题的关键是能够仔细读题,找到图形内和图 形外格点的数目.
[对应训练] 4.在由 m×n(m×n>1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小 正方形个数 f, (1)当 m,n 互质(m,n 除 1 外无其他公因数)时,观察下列图形并完成下表:
[对应训练] 2.(2015·咸宁)古希腊数学家把数 1,3,6,10,15,21,…叫做三角数,它有一定的规 律性.若把第一个三角数记为 a1,第二个三角数记为 a2…,第 n 个三角数记为 an,计算 a1+ a2,a2+a3,a3+a4,…由此推算 a399+a400=__1.6×105 或 160_000__.
1.(2015·德州)一组数 1,1,2,x,5,y…满足“从第三个数起,每个数都等于它前面的 两个数之和”,那么这组数中 y 表示的数为( A )
A.8 B.9 C.13 D.15 2.(2015·河南)如图所示,在平面直角坐标系中,半径均为 1 个单位长度的半圆 O1,O2,
初中数学中规律探索型问题的类型与解题方法

初中数学中规律探索型问题的类型与解题方法关键词:初中数学规律探索型问题类型解题方法
规律探索型问题是中考中的必考知识点,我们把规律探索型问题也称为归纳猜想型问题,其特点是这样的:给出一组具有某种特定关系的数、式、图形;或是给出与图形有关的操作变化过程;或是给出某一具体的问题情境,要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.规律探索型问题包括三类问题:数字类规律探索问题、图形类规律探索问题、点的坐标类规律探索问题.
一、数字类规律探索问题
1.解题思路
解答数字类规律探索问题,应在读懂题意、领会问题实质的前提下进行,或分类归纳,或整体归纳,得出的规律要具有一般性,而不是一些只适合于部分数据的“规律”.
2.例题展示
3.例题分析
二、图形类规律探索问题
1.解题思路
解答图形类规律探索问题,要注意分析图形特征和图形变换规律,一要合理猜想,二要加以实际验证.
2.例题展示
3.例题分析
针对几何图形的规律探索题,首先要仔细观察、分析图形,从中发现图形的变化特点,再将图形的变化以数或式的形式表示出来,从而得出图形的变化规律.如果图形的变化具有周期性,就要先确定循环周期及一个循环周期内图形的变化特点,然后用所求总数除以循环周期,得到余数,进而使所求问题得以解决.
本题就是一个典型的规律性问题,由AB为边长为2的等边三角形ABC的高,利用三线合一得到B为BC的中点,求出BB的长,利用勾股定理求出AB的长,进而求出S,同理求出S,依此类推,得到S.。
初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析初中数学规律探究问题是指通过观察数列、图形或数据等,在一定的规则下寻找并探究其中的规律性的问题。
这种问题在初中数学中占有很重要的地位,有助于学生培养数学思维能力、观察力和逻辑推理能力。
初中数学规律探究问题的类型可以分为数列规律、图形规律和数据规律三类。
一、数列规律问题:数列规律问题是最常见的一类规律探究问题。
通过观察数列中的数字间的关系,找出数列中的规律,并根据规律继续发展数列的下一项。
解题技巧:1. 观察数列中的数字之间的差值或倍数关系,找出数列的通项公式。
1, 3, 5, 7, ...这个数列中,每项相差2,可推测通项公式为2n-1。
2. 观察数列中的数字之间的乘积关系,找出数列的通项公式。
2, 6, 18, 54, ...这个数列中,每项之间都是前一项乘以3,可推测通项公式为2*3^n-1。
3. 观察数列中的数字之间的其他关系,如开方、乘方、递推等。
1, 2, 4, 8, ...这个数列中,每项都是前一项乘以2,可推测通项公式为2^n。
二、图形规律问题:图形规律问题是通过观察一系列图形的形状、数量、位置等特征,找出其中的规律,并根据规律继续绘制下一个图形。
解题技巧:1. 观察图形中的线段、角度、对称性等几何特征,找出图形的规律。
菱形图形的内角和都是360度,可用来判断菱形的特征。
2. 观察图形之间的变形关系,如旋转、平移、翻转等。
向上平移一次得到下一个图形,可用来判断图形的规律。
3. 观察图形中的数字和符号之间的关系,如大小、顺序、重复等。
图形中重复出现的数字可能有特殊的含义,可以利用这些数字来推测规律。
解题技巧:1. 观察数据之间的数值关系,如加减、乘除、指数等。
