6.1从实际问题到方程练习题

合集下载

六年级数学第六章练习:列方程,一元一次方程

六年级数学第六章练习:列方程,一元一次方程

6.1列方程(1)班级 姓名 学号一、填空:1、含有 的等式叫做方程..,在方程中所含的 又称元。

2、方程必须是等式,等式 是方程.(填“一定”或“不一定”)3、等式0.5x =0 (填“是”或“不是”)4、设甲数为x ,乙数为y ,且乙数比甲数的43还多3,列方程为 。

5、根据下列数量关系列出方程: (1)x 与1的和的2倍等于5(2)x 的13等于23.(3)x 的倒数与3的和等于7(4)x 的绝对值比3大3二、选择题1、下列各式中,是方程的共有( )个(1)21x + (2)312x += (3)314+= (4)2751x -= (5)21x y -= (6)3(2)2(1)1x x y ---=- (7)a b b a +=+(A )1个 (B )2个 (C )3个 (D )4个2、设某数为x ,那么某数的相反数比某数的3倍多1,可列方程是( ) (A )31x x =+ (B )31x x -=+ (C )31x x -+=- (D )31x x -=3、下列条件中,不能列出方程的是( )(A )某数比上它的5倍 (B )某数与它的一半的差是8 (C )某数加上5再乘以2等于14 (D 某数的7倍与13的和等于118 三、根据下列条件列方程:1、 正方形的边长为a cm ,面积为16cm 2;2、圆的周长为25厘米,半径为r cm;3、某数y与2的和的1比这个数的4倍小1。

3四、在下列问题中引入未知数,并列出方程:1、长方形的长比宽的2倍少1cm,面积为45cm2,求长方形的宽。

2、爸爸今年32岁,小明今年10岁,几年后小明的年龄会是爸爸的133、一个两位数的十位数字比个位数字的4倍多1,十位数字与个位数字的和是11。

求这个两位数。

(不妨设“个位数字为未知数”)4、毕业生在礼堂就坐,若一条长椅上坐3人,就有35人没有座位。

若一条长椅上坐4人,正好空出5条长椅,问毕业生共有多少人。

5、为迎接2010年的世博会,让上海城市美化,通过拆迁旧房、植草、栽树、修建公园等措施,使城市绿地面积不断增长,2009年底城市绿地总面积达到72.6公顷,比2007年底的绿地面积增加21%,求2007年底的绿地面积。

