第五章聚类分析..
多元统计分析 第5章 聚类分析

余弦相似性 Cosine Similarity
A document can be represented by thousands of attributes,
p (such as each recording the frequency of a particular word keywords) or phrase in the document. xi yi
feature mapping, ... Cosine measure: If d1 and d2 are two vectors (e.g., termfrequency vectors), then cos(d1, d2) = (d1 d2) /||d1|| ||d2|| ,
where indicates vector dot product, ||d||: the length of vector d
d1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0) d2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1) d1 d2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25 ||d1||= (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)0.5=(42)0.5 = 6.481 ||d2||= (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)0.5=(17)0.5 = 4.12 cos(d1, d2 ) = 0.94
聚类分析步骤

聚类分析步骤以教材第五章习题8的数据为例,演示并说明聚类分析的详细步骤:一.原始数据的输入:二.选项操作:1. 打开SPSS的“分析”→“分类”→“系统聚类”,打开“系统聚类”对话框。
把“食品”、“衣着”等6变量输入待分析变量框;把“地区”输入“标注个案”;“分群”选中“个案”;“输出”选中“统计量”和“图”。
(如下图)相关说明:(1)系统聚类法是最常用的方法,其他的方法较少使用。
(2)“标注个案”里输入“地区”,在输出结果的距离方阵和聚类树状图里会显示出“北京”、“天津”等,否则SPSS自动用“1”、“2”等代替。
(3)“分群”选中“个案”,也就是对北京等16个样本进行分类,而不是对食品等6个变量分类。
(4)必须选中“输出”中的“统计量”和“图”。
在该例中会输出16个地区的欧氏距离方阵和聚类树状图。
2. 设置分析的统计量打开最右上角的“统计量”对话框,选中“合并进程表”和“相似性矩阵”,“聚类成员”选中“无”。
然后点击“继续”。
打开第二个“绘制”对话框,必须选中“树状图”,其他的默认即可。
打开第三个对话框“方法”:聚类方法选中“最邻近元素”;“度量标准”选中“区间”的“欧氏距离”;“转换值”选中“标准化”的“Z得分”,并且是“按照变量”。
打开第四个对话框“保存”,“聚类成员”选默认的“无”即可。
三.分析结果的解读:按照SPSS输出结果的先后顺序逐个介绍:1.欧氏距离矩阵:是16个地区两两之间欧氏距离大小的方阵,该方阵是应用各种聚类方法进行聚类的基础。
52.合并进程表:主要看前四列,现在以前三个步骤为例说明合并过程:第一步,样本12和样本13合并,此时系数为0.650;第二步,样本3和样本16合并,此时系数为0.960;第三步,样本3(实际上是第二步样本3和16组成的新类)和样本4合并,此时系数为0.989;以此类推。
3. 冰柱:左侧是分组数目,上侧是被分组的样本,样本之间由等距的间隔分开,间隔被填充的,说明相邻两样本合并为一组,没有被填充就不被合并。
多元统计分析课件第五章_聚类分析

止。如果某一步距离最小的元素不止一个,则对应ቤተ መጻሕፍቲ ባይዱ些
最小元素的类可以同时合并。
【例5.1】设有六个样品,每个只测量一个指标,分别是1, 2,5,7,9,10,试用最短距离法将它们分类。
(1)样品采用绝对值距离,计算样品间的距离阵D(0) ,见 表5.1
一、系统聚类的基本思想
系统聚类的基本思想是:距离相近的样品(或变量)先聚成 类,距离相远的后聚成类,过程一直进行下去,每个样品 (或变量)总能聚到合适的类中。系统聚类过程是:假设总 共有n个样品(或变量),第一步将每个样品(或变量)独 自聚成一类,共有n类;第二步根据所确定的样品(或变量) “距离”公式,把距离较近的两个样品(或变量)聚合为一 类,其它的样品(或变量)仍各自聚为一类,共聚成n 1类; 第三步将“距离”最近的两个类进一步聚成一类,共聚成n 2类;……,以上步骤一直进行下去,最后将所有的样品 (或变量)全聚成一类。为了直观地反映以上的系统聚类过 程,可以把整个分类系统画成一张谱系图。所以有时系统聚 类也称为谱系分析。除系统聚类法外,还有有序聚类法、动 态聚类法、图论聚类法、模糊聚类法等,限于篇幅,我们只 介绍系统聚类方法。
在生物、经济、社会、人口等领域的研究中,存在着大量量 化分类研究。例如:在生物学中,为了研究生物的演变,生 物学家需要根据各种生物不同的特征对生物进行分类。在经 济研究中,为了研究不同地区城镇居民生活中的收入和消费 情况,往往需要划分不同的类型去研究。在地质学中,为了 研究矿物勘探,需要根据各种矿石的化学和物理性质和所含 化学成分把它们归于不同的矿石类。在人口学研究中,需要 构造人口生育分类模式、人口死亡分类状况,以此来研究人 口的生育和死亡规律。
《Python数据分析与应用》教学课件第5章聚类分析