一组数据之间的差值相等,可用来推测规律。
2. 观察数据之间的变化趋势,如递增、递减、周期性等。
一组数据呈现递增或递减的趋势,可用来推测规律。
3. 观察数据之间的比例关系,如比值、百分比、占比等。
初中数学(几何探究型问题)题库及答案

初中数学(几何探究型问题)题库及答案1.(2019•北京)在△ABC中,D,E分别是△ABC两边的中点,如果DE上的所有点都在△ABC的内部或边上,则称DE为△ABC的中内弧.例如,图1中DE 是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=D,E分别是AB,AC的中点,画出△ABC的最长的中内弧DE,并直接写出此时DE的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC中,D,E分别是AB,AC的中点.①若t12=,求△ABC的中内弧DE所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧DE,使得DE所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.【解析】(1)如图2,以DE为直径的半圆弧DE,就是△ABC的最长的中内弧DE,连接DE.∵∠A=90°,AB=AC=D,E分别是AB,AC的中点.∴BC sin AC B ===4,DE 12=BC 12=⨯4=2.∴弧12DE =⨯2π=π. (2)如图3,由垂径定理可知,圆心一定在线段DE 的垂直平分线上,连接DE ,作DE 垂直平分线FP ,作EG ⊥AC 交FP 于G .①当t 12=时,C (2,0),∴D (0,1),E (1,1),F (12,1).设P (12,m )由三角形中内弧定义可知,圆心线段DE 上方射线FP 上均可,∴m ≥1.∵OA =OC ,∠AOC =90°. ∴∠ACO =45°. ∵DE ∥OC .∴∠AED =∠ACO =45°.作EG ⊥AC 交直线FP 于G ,FG =EF 12=. 根据三角形中内弧的定义可知,圆心在点G 的下方(含点G )直线FP 上时也符合要求. ∴m 12≤.综上所述,m 12≤或m ≥1. ②如图4,设圆心P 在AC 上.∵P 在DE 中垂线上.∴P 为AE 中点,作PM ⊥OC 于M ,则PM 32=. ∴P (t ,32). ∵DE ∥BC .∴∠ADE =∠AOB =90°.∴AE === ∵PD =PE . ∴∠AED =∠PDE .∵∠AED +∠DAE =∠PDE +∠ADP =90°. ∴∠DAE =∠ADP . ∴AP =PD =PE 12=AE .由三角形中内弧定义知,PD ≤PM .∴12AE 32≤,AE ≤3≤3,解得:t ≤ ∵t >0. ∴0<t≤【名师点睛】此题是一道圆的综合题,考查了圆的性质,弧长计算,直角三角形性质等,给出了“三角形中内弧”新定义,要求学生能够正确理解新概念,并应用新概念解题.2.(2019•天津)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(Ⅰ)如图①,求点E的坐标;(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E 的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;S t的取值范围(直接写出结果即可).【解析】(Ⅰ)∵点A(6,0).∴OA=6.∵OD=2.∴AD=OA-OD=6-2=4.∵四边形CODE是矩形.∴DE∥OC.∴∠AED=∠ABO=30°.在Rt△AED中,AE=2AD=8,ED===∵OD =2.∴点E 的坐标为(2,.(Ⅱ)①由平移的性质得:O ′D ′=2,E ′D ME ′=OO ′=t ,D ′E ′∥O ′C ′∥OB . ∴∠E ′FM =∠ABO =30°.∴在Rt △MFE ′中,MF =2ME ′=2t ,FE ′===.∴S △MFE ′12=ME ′·FE ′12=⨯t 22=.∵S 矩形C ′O ′D ′E ′=O ′D ′·E ′D =∴S =S 矩形C ′O ′D ′E ′-S △MFE ′.∴S 2=-t 2,其中t 的取值范围是:0<t <2;②当S =O 'A =OA -OO '=6-t .∵∠AO 'F =90°,∠AFO '=∠ABO =30°.∴O 'F ='A =6-t ).