华东师大版七年级数学下册练习题:《一元一次方程》一课一练含单元测试题

华东师大版七年级数学下册练习题:《一元一次方程》一课一练含单元测试题

6.1 从实际问题到方程1.下列各式中,是方程的是( )A .x 2-2x =0 B.23x -5 C .3+(-4)=-1 D .7x >52.小华想从下面各项中找一个解是x =2的方程,那么她会选择( )A .3x +6=0 B.23x =2 C .5-3x =1 D .3(x -1)=x +13.检验方程后面的数是不是它的解.2x +1=3x -1.(x =-1,x =2)4.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后每个书包的售价为90元,则得到方程( )A .0.8x -10=90B .0.08x -10=90C .90-0.8x =10D .x -0.8x -10=905.列方程:(1)x 的2倍与3的差等于零;(2)y 比它的34多7;(3)x 的3倍加上5等于x 的7倍减去4.6.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度.若设上半年平均每月用电x 度,则所列方程正确的是( )A .6x +6(x -2000)=150000B .6x +6(x +2000)=150000C .6x +6(x -2000)=15D .6x +6(x +2000)=157.已知x =1是方程x +2a =-1的解,那么a 的值是( )A .-1B .0C .1D .28.若单项式3ac x +2与-7ac 2x -1是同类项,则可以得到关于x 的方程为______________.9.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字(不计算标题字数).则七言绝句有多少首?设七言绝句有x 首,根据题意,可列方程为________.10.在一次植树活动中,甲班植树的株数比乙班多20%,乙班植树的株数比甲班的一半多10株,设乙班植树x株.(1)列两个不同的含x的代数式,分别表示甲班植树的株数;(2)根据题意列出含未知数x的方程;(3)检验乙班、甲班植树的株数是不是分别为25株和35株.详解详析1.A [解析] 考查方程的定义.2.D [解析] 把x=2分别代入选项中各方程,它只能使3(x-1)=x+1的左右两边成立,所以选D.3.解:把x=-1代入方程:左边=-2+1=-1,右边=-3-1=-4,左边≠右边,∴x=-1不是方程的解;把x=2代入方程:左边=4+1=5,右边=6-1=5,左边=右边,∴x=2是方程的解.4.A5.解:(1)2x-3=0. (2)y-34y=7.(3)3x+5=7x-4.6.A [解析] 设上半年平均每月用电x度,则下半年平均每月用电(x-2000)度,由题意,得6x+6(x-2000)=150000.故选A.7.A [解析] 把x=1代入方程,得1+2a=-1,解得a=-1.故选A.8.x+2=2x-1 [解析] ∵单项式3ac x+2与-7ac2x-1是同类项,∴x+2=2x-1.故答案为x+2=2x-1.9.28x-20(x+13)=20 [解析] 设七言绝句有x首,则五言绝句有(x+13)首.利用五言绝句与七言绝句总字数之间的关系可列方程为28x-20(x+13)=20.10.解:(1)根据甲班植树的株数比乙班多20%,得甲班植树的株数为(1+20%)x;根据乙班植树的株数比甲班的一半多10株,得甲班植树的株数为2(x-10).(2)由题意,得(1+20%)x=2(x-10).(3)把x=25分别代入方程的左边和右边,得左边=(1+20%)×25=30,右边=2×(25-10)=30.∵左边=右边,∴25是方程(1+20%)x=2(x-10)的解,∴乙班植树的株数是25株,从上面的检验过程可得甲班植树的株数是30株,而不是35株.6.2 七年级数学下册解一元一次方程同步练习一、选择题1.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2bB.3a+1=2b+6C.3ac=2bc+5D.a=2.将3x﹣7=2x变形正确的是()A.3x+2x=7 B.3x﹣2x=﹣7 C.3x+2x=﹣7 D.3x﹣2x=73.下列方程的变形正确的是()A.由,得: ; B.由,得:; C.由得 D.由得:;4.若x=-3是方程2(x-m)=6的解,则m 的值为( )A .6B .