理论力学:4-13动量矩定理
理论力学基础 动量矩定理3

(习题12-14) 习题 - )
鞍山科技大学机械工程与自动化学院工程力学系
理论力学 例题十七
第 六 节 平 面 运 动 微 分 方 程
第十二章 动量矩定理
A:m1下降,鼓轮:r、R、m2,ρ。求A的加速度。 下降,鼓轮: 的加速度。 。 的加速度
α=a/(R+r)
S S’ a aC=aR/(R+r) m1g
CHale Waihona Puke 例题十九 如图所示,板的质量为 1,受水平力 如图所示,板的质量为m
α
F ar ′ F2 F1 FN1 ′ FN2 m1g
鞍山科技大学机械工程与自动化学院工程力学系
C
m2g
aC FN2 F2
a F
理论力学
第十二章 动量矩定理
例题二十 均质圆柱体 和B的质量均为 ,半 均质圆柱体A和 的质量均为 的质量均为m,
(习题11-3) 习题 - )
鞍山科技大学机械工程与自动化学院工程力学系
理论力学
第 五 节 质 点 系 相 对 于 质 心 的 动 量 矩 定 理
第十二章 动量矩定理
二、质点系相对于质心的动量矩定理
dLO d = (rC × mvC + LC ) = ∑ r i × Fi(e) dt dt
drC dLC d (e) ′i × Fi(e) × mvC + rC × mvC + = ∑ r C × Fi + ∑ r dt dt dt
鞍山科技大学机械工程与自动化学院工程力学系
理论力学 例题十八
第 六 节 平 面 运 动 微 分 方 程
第十二章 动量矩定理
摩擦系数: , 轮:m,R,A:m1,摩擦系数:f,求加速度及 , , BC段绳的拉力。 段绳的拉力。 段绳的拉力
第十三章动量矩定理_理论力学

式中
分别为作用于质点上的内力和外力。求 n 个方程的矢量和有
式中
,
于 点的主矩。交换左端求和及求导的次序,有
为作用于系统上的外力系对
令 (13-3)
为质系中各质点的动量对 点之矩的矢量和,或质系动量对于 点的主矩,称为质系对 点的动量矩。由此得
(13-4) 式(13-4)为质系动量矩定理,即:质系对固定点 的动量矩对于时间的一阶导数等于外力 系对同一点的主矩。
设 Q 为体积流量, 为密度, 和 分别为水流进口处和出口处的绝对速度, 和 分别为涡轮外圆和内圆的半径, 为 与涡轮外圆切线的夹角, 为 与涡轮内圆切线的
夹角,则
由动量矩定理 得
为叶片作用于水流上的力矩。若水涡轮共有 个叶片,则水流作用于涡轮的转动力矩为
方向与图示方向相反。 §13-2 刚体绕定轴转动微分方程
解:取两叶片间的水流为研究对象(图 13-4 中的兰色部分)。作用于质系上的的外力有 重力和叶片的约束力,重力平行于 z 轴,对转动轴之矩为零。所以外力主矩为叶片对水流
的约束力对 z 轴之矩 。
计算 时间间隔内动量矩的增量 。设 t 瞬时占据 ABCD 的水流,经过 时间间隔
后,运动至占据
,设流动是稳定的,则
有
式中
得
(13-8)
或
(13-9)
此式称为刚体绕定轴转动的微分方程。
为刚体绕定轴转动的角加速度,所以上式
可写为
(13-10)
1.由于约束力对 z 轴的力矩为零,所以方程中只需考虑主动力的矩。 2.比较刚体绕定轴转动微分方程与刚体平动微分方程,即
与
形式相似,求解问题的方法和步骤也相似。 转动惯量与质量都是刚体惯性的度量,转动惯量在刚体转动时起作用,质量在刚体平动
动量矩定理