∴S 12=(6-t )(6-t )=解得:t =6,或t =6.∴t =6S 时,如图④所示:O 'A =6-t ,D 'A =6-t -2=4-t .∴O 'G =6-t ),D 'F =4-t ).∴S 12=6-t )4-t ) 解得:t 52=.S t 的取值范围为52≤t ≤6.【名师点睛】本题是四边形综合题目,考查了矩形的性质、坐标与图形性质、勾股定理、平移的性质、直角三角形的性质、梯形面积公式等知识;本题综合性强,有一定难度,熟练掌握含30°角的直角三角形的性质时是解题的关键. 3.(2019•陕西)问题提出:(1)如图1,已知△ABC ,试确定一点D ,使得以A ,B ,C ,D 为顶点的四边形为平行四边形,请画出这个平行四边形; 问题探究:(2)如图2,在矩形ABCD 中,AB =4,BC =10,若要在该矩形中作出一个面积最大的△BPC ,且使∠BPC =90°,求满足条件的点P 到点A 的距离; 问题解决:(3)如图3,有一座塔A ,按规定,要以塔A 为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE .根据实际情况,要求顶点B 是定点,点B到塔A的距离为50米,∠CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)【解析】(1)如图记为点D所在的位置.(2)如图.∵AB=4,BC=10,∴取BC的中点O,则OB>AB.∴以点O为圆心,OB长为半径作⊙O,⊙O一定于AD相交于P1,P2两点.连接BP1,P1C,P1O,∵∠BPC=90°,点P不能再矩形外.∴△BPC的顶点P1或P2位置时,△BPC的面积最大.作P1E⊥BC,垂足为E,则OE=3.∴AP1=BE=OB-OE=5-3=2.由对称性得AP2=8.(3)可以,如图所示,连接BD.∵A为BCDE的对称中心,BA=50,∠CBE=120°.∴BD=100,∠BED=60°.作△BDE的外接圆⊙O,则点E在优弧BD上,取BED的中点E′,连接E′B,E′D.则E′B=E′D,且∠BE′D=60°,∴△BE′D为正三角形.连接E′O并延长,经过点A至C′,使E′A=AC′,连接BC′,DC′.∵E′A⊥BD.∴四边形E′D为菱形,且∠C′BE′=120°.作EF⊥BD,垂足为F,连接EO,则EF≤EO+OA-E′O+OA=E′A.∴S△BDE12=·BD·EF12≤·BD·E′A=S△E′BD.∴S平行四边形BCDE≤S平行四边形BC′DE′=2S△E′BD=1002·m2).所以符合要求的BCDE的最大面积为2.【名师点睛】本题属于四边形综合题,考查了平行四边形的判定和性质,圆周角定理,三角形的面积等知识,解题的关键是理解题意,学会添加常用辅助线,属于中考压轴题.4.(2019•海南)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P 是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时.①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.【解析】(1)∵四边形ABCD是正方形.∴∠D=∠ECQ=90°.∵E是CD的中点.∴DE=CE.又∵∠DEP=∠CEQ.∴△PDE≌△QCE.(2)①∵PB=PQ.∴∠PBQ=∠Q.∵AD∥BC.∴∠APB=∠PBQ=∠Q=∠EPD.∵△PDE≌△QCE.∴PE=QE.∵EF∥BQ.∴PF=BF.∴在Rt△P AB中,AF=PF=BF.∴∠APF=∠P AF.∴∠P AF=∠EPD.∴PE∥AF.∵EF∥BQ∥AD.∴四边形AFEP是平行四边形;②四边形AFEP不是菱形,理由如下:设PD=x,则AP=1-x.由(1)可得△PDE≌△QCE.∴CQ=PD=x.∴BQ=BC+CQ=1+x.∵点E、F分别是PQ、PB的中点.∴EF是△PBQ的中位线.∴EF12=BQ12x+=.由①知AP=EF,即1-x12x+ =.解得x1 3 =.∴PD13=,AP23=.在Rt△PDE中,DE1 2 =.∴PE==∴AP≠PE.∴四边形AFEP不是菱形.【名师点睛】本题是四边形的综合问题,解题的关键是掌握正方形的性质、全等三角形的判定与性质、直角三角形的性质、平行四边形与菱形的判定、性质等知识点.5.(2019•江西)在图1,2,3中,已知ABCD,∠ABC=120°,点E为线段BC 上的动点,连接AE,以AE为边向上作菱形AEFG,且∠EAG=120°.