图 5<16 运行结果
553 算法实例
运行结果如图5-16所示。 由图5-16可以看出 ,300个数据点被 分成三类 ,聚类中心分别为( 3,3 )、
( -3 ,-3 )和( 3 ,-3 ) ,符合原始数
据的分布趋势 ,说明sklearn库中的近 邻传播算法 AffinityPropagation能够
按预期完成聚类功能。
5.1基本概NTENTS
DBSCAN聚类算法
5.4 谱聚类算法
5.5 近邻传播算法
学习目标
( 1 )了解聚类分析的定义 ,并了解几种聚类分析方法。
(2 )了解簇的定义及不同的簇类型。
( 3 )学习K means聚类算法、DBSCAN聚类算法、谱聚类 ( spectral clustering )算法和近邻传播( affinity propagation )算法。 ( 4 )通过算法的示例进一步理解算法的过程。 ( 5 )了解聚类分析的现状与前景。
5.5.3 算法实例
23. plt.plot(cluster_center [ 0 ] ,cluster_center [ 1 ] , o ,
markerfacecolor=col, \
24.
markeredgecolor= k , markersize=14)
25. for x in X [ class_members ] :
26.
plt.plot( [ cluster_center [ 0 ] , x [ 0 ] ] , [ cluster_center
[l],x[l] ] , col)
27.plt.title( Estimated number of clusters: %d % n_clustersJ
数据挖掘原理、 算法及应用第5章 聚类方法

第5章 聚类方法
5.1 概述 5.2 划分聚类方法 5.3 层次聚类方法 5.4 密度聚类方法 5.5 基于网格聚类方法 5.6 神经网络聚类方法:SOM 5.7 异常检测
第5章 聚类方法
5.1 概 述
聚类分析源于许多研究领域,包括数据挖掘、统计学、 机器学习、模式识别等。它是数据挖掘中的一个功能,但也 能作为一个独立的工具来获得数据分布的情况,概括出每个 簇的特点,或者集中注意力对特定的某些簇作进一步的分析。 此外,聚类分析也可以作为其他分析算法 (如关联规则、分 类等)的预处理步骤,这些算法在生成的簇上进行处理。
凝聚的方法也称为自底向上的方法,一开始就将每个对 象作为单独的一个簇,然后相继地合并相近的对象或簇,直 到所有的簇合并为一个,或者达到终止条件。如AGNES算法 属于此类。
第5章 聚类方法
(3) 基于密度的算法(Density based Methods)。 基于密度的算法与其他方法的一个根本区别是: 它不是 用各式各样的距离作为分类统计量,而是看数据对象是否属 于相连的密度域,属于相连密度域的数据对象归为一类。如 DBSCAN (4) 基于网格的算法(Grid based Methods)。 基于网格的算法首先将数据空间划分成为有限个单元 (Cell)的网格结构,所有的处理都是以单个单元为对象的。这 样处理的一个突出优点是处理速度快,通常与目标数据库中 记录的个数无关,只与划分数据空间的单元数有关。但此算 法处理方法较粗放,往往影响聚类质量。代表算法有STING、 CLIQUE、WaveCluster、DBCLASD、OptiGrid算法。
(3) 许多数据挖掘算法试图使孤立点影响最小化,或者排除 它们。然而孤立点本身可能是非常有用的,如在欺诈探测中, 孤立点可能预示着欺诈行为的存在。
多元统计期末复习题

多元数据分析练习题第二章多元正态的参数估计一. 判断题(1)若∑∑=),,(~),,,(21μp T p N X X X X 是对角矩阵,则p X X X ,,,21 相互独立。
( )(2)多元正态分布的任何边缘分布为正态分布,反之也成立。
( )(3)对任意的随机向量T p X X X X ),,,(21 =来说,其协方差矩阵∑是对称矩阵,并且总是半正定的。
( )(4)对标准化的随机向量来说,它的协方差矩阵与原来变量的相关系数阵相同。
( ) (5)若),,(~),,,(21∑=μp T p N X X X X S X ,分别为样本均值和样本协差阵,则S nX 1,分别为∑,μ的无偏估计。
( ) 二.计算题1. 假设随机向量TX X X X ),,(321=的协方差矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=∑9232443416,试求相关系数矩阵R 。
⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=131413112141211R 2. 假设随机向量Tx x x ),(21=的协方差矩阵为⎥⎦⎤⎢⎣⎡=∑20119,令212211,2x x y x x y -=+=,试求T y y y ),(21=的协方差矩阵。
⎥⎦⎤⎢⎣⎡--=∑2733603.假设⎥⎦⎤⎢⎣⎡---=∑5.005.05.015.0),,(~3A N X μ,其中T)1,2,1(-=μ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=∑411121112,试求Ax y =的分布。
)2224,02(2⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-N 三.证明题1.设)()2()1(,,,n X X X 是来自),(∑μp N 的随机样本,X 为样本均值。
试证明:μ=)(X E ,∑=nX D 1)(。
2.设)()2()1(,,,n X X X 是来自),(∑μp N 的随机样本,S n 11-为样本协差阵。
试证明:∑=-)11(S n E 。
3.证明:若p 维正态随机向量),,,(21'=p X X X X 的协差阵为对角矩阵,则X 的各分量是相互独立的随机变量。
市场研究——聚类分析法