-6C .12D .-125.若7﹣2x 和5﹣x 的值互为相反数,则x 的值为( )A.4B.2C.﹣12D.﹣76.解方程时,为了去分母应将方程两边同时乘以( ) A.12 B.10 C.9 D.47.把方程3x +=3-去分母,正确的是 ( )A .B .C .D . 8.方程,可以化成( )A. B.C. D.9.某书上有一道解方程的题:,处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x=-2,那么处应该是数字( ).A.7B.5C.2D.-210.已知方程的解满足,则的值是( ) A. B.C.或 D.任何数二、填空题 11.若关于x 的方程(k+2)x 2+4kx ﹣5k=0是一元一次方程,则k= ,方程的解x= .3137143y y ---=12.若“★”是新规定的某种运算符号,设a★b=ab+a﹣b,则2★n=﹣8,则n= .13.已知关于x的方程4x+2m=3x+1与方程3x+2m=6x+1的解相同,则方程的解为.14.若方程3x+2a=13和方程2x-4=2的解互为倒数,则a的值为 .15.已知关于x的方程2ax=(a+1)x+3的解是正整数,则正整数a=16.已知t满足方程,则的值为 .三、解答题17.解方程:4x-3(20-x)= 3 18.解方程:3(x﹣1)﹣2(x+2)=4x﹣1.19.解方程:. 20.解方程:21.聪聪在对方程①去分母时,错误的得到了方程2(x+3)﹣mx﹣1=3(5﹣x) ②,因而求得的解是x=2.5,试求m的值,并求方程的正确解.22.m为何值时,关于x的方程4x﹣m=2x+5的解比2(x﹣m)=3(x﹣2)﹣1的解小2.答案1.C2.D3.D.4.D5.B6.A7.A8.D9.B.10.C11.答案为:﹣2、1.25.12.答案为:-1013.答案为:014.答案为:a=6;15.答案为:2,4;16.答案为:2;17.x=9;18.解:去括号得:3x-3-2x-4=4x-1,移项得:x-4x=-1+7,合并得:-3x=6,解得:x=-2.19.去分母得:5(x﹣3)﹣3(2x+7)=15(x﹣1),去括号得:5x﹣15﹣6x﹣21=15x﹣15,移项合并得:﹣16x=21,解得:x=﹣.20.x=-0.2.21.解:把x=2.5代入方程②得:2(2.5+3)﹣2,5m﹣1=3(5﹣2.5),解得:m=1,把m=1代入方程①得:﹣=,去分母得:2(x+3)﹣x+1=3(5﹣x),去括号得:2x+6﹣x+1=15﹣3x,移项合并得:4x=8,解得:x=2,则方程的正确解为x=2.22.解:由4x﹣m=2x+5,得x=,由2(x﹣m)=3(x﹣2)﹣1,得x=﹣2m+7.∵关于x的方程4x﹣m=2x+5的解比2(x﹣m)=3(x﹣2)﹣1的解小2,∴+2=﹣2m+7,解得m=1.故当m=1时,关于x的方程4x﹣m=2x+5的解比2(x﹣m)=3(x﹣2)﹣1的解小2.华东师大版数学七年级下册第六章 6.3 实践与探索复习练习1. 一件标价为600元的上衣,按8折销售仍可获利20元,设这件上衣的成本价为x元,根据题意,下面所列的方程正确的是() A.600×0.8-x=20 B.600×8-x=20C.600×0.8=x-20 D.600×8=x-202.长方形的长是宽的3倍,如果宽增加了4 m而长减少了5 m,那么面积增加15 m2,设长方形原来的宽为x m,所列方程是() A.(x+4)(3x-5)+15=3x2B.(x+4)(3x-5)-15=3x2 C.(x-4)(3x+5)-15=3x2D.(x-4)(3x+5)+15=3x23.一家服装店将某种服装按进价提高50%后标价,又以八折销售,售价为360元,则每件服装获利()A.168元B.108元C.60元D.40元4. 小强父母想用一笔钱购买年利率为2.98%的3年期国库券作为小强3年后读高中的费用(约需8 000元),现在应买这种国库券约() A.7 775元B.7 362元C.7 769元D.7 344元5. 学校计划将120名学生平均分成若干个读书小组,若每个小组比原计划多1人,则要比原计划少分出6个小组,那么原计划要分成的小组数是()A.40B.30C.24D.206. 一个两位数的十位上的数字与个位上数字之和为8,把这个数减去36后,结果恰好成为十位数字与个位数字对调后组成的两位数,则这个两位数是()A.26 B.62 C.71 D.537. 某商店销售一批服装,每件售价150元,可获利润25%,求这种服装的成本价.