(1)如图1,当点E与点B重合时,∠CEF=__________°;(2)如图2,连接AF.①填空:∠F AD__________∠EAB(填“>”“<”“=”);②求证:点F在∠ABC的平分线上.(3)如图3,连接EG,DG,并延长DG交BA的延长线于点H,当四边形AEGH是平行四边形时,求BC的值.AB【解析】(1)∵四边形AEFG是菱形.∴∠AEF=180°-∠EAG=60°.∴∠CEF=∠AEC-∠AEF=60°.故答案为:60°.(2)①∵四边形ABCD是平行四边形.∴∠DAB=180°-∠ABC=60°.∵四边形AEFG是菱形,∠EAG=120°.∴∠F AE=60°.∴∠F AD=∠EAB.故答案为:=.②如图,作FM⊥BC于M,FN⊥BA交BA的延长线于N.则∠FNB=∠FMB=90°.∴∠NFM=60°,又∠AFE=60°.∴∠AFN=∠EFM.∵EF=EA,∠F AE=60°.∴△AEF为等边三角形.∴F A=FE.在△AFN和△EFM中,AFN EFMFNA FME FA FE∠=∠⎧⎪∠=∠⎨⎪=⎩.∴△AFN≌△EFM(AAS)∴FN=FM,又FM⊥BC,FN⊥BA.∴点F在∠ABC的平分线上.(3)如图.∵四边形AEFG是菱形,∠EAG=120°.∴∠AGF=60°.∴∠FGE=∠AGE=30°.∵四边形AEGH为平行四边形.∴GE∥AH.∴∠GAH=∠AGE=30°,∠H=∠FGE=30°.∴∠GAN=90°,又∠AGE=30°.∴GN=2AN.∵∠DAB=60°,∠H=30°.∴∠ADH=30°.∴AD=AH=GE.∵四边形ABCD为平行四边形.∴BC=AD.∴BC=GE.∵四边形ABEH为平行四边形,∠HAE=∠EAB=30°.∴平行四边形ABEN为菱形.∴AB=AN=NE.∴GE=3AB.∴BCAB3.【名师点睛】本题考查的是相似三角形的判定和性质、全等三角形的判定和性质、菱形的性质、平行四边形的性质,掌握全等三角形的判定定理和性质定理、菱形的性质、直角三角形的性质是解题的关键.6.(2019•宁夏)如图,在△ABC中,∠A=90°,AB=3,AC=4,点M,Q分别是边AB,BC上的动点(点M不与A,B重合),且MQ⊥BC,过点M作BC的平行线MN,交AC于点N,连接NQ,设BQ为x.(1)试说明不论x为何值时,总有△QBM∽△ABC;(2)是否存在一点Q,使得四边形BMNQ为平行四边形,试说明理由;(3)当x为何值时,四边形BMNQ的面积最大,并求出最大值.【解析】(1)∵MQ⊥BC.∴∠MQB=90°.∴∠MQB=∠CAB,又∠QBM=∠ABC.∴△QBM∽△ABC.(2)当BQ=MN时,四边形BMNQ为平行四边形.∵MN∥BQ,BQ=MN.∴四边形BMNQ为平行四边形.(3)∵∠A=90°,AB=3,AC=4.∴BC==5.∵△QBM∽△ABC.∴QB QM BMAB AC BC==,即345x QM BM==.解得,QM43=x,BM53=x.∵MN∥BC.∴MN AMBC AB=,即53353xMN-=.解得,MN=525 9 -x.则四边形BMNQ的面积12=⨯(5259-x+x)43⨯x3227=-(x4532-)27532+.∴当x4532=时,四边形BMNQ的面积最大,最大值为7532.【名师点睛】本题考查的是相似三角形的判定和性质、平行四边形的判定、二次函数的性质,掌握相似三角形的判定定理、二次函数的性质是解题的关键.7.(2019•安徽)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△P AB∽△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2·h3.【解析】(1)∵∠ACB=90°,AB=BC.∴∠ABC=45°=∠PBA+∠PBC.又∠APB=135°.∴∠P AB+∠PBA=45°.∴∠PBC=∠P AB.又∵∠APB=∠BPC=135°.(2)∵△P AB ∽△PBC .∴PA PB ABPB PC BC==. 在Rt △ABC 中,AB =AC .∴ABBC= ∴PB PA ==,. ∴P A =2PC .(3)如图,过点P 作PD ⊥BC ,PE ⊥AC 交BC 、AC 于点D ,E .∴PF =h 1,PD =h 2,PE =h 3. ∵∠CPB +∠APB =135°+135°=270°. ∴∠APC =90°. ∴∠EAP +∠ACP =90°.