市场研究——聚类分析法
聚类分析法在市场研究中有着广泛的应用。
通过对市场中消费者、产品、品牌等进行聚类分析,可以帮助市场研究人员更好地理解市场细分和
目标受众,并制定针对不同群体的市场营销策略。
下面将详细介绍聚类分
析法的原理、应用和步骤。
聚类分析的原理是将数据样本划分为不同的类别或群组,使得同类之
间的差异最小,而不同类之间的差异最大。
输入聚类分析的数据通常是多
维的,每个维度代表一个变量。
聚类分析的目标是找到一个最优的聚类方案,使得相同类别内的样本相似度最高,而不同类别的样本相似度最低。
聚类分析法的应用非常广泛。
在市场研究中,它可以用于客户细分、
产品定位、市场定位等方面。
通过对消费者进行聚类,可以发现隐藏在市
场中的不同消费者群体,并确定他们的特征、需求和偏好。
对产品和品牌
进行聚类分析,则可以帮助确定产品和品牌的差异化定位和市场竞争策略。
需要注意的是,聚类分析法只是一种分析工具,通过聚类分析得到的
结果并不一定代表真实的市场现象,仅供市场研究人员参考和决策。
在市场研究中,聚类分析法的应用是非常重要的。
它能够帮助市场研
究人员更好地理解市场细分和目标受众,并制定针对不同群体的市场营销
策略。
随着数据量的不断增加和分析技术的不断发展,聚类分析法在市场
研究中的应用前景将更加广阔。
聚类分析方法