设这种服装的成本价为x元,则得到的方程是() A.150-x=25%·x B.150-x=25%C.x=150×25% D.25%·x=1508. 已知关于x的方程kx2-2x+9=0的一个解是x=-1,则k的值是()A.-11B.11C.7D.-79. 下列各式中是方程的是()A.3x-2 B.7+(-5) C.3y-1=6 D.4×2-2=610. 下列判断正确的是()A.x=2是方程2x-1=x的解B.方程6x=3与方程6|x|=3的解相同C.由7x=5可得x=7 5D.x=1和x=-1都是方程x2-1=0的解11. 某企业存入银行甲、乙两种不同用途的存款共20万元,甲种存款的年利率为5.5%,乙种存款的年利率为4.5%,该企业一年可获利息9 500元,则存款数目为甲______元,乙______元.12. 小华的妈妈为爸爸买了一件上衣和一条裤子,共用306元.其中上衣按标价打七折,裤子按标价打八折,上衣的标价为300元,则裤子的标价为_____元13. 某商场今年五月份的销售额是200万元,比去年五月份销售额的2倍少40万元,那么去年五月份的销售额是______万元14. 某市政府切实为残疾人办实事,在区道路改造中为盲人修建一条盲道,根据规划设计和要求,每天施工500 m,该市工程队在实际施工时增加了施工人员,每天修建的盲道比原计划增加50%,结果提前2天完成,则盲道______m.15. 某数的3倍加上4等于10,设某数为x,那么可列出方程式:______________16. 已知父子俩的年龄之和为55岁,又知父亲的年龄比儿子的年龄的3倍少5岁,设儿子的年龄为x岁,可列方程为______________.17. 检验x=5是否为方程3x-2=2x+3的解.18. 甲、乙两人捐书给贫困山区,共捐54本,如果甲给乙一本,则乙是甲的2倍,问甲、乙各捐书多少本?19. 某一学生在做作业时,不慎将墨水打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度是每小时45千米,运货汽车的速度是每小时35千米,(以下内容被墨水覆盖)”请将这道题补充完整,并列方程解答20. 某同学在A,B两家超市发现他看中的英语学习机的单价相同,书包单价也相同,英语学习机和书包单价之和是452元,且英语学习机的单价比书包单价的4倍少8元(1)求该同学看中的英语学习机和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打7.5折销售;超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的英语学习机、书包,那么在哪一家购买更省钱?参考答案:1---10 ABCDB BAACD11. 5万15万12. 12013. 12014. 300015. 3x+4=1016. 3x-5+x=5517. 解:左边=3×5-2=13,右边=2×5+3=13.左边=右边,∴x=5是方程的解.18. 解:设甲捐x本,则乙捐了(54-x)本,由题意得:2(x-1)=54-x+1,解得x=19,所以甲捐了19本,乙捐了35本19. 解:可以把它补充成相遇问题,也可以补充成追击问题.方案很多,下面仅举两种方案供参考.方案1(相遇问题):补充“两车分别从甲、乙两地同时出发相向而行,经过几小时才能相遇?”设两车经过x小时才能相遇,依题意有(45+35)x=40.解得x=0.5. 答:经过0.5小时才能相遇.方案2(追击问题):补充“摩托车与汽车分别从甲、乙两地同时同向而行,经过几小时摩托车才能追上运货的汽车?”设经过x小时摩托车才能追上运货的汽车,依题意有45x=40+35x,解得x=4.答:经过4小时摩托车才能追上运货的汽车.20. 解:(1)设书包的单价为x元,则英语学习机的单价为(4x-8)元.根据题意,得4x-8+x=452,解得x=92.4x-8=4×92-8=360.答:该同学看中的英语学习机单价为360元,书包单价为92元.(2)在超市A购买英语学习机与书包各一件,需花费现金:452×75%=339(元);因为339<400,所以可以选择超市A购买.在超市B可先花费现金360元购买英语学习机,再利用得到的90元购物券,加上2元现金购买书包,总计共花费现金:360+2=362(元); 因为362<400,所以也可以选择在超市B购买但是,由于362>339,所以在超市A购买英语学习机与书包更省钱.