又∵∠ACB =∠ACP +∠PCD =90°. ∴∠EAP =∠PCD . ∴Rt △AEP ∽Rt △CDP .∴2PE APDP PC==,即322h h =. ∴h 3=2h 2.∴12h ABh BC ==.∴12h .∴2212222322h h h h h h ==⋅=.即:h 12=h 2·h 3.【名师点睛】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP =∠PCD 是解本题的关键.8.(2019•重庆A 卷)如图,在平行四边形ABCD 中,点E 在边BC 上,连结AE ,EM ⊥AE ,垂足为E ,交CD 于点M ,AF ⊥BC ,垂足为F ,BH ⊥AE ,垂足为H ,交AF 于点N ,点P 是AD 上一点,连接CP .(1)若DP =2AP =4,CP =CD =5,求△ACD 的面积. (2)若AE =BN ,AN =CE ,求证:AD=+2CE .【解析】(1)作CG ⊥AD 于G ,如图1所示:设PG =x ,则DG =4-x .在Rt △PGC 中,GC 2=CP 2-PG 2=17-x 2.在Rt△DGC中,GC2=CD2-GD2=52-(4-x)2=9+8x-x2.∴17-x2=9+8x-x2.解得:x=1,即PG=1.∴GC=4.∵DP=2AP=4.∴AD=6.∴S△ACD12=⨯AD×CG12=⨯6×4=12.(2)连接NE,如图2所示:∵AH⊥AE,AF⊥BC,AE⊥EM.∴∠AEB+∠NBF=∠AEB+∠EAF=∠AEB+∠MEC=90°.∴∠NBF=∠EAF=∠MEC.在△NBF和△EAF中,NBF EAFBFN EFA AE BN∠=∠⎧⎪∠=∠⎨⎪=⎩.∴△NBF≌△EAF.∴BF=AF,NF=EF.∴∠ABC=45°,∠ENF=45°,FC=AF=BF.∴∠ANE=∠BCD=135°,AD=BC=2AF.在△ANE和△ECM中,MEC EAF AN ECANE ECM ∠=∠⎧⎪=⎨⎪∠=∠⎩.∴△ANE≌△ECM.∴CM=NE.又∵NF2=NE2=MC.∴AF2=MC+EC.∴AD=+2EC.【名师点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、勾股定理、三角形面积公式等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.。
初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析初中数学中,规律探究问题是一类需要通过观察、归纳、推理等方法来找出数学规律的问题。
这类问题通常涉及数字序列、图形变换、等式变形等方面,要求学生在探究规律的过程中培养逻辑思维能力和数学思维方式,提高解决问题的能力。
一、数字序列类问题数字序列类问题是初中数学中最常见的规律探究问题。
这类问题通常要求学生根据给定的数字序列找出其中的规律,并推算出下一个数字或几个数字。
解决这类问题的关键是观察敏锐和逻辑推理能力。
具体的解题技巧如下:1.观察数字序列中的差值:有些数字序列是等差数列,差值相等;有些数字序列是等比数列,比值相等;有些数字序列可能是其他规律,需要用其他方法来找出。
2.找出数字序列中的特殊数字:有些数字序列中会有特殊的数字,比如首项为1的斐波那契数列,第三个数字开始,每个数字是前两个数字之和。
3.归纳误差法:当已知前几个数字后无法确定规律时,可以假设一个规律并进行验证,找出规律的特点和一般性质,再用这个规律来验证后续数字。
二、图形变换类问题图形变换类问题通常涉及图形的旋转、翻转、平移、缩放等操作,要求学生根据给定的图形或一系列图形的变换找出其中的规律。
解决这类问题的关键是观察图形的形状和位置的变化,利用几何知识进行分析。
具体的解题技巧如下:1.观察图形的对称性:有些图形在某种变换后会保持对称,比如旋转180度后还是原来的图形。
2.观察图形的放大缩小关系:有些图形在变换后会变成原来的图形的倍数,比如放大或缩小一定的倍数。
3.观察图形的平移关系:有些图形在变换后会平移一定的距离,比如向左或向右平移一定的格数。
三、等式变形类问题等式变形类问题通常要求学生通过等式的变形推导出另一个等式,并验证等式的等价性。
解决这类问题的关键是掌握等式变形的基本方法和技巧。
具体的解题技巧如下:1.使用性质和定理:根据等式的性质和定理进行变形,如分配律、合并同类项等;2.开展移项、约去等操作:通过移动变量的位置、约去相同因式等操作推导出新的等式;3.代入数值验证等式的等价性:可以代入一些具体的数值来验证等式是否成立。