动量矩定理蜻蜓、飞机和直升机儿时的我很爱雨后捉蜻蜓。
夏天一场大雨过后,街道上和低洼处到处是水坑。
许多蜻蜓在水面上下飞舞,并不时用尾巴尖端表演“蜻蜓点水”的特技。
我们就用长竿端部的网兜捕捉蜻蜓,捉到后用细线拴住它的腰部,看它在我的掌握之中乱飞,快乐异常。
长大后对蜻蜓的兴趣转为对飞机的热爱,考大学选了飞机设计专业。
飞机(为了与直升机区别,可称其为“平飞飞机”,这里是按它们的飞行状态来区分的)的机翼与蜻蜓的翅膀极为相似,可是它在天空只能不停地往前飞行,不能停止。
蜻蜓就有这个本事。
直升机克服了平飞飞机(下文中仍简称为飞机)不能在空中悬停的缺点,它依靠旋转的翅膀(正确术语为旋翼)能在空中悬停,并可将重物吊起或降下,所以它在反潜、救灾、反恐、反海盗任务中有独特的优势。
直升机的先祖,至少可追朔到中国明代就出现的竹蜻蜓,直到如今仍是许多孩童的好玩具。
现代人又把它叫做“飞螺旋”和“中国陀螺”。
它用旋转叶片产生升力,使竹蜻蜓飞起来。
直升机和飞机的主要区别在于它们产生升力的机理不同。
飞机靠机身两侧的形似蜻蜓翅膀(见图1)的平直机翼提供升力,前进的动力是由机头的螺旋桨或尾部喷管(即尾喷管)的喷气来提供;而直升机则是借助旋转的机翼(旋翼)产生升力。
直升机的旋翼和飞机的螺旋桨都是用旋转的叶片推动空气产生作用力的。
飞机的螺旋桨基本不提供升力,只起克服空气阻力使飞机前进的作用;而直升机的旋翼,主要提供升力;在需要前进时,倾斜旋转轴,从而造成水平分力,使直升机前进。
一般而言,直升机旋翼叶片的尺寸(长宽和面积)要比飞机螺旋桨叶片大得多。
直升机旋翼的种类为了讨论直升机的动力学问题,先对直升机的类别进行简介。
按照旋翼的数目与配置以及叶片数目来区分,直升机有如下几种:01单旋翼直升机顾名思义,单旋翼直升机就是它只有一个旋翼。
一般它必须带一个尾桨负责抵消旋翼产生的反转矩。
例如,欧洲直升机公司制造的EC-135直升机。
图2就是一个带尾桨的单旋翼直升机图片。
理论力学-动量矩定理

d rC d vC vC , aC , dt dt
n d LC ri Fi e dt i
vC vC 0 ,
m a C Fie
n dLC M C (Fie ) dt i
相对质心的动量矩定理
质点系相对质心的动量矩定理
n n d LC e e ri Fi M C ( Fi ) i dt i
m v
i
i
m vC
LO rC m vC LC
相对质心的动量矩定理
质点系相对质心的动量矩定理
根据上式和质点系对固定点的动量矩定理,
n d LO d ( rC m vC LC ) ri Fi e dt dt i
ri rC rr
n n d rC d vC d LC e rC Fi ri Fi e m vC rC m dt dt dt i i
即有
LC ri mi vir
相对质心的动量矩定理
质点系相对质心的动量矩
质点系相对固定点的动量矩与质点系相对质心的动量矩 之间存在确定的关系。 质点系相对固定点的动量矩为
LO ri mi vi
i
因为 所以有 因为 所以有
ri rC rr
LO rC mi v i ri mi v i
刚体定轴转动微分方程
例 题 1
图示钟摆简化模型中,已知均质细杆 和均质圆盘的质量分别为m1 、m2 ,杆 长为l,圆盘直径为d。
ϕ
试求:钟摆作小摆动时的周期。 解:摆绕O轴作定轴转动。设ϕ 为任意 时刻转过的角度,规定逆时针为正。根 据定轴转动的微分方程
J z M z
理论力学之动力学普遍定理

分方程得:
O
l
A
T sin=0.366
2clos=0.931
A´
BAB
P
N
P
T
P g
aCy
N
P
(T N )l cos 1 P (2l)2 12 g
联立解得: T = 0.846P N = 0.654P
25
阅读材料和作业
• 1.阅读材料 – (1)P164---P170
O
l
A
2l
A´
B´
B
P
21
解:取杆AB为研究对象进行运动分析.
O
l T
A
OB = 1.732l A´B = 0.732l
当绳索OA运动到铅垂位置时,
N
2l
杆AB作瞬时平动.
B´
vA = vB = v
A´
B
P
对杆AB进行受力分析.
约束力T和N不作功, P是有势力,系统机械能守恒.
0.866 Pl 0.366 Pl 1 P v2 v gl
(3)
联立(1)(2)(3)式解得:
O
m1 ( R
m1g(R r) r)2 m2 (R2
O2 )
aA
(R
r)O
m1(R
m1g(R r)2 r)2 m2 (R2
O2 )
D A
aA
28
O
13-31解.分别取木板和圆柱O为研究对 象画受力图.
aO
O
F Ff FO m1a
=1500.24(1- sin30o)
+600.12(1-sin30o)
理论力学10动量矩定理