第6章一元一次方程一、选择题(本大题共10小题,每小题3分,共30分;在每小题给出的四个选项中只有一项符合题意)1.下列方程中,是一元一次方程的是()A.x2+3=0B.x+3=y+2C.=4D.x=02.下列说法中不成立的是()A.若x=y,则x-a=y-aB.若x-y=0,则-x=-yC.若x=-y,则-x-5=y-5D.若-x=1,则x=-3.方程3x+2=2x-1的解为()A.x=-3B.x=-1C.x=1D.x=34.解方程=1-,去分母正确的是()A.3x=1-2x+2B.3x=1-2x-2C.3x=6-2x-2D.3x=6-2x+25.若关于x的方程3x+2a=12和方程2x-4=12的解相同,则a的值为()A.6B.8C.-6D.46.若的值比的值小1,则x的值为()A.B.-C.D.-7.对于非零的两个数a,b,规定a⊗b=3a-b,若(x+1)⊗2=5,则x的值为()A.1B.-1C.D.-28.已知关于x的方程(2a+b)x-1=0无解,那么ab的值是()A.负数B.正数C.非负数D.非正数9.某班组每天需生产50个零件才能在规定的时间内完成一批零件生产任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要生产的零件为x个,则可列方程为()A.-=3B.-=3C.-=3D.-=310.某个体商贩在一次买卖中同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,则在这次买卖中他()A.不赚不赔B.赚9元C.赔18元D.赚18元二、填空题(本大题共8小题,每小题4分,共32分)11.已知方程(m-2)x|m-1|+4=7是关于x的一元一次方程,则m=.12.当x=时,代数式与1-的值相等.13.如果当x=-2时,式子2x2+mx+4的值为18,那么当x=2时,这个式子的值为.14.如果2(x+3)的值与3(1-x)的值互为相反数,那么x=.15.若代数式3a4b2x与a4b3x-1能合并成一项,则x的值为.16.如果|x+8|=5,那么x=.17.如图6-Z-1是一块在电脑屏幕上出现的长方形色块图,由6个颜色不同的正方形组成,设中间最小的正方形的边长为1,则这个长方形色块图的面积为.图6-Z-1 18.一张试卷只有25道选择题,答对一题得4分,答错一题倒扣1分,某学生解答了全部试题共得70分,他答对了道题.三、解答题(本大题共4小题,共38分)19.(8分)解方程:(1)2(x-1)-3(2+x)=5;(2)2-=+1.20.(10分)阅读:解方程2.4-=y,有如下四种解法:解法A:24-=6y,第一步120-y+4=30y,第二步-31y=-124,第三步y=4.第四步解法B:2.4-=y,第一步12+10y-40=3y,第二步7y=28,第三步y=4.第四步解法C:24-=6y,第一步48+10y-40=12y,第二步8=2y,第三步y=4.第四步解法D:-=y,第一步12-10y+40=3y,第二步-13y=-52,第三步y=4.第四步阅读上面的解法,你认为哪些解法是正确的?解法错误的错在哪一步?21.(10分)某工厂原计划用26小时生产一批零件,后因每小时多生产5个,用24小时不但完成了任务,而且还比原计划多生产了60个,则原计划生产多少个零件?22.(10分)情景:图6-Z-2试根据图中的信息,解答下列问题:(1)购买6根跳绳需元,购买12根跳绳需元.(2)小红比小明多买2根跳绳,付款时小红反而比小明少付5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.答案1. D2. D3. A4. D5. C6. B7. C8. D9. C10. C11. 0 12.-1 13. 6 14. 9 15. 1 16.-3或-13 17. 143 18. 1919.解:(1)去括号,得2x-2-6-3x=5.移项、合并同类项,得-x=13.系数化为1,得x=-13.(2)方程两边同乘以6,得12-(2x-1)=2(x+1)+6,12-2x+1=2x+2+6,4x=5,x=.20.解:只有解法D是正确的.解法A错在第一步,解法B错在第二步,解法C错在第二步.21.解:设原计划生产x个零件.由题意,得24+5=x+60,解得x=780.答:原计划生产780个零件.22.解:(1)150240(2)有这种可能.设小红购买了x根跳绳,根据题意,得25×0.8x=25(x-2)-5,解得x=11.所以小红购买了11根跳绳.。