初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析初中数学中,规律探究问题是指通过分析数列、图形或公式等数学对象的特点,寻找其中隐藏的规律并加以运用来解决问题的一类问题。
这类问题需要学生具备分析能力、抽象能力、推理能力等多方面的综合能力。
初中数学规律探究问题的类型较为多样,常见的有以下几类:1. 数列问题:通过观察数列中的数字之间的规律,找出数列的通项公式或下一个数字,进而解决问题。
已知数列1、2、4、7、11、16的通项公式是多少?解题技巧:观察数列中相邻数字之间的差或比例是否存在固定规律,如果存在,可通过运算找出通项公式;如果不存在,则考虑是否可以构造新的数列来寻找规律。
2. 图形问题:通过观察图形中的形状、边长、角度等特点,找出图形的规律并解决问题。
已知一个正方形从第一阶到第四阶的边长依次为1、2、3、4,第十个阶的边长是多少?解题技巧:观察图形中相邻部分之间的关系,寻找存在的等差、等比、对称等规律;如果能够构造新的图形来辅助分析,更容易找出规律。
3. 公式问题:通过观察公式中的变量、系数等特点,推测出公式的规律并解决问题。
已知一个等差数列的公差是d,前n项的和为Sn,求第n项的值。
1. 观察法:通过观察数列、图形或公式等数学对象的特点,寻找其中存在的规律。
2. 归纳法:通过观察到的规律,总结规律的表达式或公式。
3. 推理法:通过观察到的规律,根据数学常识进行推理和证明。
4. 验证法:通过代入具体数值,验证所得的规律是否成立。
5. 构造法:通过构造新的数列、图形或公式等,辅助分析和解题。
除了以上解题技巧外,良好的数学基础知识和逻辑思维能力也是解决规律探究问题的重要因素。
平时要加强基础知识的学习,培养逻辑思维能力,多进行思维训练和思维导图的绘制,提高解决问题的能力。
规律探究问题在初中数学教学中的类型以及解题技巧研究

规律探究问题在初中数学教学中的类型以及解题技巧研究一、引言数学是一门抽象而又具体的学科,它需要学生在学习和探索中培养逻辑思维和抽象思维能力,这其中又不可或缺的是规律探究。
规律探究问题是初中数学教学中的重要一环,不仅能够锻炼学生的思维能力,还能提高他们的解决实际问题的能力。
本文将探讨规律探究问题在初中数学教学中的类型和解题技巧,并提出一些有效的教学方法和策略。
二、规律探究问题的类型在初中数学教学中,规律探究问题的类型有很多种,下面我们就来列举一些常见的类型:1. 数列的规律探究:这是最基本的规律探究问题类型,学生需要根据给定的数列,找出规律并继续下去。
1,3,6,10,15,21, ...问下一个数是多少?2. 几何图形的规律探究:几何图形的规律探究也是一种常见的类型,比较常见的有拼图问题、几何图形面积和周长的关系、正多边形内角和外角的规律等。
4. 函数图像的规律探究:这类问题需要学生观察函数的图像,从中找出规律。
y=x^2的图像是怎样的?这些都是规律探究问题的常见类型,而在教学中我们需要根据具体情况来设计相应的解题技巧。
面对不同类型的规律探究问题,学生需要掌握不同的解题技巧。
下面我们将分别讨论不同类型规律探究问题的解题技巧。
1. 数列的规律探究:学生在解决数列的规律探究问题时,一般需要观察数列中相邻项的差值,找出它们之间的规律。
也可以观察数列中的乘积或者其他变化规律。
有时通过列出数列的前几项,找出它们之间的变化规律也是一个有效的解题技巧。
2. 几何图形的规律探究:对于拼图问题,学生需要根据图形本身的特点来进行拼图,这就需要他们对几何图形有一定的认识。
而对于面积和周长的关系、内角和外角的规律等问题,则需要学生掌握相关几何知识来解决。
3. 字母的规律探究:对于字母的规律探究问题,学生可以通过列举和找规律的方式来解决。
也可以通过字母之间的位置关系和字母的组合来找规律。
这需要学生具有一定的逻辑思维和抽象思维能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
尧旭教育个性化辅导授课案教师:学生时间年月日段
一授课内容:探究性问题
二教学过程
[一]、中考专题诠释
探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题.根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类.