J11 (J 22 m2v2 R2 ) m3v3R2
v3
v2
R2 2
1 2
R11
LO
(
J1 R2 2
J2 R2 2
m2
m3 )R2v3
轮B滚而不滑,有瞬心
17
对于一个定轴转动刚体 Lz J z
代入质点系动量矩定理,有
d dt
(J
z)
M
(e) z
Jz
M
( e) z
或
Jz
d 2
dt 2
M
(e) z
—刚体定轴转动微分方程
解决两类问题: 已知作用在刚体的外力矩,求刚体的转动规律。 已知刚体的转动规律,求作用于刚体的外力(矩)。
但不能求出轴承处的约束反力,需用质心运动定理求解。
18
特殊情况:
n
若M z(e) M z (Fi(e) ) 0 ,则 0, 恒量,刚体作匀速转动或 i1 保持静止。
mT
mT ymdm 0
mT
刚体对z轴的转动惯量
JZ
r2dm
mT
(x2 y2 )dm
mT
mT [( xC xm )2 ( yC ym )2 ]dm
mT (xm2 ym2 )dm
mT (xC2 yC2 )dm 2xC
mT
xmdm
2 yC
mT
ymdm
J Z JC mT d 2
0
0 24
复杂形状刚体的转动惯量 按定义,有:
JZ
理论力学 动量矩定律

MO (mv) 恒矢量
作用于质点的力对某定轴的矩恒为零,则质点对该轴的动量矩 保持不变,即
M z (mv ) 恒量
以上结论称为质点动量矩守恒定律 2)质点系动量矩守恒定理 当外力对某定点(或某定轴)的主矩等于零时,质点系对 于该点(或该轴)的动量矩保持不变,这就是质点系动量矩 守恒定律。 15 另外,质点系的内力不能改变质点系的动量矩。
24
动力学 2. 回转半径 定义:
转动惯量
z
Jz m
则
J z m z
2
即物体转动惯量等于该物体质量与回转半径平方的乘
积; 对于均质物体,仅与几何形状有关,与密度无关。
对于几何形状相同而材料不同(密度不同)的均质刚 体,其回转半径是相同的。
25
动力学
转动惯量
3. 平行移轴定理 刚体对于某轴的转动惯量,等于刚体对于过质心、并与该轴平 行的轴的转动惯量,加上刚体质量与轴距平方的乘积,即
LC LC
这样刚体作平面运动时,对过质心C且垂直于平面图形的 轴的动量矩为
J C LC LC
12
动力学
质点系动量矩定理
2.质点系的动量矩定理
n个质点,由质点动量矩定理有
d M O (mi vi ) M O ( Fi ( i ) ) M O ( Fi ( e ) ) dt
n d (e) Lx M x ( Fi ) dt i 1 n d Ly M y ( Fi ( e ) ) dt i 1 n d Lz M z ( Fi ( e ) ) dt i 1
14
动力学
质点系动量矩定理
3.动量矩守恒定理 1)质点动量矩守恒定理 如果作用于质点的力对某定点O的矩恒为零,则质点对该 点的动量矩保持不变,即
13动量矩定理