六年级列方程解决实际问题的练习题

六年级列方程解决实际问题的练习题

六年级列方程解决实际问题的练习题题目1:
小明在公园见到了一只狗和一只猫,他想猜一下两只动物的年龄。

狗的年龄是猫的3倍,而猫的年龄是5岁。

请问狗的年龄是多少岁?
解法:
设狗的年龄为x,则猫的年龄为5岁,由题可知:
x = 3 * 5 = 15(岁)
因此,狗的年龄是15岁。

题目2:
某商场正在举行促销活动,打折力度为7折,小明想要买一双原价为189元的球鞋,请问他买这双球鞋需要支付多少钱?
解法:
打七折折扣意味着价格降低了30%,所以打完折后小明需要支付的金额为:
189 * 0.7 = 132.3(元)
因此,小明需要支付132.3元。

题目3:
小华拿到了一支价格为150元的笔记本电脑,但他想知道打了8.5折的优惠后还需要支付多少钱。

解法:
打八五折折扣意味着价格降低了15%,所以打完折后小华需要支付的金额为:
150 * 0.85 = 127.5(元)
因此,打八五折后小华需要支付127.5元。

题目4:
某公司招聘人员,要求年龄在25岁以下并且大专以上学历,请问小明是否符合这个条件。

已知小明的年龄为22岁,并且他是大学本科毕业。

解法:
小明的年龄符合要求,但是他的学历不符合要求,因为大学本科不等于大专。

因此,小明不符合这个条件。

6.1_华师大从实际问题到方程

6.1_华师大从实际问题到方程

2.全班同学去划船,如果减少一条船,每条 船正好坐9个同学;如果增加一条船,每条 船正好坐6个同学.问这个班有多少个同学? (只列方程不求解) 解:设这个班有x个同学 x 根据题意列方程,得:9 1
x 1 6
小结
1、什么是等式?什么是方程? 2、根据题意列出方程的一般步骤?
(1)弄清题意和其中的数量关系,用字母表示适当 的未知数。 (2)找出题目中有关数量的相等关系。 (3)对这个等量关系中涉及的量,列出所需的表达 式,根据等量关系,得到方程。
2 n 1
是同类项, ∴m-1=2,n-1=2.解得m=3,n=3. ∴x=3.把x=3分别代入方程的左边和右边, 得左边=2×3-6=0=右边, mn ∴x ,即x=3是方程2x-6=0的解。
2
思维训练:
1.甲.乙两个运输队,甲队32人, 乙队28人,若乙队调走x人到甲队, 则甲队人数是乙队人数的2倍,其 中x应满足的条件是( ) B A 2(32+x)=28-x C 32=2(28-x) B D 32+x=2(28-x) 3×32=28-x
请大家把下面的句子用方程的形式表示 出来:
4 (1)某数的 与1的和是2; 5 (2)某数的4倍等于某数的3倍
2 (3)某数与8的差的 等于0。 3
与7的差;
(1)弄清题意和其中的数量关系, 用字母表示适当的未知数。 (2)找出题目中有关数量的相等关系。 (3)对这个等量关系中涉及的量, 列出所需的表达式,根据等量关系, 得到方程。
右边= - 123
左边=右边
∴ y= - 10 是方程的解
当y= 10时,左边=11 y – 13= 97 右边= 147
左边≠右边
∴ y= 10不 是方程的解

历下区第三中学七年级数学下册第六章二元一次方程组6.1二元一次方程组单元练习1新版冀教版9

历下区第三中学七年级数学下册第六章二元一次方程组6.1二元一次方程组单元练习1新版冀教版9

二元一次方程组一、判断题(每小题1分,共5分)下列各题正确的画“√”,错误的画“×”。

1、11x y =⎧⎨=⎩不是二元一次方程组。

( ) 2、解二元一次方程组的基本方法有代入消元法、加减消元法等。

( ) 3、某一个二元一次方程组的解一定是组成这个方程组的各个方程的解。

( )4、一次函数y=x 的图像与一次函数y=2x 的图像不相交。

( )5、若方程组⎩⎨⎧=-=-a y ax y x 535 有惟一解,则a≠35 。

( )二、选择题(每小题3分,共30分)下列每小题都给出了四个答案,其中只有一个是正确的,请把正确答案的代号填在题后括号内。

1、如果3x2-k=y 是二元一次方程,那么k 的值是( ) (A ) 2 (B ) 3 (C ) 1 (D ) 02、下列方程组中是二元一次方程组的是( )(A )23x y xy -=⎧⎨=⎩ (B )0x y x y =⎧⎨+=⎩ (C )2101x x x y ⎧--=⎨=+⎩ (D )1231xx y ⎧=⎪⎨⎪+=⎩3、已知x=-2 是方程2x+m -4=0的一个根,则m 的值是( ) (A ) 8 (B ) -8 (C ) 0 (D ) 24、以⎩⎨⎧==32y x 为解的二元一次方程组是( )(A )⎩⎨⎧=-=+15y x y x (B )⎩⎨⎧==y x y x 2332(C )⎪⎪⎩⎪⎪⎨⎧=+=+65213123121y x y x (D )⎪⎪⎩⎪⎪⎨⎧=--+=-++32)(2)(22)(2)(y x y x y x y x5、已知|x+y -1|+(x -y+3)2=0,则(x+y)2002的值是( )(A ) 22002 (B ) -1 (C ) 1 (D ) -220026、6年前,A 的年龄是B 的3倍,现在A 的年龄是B 的2倍,A 现在的年龄是( ) (A ) 12 (B ) 18 (C ) 24 (D ) 307、函数y=x 的图像与函数y=2x+1的图像的交点坐标是( )(A ) (1,1) (B )(0,0) (C )(13,13) (D )(-13,-13)8、8个连续整数的和是28,则紧接这8个连续整数后的8个连续整数的和等于( ) (A ) 36 (B ) 44 (C ) 56 (D ) 929、若方程组431(1)3x y ax a y +=⎧⎨+-=⎩的解x 与y 相等,则a 的值是( )(A ) 4 (B ) 10 (C ) 11 (D )1210、有大小两种笔记本,3个大的2个小的共售10.5元,2个大的4个小的共售11元,大小笔记本售价各是( )(A ) 2.5 元,1.5 元 (B ) 2元,1元 (C ) 1.5元,1元 (D ) 1元,0.5元 三、填空题(每空2分,共 20分)1、在二元一次方程3(x-1)+y=2(y-2)中,当x=2时,y=_________。