[二]、解题策略与解法精讲
由于探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.
3.分类讨论法.当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.
4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.
以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.
[三]、考点精析
考点一:动态探索型:
此类问题结论明确,而需探究发现使结论成立的条件.
例1 如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.
(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;
(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.
考点二:结论探究型:
此类问题给定条件但无明确结论或结论不惟一,而需探索发现与之相应的结论的题目.
例2 如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1.
(1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;
(2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由;(3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系.(不需要证明)
考点三:规律探究型:
规律探索问题是指由几个具体结论通过类比、猜想、推理等一系列的数学思维过程,来探求一般性结论的问题,解决这类问题的一般思路是通过对所给的具体的结论进行全面、细致的观察、分析、比较,从中发现其变化的规律,并猜想出一般性的结论,然后再给出合理的证明或加以运用.
例3如图所示,已知二次函数y=ax2+bx﹣1(a≠0)的图象过点A(2,0)和B(4,3),l为过点(0,﹣2)且与x
轴平行的直线,P(m,n)是该二次函数图象上的任意一点,过P作PH⊥l,H为垂足.
(1)求二次函数y=ax2+bx﹣1(a≠0)的解析式;
(2)请直接写出使y<0的对应的x的取值范围;
(3)对应当m=0,m=2和m=4时,分别计算|PO|2和|PH|2的值.由此观察其规律,并猜想一个结论,证明对于任意实数m,此结论成立;
(4)试问是否存在实数m可使△POH为正三角形?若存在,求出m的值;若不存在,请说明理由.
考点四:存在探索型:
此类问题在一定的条件下,需探究发现某种数学关系是否存在的题目.
例4 如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=6,点C的坐标为(﹣9,0).
(1)求点B的坐标;
(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=2,OD=2BD,求直线DE的解析式;
(3)若点P是(2)中直线DE上的一个动点,是否存在点P,使以O、E、P为顶点的三角形是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
[四] 课堂检测
1.(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.
(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?
(3)深入探究:
Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.Ⅱ.如图④,当动点D在等边△边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.
2.在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O作OB⊥OA,交抛物线于点B,以OA、OB 为边构造矩形AOBC.
(1)如图1,当点A的横坐标为时,矩形AOBC是正方形;
(2)如图2,当点A的横坐标为时,
①求点B的坐标;
②将抛物线y=x2作关于x轴的轴对称变换得到抛物线y=﹣x2,试判断抛物线y=﹣x2经过平移交换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.
3. 如图(*),四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.请你认真阅读下面关于这个图的探究片段,完成所提出的问题.
(1)探究1:小强看到图(*)后,很快发现AE=EF,这需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF 显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝试着去证△AEM≌EFC就行了,随即小强写出了如下的证明过程:
证明:如图1,取AB的中点M,连接EM.
∵∠AEF=90°
∴∠FEC+∠AEB=90°
又∵∠EAM+∠AEB=90°
∴∠EAM=∠FEC
∵点E,M分别为正方形的边BC和AB的中点
∴AM=EC
又可知△BME是等腰直角三角形
∴∠AME=135°
又∵CF是正方形外角的平分线
∴∠ECF=135°
∴△AEM≌△EFC(ASA)
∴AE=EF
(2)探究2:小强继续探索,如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,发现AE=EF仍然成立,请你证明这一结论.
(3)探究3:小强进一步还想试试,如图3,若把条件“点E是边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由.
4. 如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0)、B(0,1)、C(d,2).
(1)求d的值;
(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式;
(3)在(2)的条件下,直线BC交y轴于点G.问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.
三、学生对于本次课的评价:
○特别满意○满意○一般○差
学生签字:
四、教师评定:
1、学生上次作业评价:○好○较好○一般○差
2、学生本次上课情况评价:○好○较好○一般○差
教师签字:
教导处签字: _______
尧旭教育教导处
年月日。