聚类分析方法聚类分析是一种常用的数据分析方法,它可以帮助我们将数据集中的对象按照它们的相似性进行分组。
通过聚类分析,我们可以发现数据中的内在结构和规律,从而更好地理解数据。
在本文中,我们将介绍聚类分析的基本概念、常见的聚类方法以及聚类分析的应用场景。
首先,让我们来了解一下聚类分析的基本概念。
聚类分析是一种无监督学习方法,它不需要预先标记的训练数据,而是根据数据对象之间的相似性来进行分组。
在聚类分析中,我们通常会使用距离或相似度作为衡量对象之间关系的指标。
常见的距离指标包括欧氏距离、曼哈顿距离和余弦相似度等。
通过计算对象之间的距离或相似度,我们可以将它们划分到不同的类别中,从而实现数据的聚类。
接下来,让我们来介绍一些常见的聚类方法。
最常用的聚类方法包括层次聚类、K均值聚类和密度聚类。
层次聚类是一种基于对象之间相似性构建层次结构的方法,它可以分为凝聚式层次聚类和分裂式层次聚类。
K均值聚类是一种迭代的聚类方法,它将数据对象划分为K个类别,并通过迭代优化来找到最优的聚类中心。
密度聚类是一种基于数据密度的聚类方法,它可以发现任意形状的聚类簇,并对噪声数据具有较强的鲁棒性。
最后,让我们来看一些聚类分析的应用场景。
聚类分析可以应用于各个领域,例如市场营销、生物信息学、社交网络分析等。
在市场营销中,我们可以利用聚类分析来识别不同的消费群体,并针对不同群体制定个性化的营销策略。
在生物信息学中,聚类分析可以帮助我们发现基因表达数据中的基因模式,并识别相关的生物过程。
在社交网络分析中,我们可以利用聚类分析来发现社交网络中的社区结构,并识别影响力较大的节点。
总之,聚类分析是一种非常有用的数据分析方法,它可以帮助我们发现数据中的内在结构和规律。
通过本文的介绍,相信大家对聚类分析有了更深入的了解,希望能够在实际应用中发挥其价值,为各行各业的发展提供有力支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. Lance和Williams 距离
对标准化变量:
xik x jk 1 d ij p k 1 xik x jk
p
5. 配合距离
前几类距离多用于定距和定比尺度数据 ,对于定类和定序变量:
X 1 (V , Q, S , T , K ) X 2 (V , M , S , F , K ) m2 配合数 d12 不配合数 2 2 d12 m 1 m2 不配合数 配合数 2 2 = = 23 5
点A到μ的欧氏距离 12 12 2 , 点B到μ的欧氏距离 12 12 2
点A到μ的马氏距离
1 0.9 1 1 1 1 点B到μ的马氏距离 1.05 0 . 9 1 1 0.19
欧式等距离线
欧氏距离、标准化变量的欧式距 离与马氏距离的比较
μ 0 , Σ 0.9 1
A
B
分别求点A=(1,1)’, 和点B=(1,-1)到均值 的欧式距离和马氏距离
马氏等距离线
Σ 1 1 1 0.9 0.19 0.9 1 1 0.9 1 1 1 1 10 0.19 0.9 1 1
x2 x12 ① x22- x12
d 21 ( x21 x11 ) 2 ( x22 x12 ) 2
k 1 p
x22 x11
x21- x11 ② x21 x1
2. 明氏(Minkowski )距离
dij [ xik x jk ]
k 1 p 1 q q
q=2
q=1 q=∞
不配合数 配合数 23 5
配合距离例
4种品牌的软饮料在4个方面的特性:是否可乐口味?是 否含有咖啡因?是否节食饮料?是否可口可乐公司产?
可乐味 咖啡因 节食 可口可乐
Coke Pepsi Diet Coke Caffeine-free Diet Coke
距离矩阵
Coke Pepsi Diet Caf free
3. 马氏(Mahalanobis) 距离
明氏距离没有考虑数据中的协方差模式,马 氏距离则考虑了协方差,且不受指标测量单 位的影响:
2 dij ( Xi X j ) ' 1 ( Xi X j )
其中为p维随机向量的协方差矩 阵
Mahalanobis 距离例
已知二维正态总体G的分布为:G~N(,),其 中 0.9 0 1
变量聚类
一、概述
聚类的实质
根据样本(变量)间的亲疏关系将样本(变量)分 为类,相近的归为一类,差别较大的归为另一类。 所获得的分类应有一定的意义。
聚类分析的关键
亲疏关系的判别:相似性与距离(不相似性) 分类数的确定:分多少类合适
聚类分析的应用
不同地区城镇居民收入和消费状况的分类研究。 区域经济及社会发展水平的分析及全国区域经 济综合评价 产品市场细分:按照消费者的需求特征分成不 同的细分市场
快速聚类(k-means clustering)
模糊聚类
聚类分析数据格式
k
二、距离与相似系数
样本间的亲疏关系通常用距离描述,变 量间的亲疏关系通常用相似系数或相关 系数描述
不同测量尺度的数据,其距离的计算方 法不同
(一)、距离:样本间的亲疏关系
距离的定义:
假设每个样品由p个变量描述,则每个样品 都可以看成p维空间中的一个点,n个样品就 是p维空间中的n个点,则第i样品与第j样品 之间的距离记为dij
dij满足下列条件
dij≥0
dii =0
dij = dji dij ≤ dik + dkj
1. 欧式(Euclidian )距离
d ij ( xi1 x j1 ) 2 ( xi 2 x j 2 ) 2 ( xip x jp ) 2 [ ( xik x jk ) 2 ]1 2
在儿童生长发育研究中,把以形态学为主的指 标归于一类,以机能为主的指标归于另一类
聚类分析的类型
根据分类的对象
Q型聚类(即样本聚类clustering for individuals) R型聚类(变量聚类clustering for variables)
根据分类的方法:
系统聚类(hierarchical clustering )
x
k 1 n k 1
ki kj n
x
2 2 12 [( xki )( xkj )] k 1
当q=1, dij (1) xik x jk 为绝对值距离,SPSS称为block
p
当q=2,即为欧式距离
当q=∞,有 dij () max xik x jk 1 k p (Chebychev)距离 , 称为切比雪夫
k 1
实例计算
品
距离矩阵
绝对值距离
品
dij (1) xik x jk
1 1 1 1
1 1 1 0
0 0 1 1
1 0 1 1
Coke Pepsi Diet Caf free 1/4 1/4 2/4 2/4 3/4 1/4
(二)相似系数:变量间的亲疏关系
1. 夹角余弦(Cosine)
受相似形的启发而来,AB和CD尽管 长度不一,但形状相似 A C B D
n
Cij
k 1 p
Euclidian距离的平方
2
Euclidian距离
明氏距离的缺点
各指标同等对待(权数相同),不能反 映各指标变异程度上的差异 距离的大小与各指标的观测单位有关, 有时会出现不合理结果
没有考虑指标之间的相关性
当各指标的测量值相差悬殊时,可以先 对数据标准化,然后用标准化后的数据 计算距离
第五章
概述
聚类分析cluster analysis
聚类分析是多元分析的 主要方法之一,主要用 来对大量的样品或变量 进行分类,是初步数据 分析的重要工具之一。
距离与相似系数
系统聚类法
(hierarchical clustering )
快速聚类法
(k-means clustering)