七年级数学6.1平方根、立方根讲解与例题

七年级数学6.1平方根、立方根讲解与例题

6.1 平方根、立方根1.了解平方根、算术平方根、立方根的定义和性质,会用根号表示非负数的平方根、算术平方根、立方根.2.能利用平方根、算术平方根、立方根的定义和性质解题. 3.知道开方是乘方的逆运算,会用开方求某些非负数的平方根. 4.能运用算术平方根解决一些简单的实际问题.1.平方根(1)平方根的概念:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根,也叫做二次方根.换句话说,如果x 2=a ,那么x 叫做a 的平方根,例如22=4,(-2)2=4,则4的平方根是+2和-2(也可合写为±2),+2和-2都是4的平方根.(2)平方根的性质:一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.(3)平方根的表示:正数a 有两个平方根,一个是a 的正的平方根,记作“a ”,读作“根号a ”,另一个是a 的负的平方根,记作“-a ”,读作“负根号a ”,这两个平方根合起来可记作“±a ”,读作“正、负根号a ”,其中a 叫做被开方数.【例1-1】求下列各数的平方根:(1)0.64;(2)3625;(3)⎝ ⎛⎭⎪⎫-322.分析:要求一个数的平方根,我们可以根据平方根的概念,首先找到一个数,使它的平方等于已知的数,然后就可以求出这个数的平方根.解:(1)∵(±0.8)2=0.64,∴0.64的平方根是±0.8.(2)∵⎝ ⎛⎭⎪⎫±652=3625,∴3625的平方根是±65.(3)∵⎝ ⎛⎭⎪⎫±322=⎝ ⎛⎭⎪⎫-322,∴⎝ ⎛⎭⎪⎫-322的平方根是±32.求一个数的平方根,必须牢记正数有两个平方根,它们互为相反数,不会因为表达形式的改变而改变,如⎝ ⎛⎭⎪⎫-322是个正数,那么它有两个平方根,不要错误地认为它的平方根仅有-32.【例1-2】下列各数有平方根吗?如果有,求出它的平方根;若没有,请说明理由. (1)2516;(2)0;(3)-4;(4)-0.49;(5)(-3)2. 分析:解:(1)因为16是正数,所以16有两个平方根.由于⎝ ⎛⎭⎪⎫±542=2516,所以2516的平方根是±54.(2)0只有一个平方根,是它本身.(3)因为-4是负数,所以-4没有平方根.(4)因为-0.49是负数,所以-0.49没有平方根.(5)因为(-3)2=9,所以(-3)2为正数,有两个平方根.由于9的平方根是±3,所以(-3)2的平方根是±3.2.算术平方根的概念正数a 的正的平方根a 叫做a 的算术平方根.0的算术平方根是0.因此如果x 2=a ,那么正数x 叫做a 的算术平方根.平方根与算术平方根的区别与联系(1)区别:①表示方法不同:正数a 的平方根表示为±a ;正数a 的算术平方根表示为a .②个数不同:一个正数的平方根有两个,它们互为相反数;一个正数的算术平方根只有一个.③性质不同:一个正数的平方根有两个,可以是负数;一个非负数的算术平方根一定是非负数.平方根等于本身的数只有一个数,这个数是0;算术平方根等于本身的数有两个:0和1.(2)联系:平方根包含算术平方根,算术平方根是平方根的一个;平方根和算术平方根都只有非负数才有.负数没有平方根和算术平方根;0的平方根和算术平方根都是0.【例2】求下列各数的算术平方根:(1)196;(2)179;(3)16.分析:根据算术平方根的定义,求正数a 的算术平方根,也就是求一个非负数x ,使x 2=a ,则x 就是a 的算术平方根.(1)因为142=196,所以196的算术平方根是14.(2)因为179=169,⎝ ⎛⎭⎪⎫432=169,所以169的算术平方根是43,即179的算术平方根是43.(3)因为要求的是16的算术平方根,所以要先算出16,再求算术平方根.16表示的是16的算术平方根,所以16=4.由于22=4,所以4的算术平方根是2,即16的算术平方根是2.解:(1)196=14.(2)179=169=43.