O
r1
M
B
m2 g
mg
A
m1 g
理论力学 第二节 动量矩定理
第十三章
动量矩定理
解:取系统为研究对象进行受力分析和运动分析 1、受力分析
2、运动分析
Foy
FN
B
v1 r1
v2 r2
v2
M
r2
O
r1
系统对O轴的动量矩和外力矩:
LO J O m1r12 m2 r22
F1 F1
解得主动轮与从动轮的角加速度分别为:
MR 2 1 J1 R 2 J 2 r 2
MRr 2 J1 R 2 J 2 r 2
理论力学 第十三章 动量矩定理
第十三章
动量矩定理
第四节 刚体的平面运动微分方程
理论力学
第十三章
动量矩定理
第四节 刚体的平面运动微分方程
若平面运动刚体具有质量对称平面,且其运动平 面与该质量对称平面平行,则有:
第十三章
动量矩定理
三、质点系的动量矩定理
设质点系中有n个质点,其中第 i 个质点: d [M z mi vi ] = M z Fi e M z Fi i dt
n n d e [M z mi vi ] M z Fi M z Fi i dt i 1 i 1 i 1 n
O
A
B
理论力学 第二节 动量矩定理
第十三章
动量矩定理
FO y
O
解: 取整个系统为研究对象,
受力分析如图示。 运动分析: v =r
FO x
M F m gr m gr
e z i 1 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章
动量矩定理
即:
外力矢量和质心运动定理
C
(外力系的主矢)
v p c m =0
=p
随质心平动
相对于质心转动
动量定理
动量矩
定点(或定轴)或质心
动量矩定理
质点系的动量矩定理和刚体平面运动
第13章动量矩定理主要内容:
谁最先到达顶点
直升飞机如果没有尾翼将发生什么现象
航天器是怎样实现姿态控制的
为什么二者转动方向相反
一.质点的动量矩
)(m O v M
二.质点系的动量矩
r'r r i
c i +=v v v ir c
ia +=
∑∑
ia
i
m v ()L
r L C
C
C
O
mv +×=()()
L v v v +×∑c ir i i c i m m v ia
三.刚体动量矩计算:
1.平动刚体
2.定轴转动刚体
转动惯量
3.平面运动刚体
点的动量矩等于O到质心C的矢量叉乘平面运动刚体的动量加上刚体对于质心
C 1
2
1+
一.定义:∑=
2
i
i z r
m J ∫
=
dm
r J m
z 2
1.积分法二.转动惯量的计算
−l
2
m
J z
2
z
z m J ρ=均质刚体2. 回转半径
3. 平行轴定理
2
'md
J J zC z +=通过质心该轴平行的轴的转动惯量刚体的质量与两轴间距离的平方之乘积
证明例如)ml ml =
+
=
4.计算转动惯量的组合法5. 求转动惯量的实验方法
212
3l m +2
321l m +
§13-3动量矩定理
一.质点的动量矩定理
v r m −×)()()]([
, )(F M v M F r v r O O m dt
d m dt d =×=×质点对固定点的动量矩定理。
)()( ),()( ),()(F v F v F v z z y y x x M m M dt d M m M dt d M m M dt
d ===质点对固定轴的动量矩定理动量矩定理的投影形式同一轴质点的动量矩守恒
由动量矩定理 , sin )(+−=ϕϕϕl mgl ml dt d t l g 22l
g
ππω=
二.质点系的动量矩定理
=i i O )(m v M (e)O O dt
d M L =
质点系对固定点的动量矩对于时间的一阶导数等于外力系对同一点的主矩dL dt dL dt z y x (e)O O dt
d M L =
或某定轴或力矩的代数和或该轴
矢量方程
质点系的动量和动量矩
动量系基本特征量动量系的主矢和主矩。
两者对时间的变化率等于外力系
力系的主矢和主矩。
B
A g
r v g +⋅)
2( , 2P P g L r g B A O ++=得代入P P g dt B A 2⎢
⎜++B
A ⋅
=
相对绳子的速度解:
O
R
B
v A
v
A B
O
R
B
v A
v A
B
Aa
v Ba
v v v 同时到达顶点思考
§13-4刚体定轴转动微分方程
解决两类问题:
但不能求出轴承处的约束反力,需用质心运动定理求解。
P l ⋅=⋅αF P F a O y O y Cy =⇒−=
2(3222g r g
dt +⋅ω得:3
22g a =1
1P P P 23
11++1
§13-5质点系相对于质心的动量矩定理
一.质点系动量矩
二.质点系对质心的动量矩定理
)
1
i ∑=)(c c c c c m m v r v +×+×
等式可化为:∑×=c i
i c 'F r 质点系相对于质心的动量矩对时间的导数,外力系对质心的主矩。
质点系对质心的动量矩定理。
()(i n c c c c c c dt d m dt d m dt d F r L v r v r ×=+×+×∑0
=
?
?
§13–6 刚体的平面运动微分方程
写成投影形式
上式称为平面运动微分方程。
C
C
α
θαθ ; sin ,sin F g g ==
r
, , , ===F F F A NA B f r d r
f f dt
∫+⋅−=⋅+−='1
, ''1ω)
'1('20
f gf +r。