(3)因为16=4,4的算术平方根是2,所以16的算术平方根是2.求正数a 的算术平方根,只需找出平方等于a 的正数.求一个分数的算术平方根或平方根,当这个分数是带分数时,要先化成假分数,再求这个数的算术平方根或平方根,不要出现11649=147的错误.3.开平方(1)求一个数的平方根的运算叫做开平方.(2)用计算器求一个非负数的算术平方根及近似值.用计算器求一个非负数的算术平方根,只需直接按书写顺序按键即可.例如,用计算器求529与44.81的算术平方根:①在计算器上依次键入529=,显示结果为23,因此529的算术平方根为529=23.②在计算器上依次键入44.81=,显示结果为6.940 271 88,如果要求精确到0.01,那么44.81≈6.94.(1)平方根是一个数,是开平方的结果;而开平方是和加、减、乘、除、乘方一样的一种运算,是求平方根的过程.(2)开平方是平方的逆运算.我们可以用平方运算来检验开平方的结果是否正确. (3)平方和开平方之间的关系,我们可以这样来理解:已知底数m 和指数2,求幂,是平方运算,即m 2=(?);已知幂a 和指数2,求底数,是开平方,即(?)2=a .(4)选用的计算器不同,按键的顺序也不同,因此应该仔细阅读计算器的说明书,按照要求操作.【例3】求下列各式中未知数的值:(1)x 2=25;(2)(2a +3)2=16.分析:如果一个数的平方等于a ,那么这个数叫做a 的平方根,它有一正一负两个值.(1)因为x 2=25,所以x 就是25的平方根,有两个,是±5;(2)将2a +3看成一个整体,根据平方根的定义易知2a +3就是16的平方根,是±4,即2a +3=±4,在此基础上,分两种情况分别求出a 的值即可.解:(1)因为(±5)2=25, 所以x =±5.(2)因为(±4)2=16, 所以2a +3=±4.当2a +3=4时,解得a =12.当2a +3=-4时,解得a =-72.故所求a 的值是12或-72.利用开平方解方程的方法是:先把方程化为x 2=m (m ≥0)的形式,然后根据开平方得到x =±m .特别地,要注意整体思想的应用.4.立方根(1)立方根的概念:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根(也叫做三次方根).也就是说,如果x 3=a ,那么x 叫做a 的立方根.(2)立方根的表示方法:数a 的立方根记为“3a ”,读作“三次根号a ”,其中a 是被开方数,3是根指数,这里的根指数“3”不能省略.【例4】求下列各数的立方根:(1)27;(2)-27;(3)338;(4)-0.064;(5)0;(6)-5.分析:求一个数a 的立方根,关键是求出满足等式x 3=a 中x 的值,同时在学习了立方根的表示方法后,应用符号表示解题过程比语言叙述更为简洁.解:(1)因为33=27,所以327=3. (2)因为(-3)3=-27,所以3-27=-3.(3)因为338=278,而⎝ ⎛⎭⎪⎫323=278,所以3338=32.(4)因为(-0.4)3=-0.064, 所以3-0.064=-0.4. (5)因为03=0,所以30=0. (6)-5的立方根是3-5.开方开不尽的数,保留根号,如本题(6),-5的立方根是3-5.5.开立方(1)求一个数的立方根的运算叫做开立方. ①开立方与立方互为逆运算.我们可以根据这种关系求一个数的立方根或检验一个数是否是某个数的立方根.②被开立方的数可以是正数、负数和0;③求一个带分数的立方根时,必须把带分数化成假分数,再求它的立方根. (2)用计算器求一个数的立方根及近似值.用计算器求一个数的立方根的操作过程和求平方根操作过程基本相同,主要差别是先按2ndf 键,再按书写顺序按键即可.例如用计算器求31 845,在计算器上依次键入2ndf 31845=,显示结果为12.264 940 82,若计算结果要求精确到0.01,则1 845的立方根为12.26,即31 845≈12.26.【例5】解方程:(1)125x 3-27=0;(2)(5x -3)3=343.分析:(1)把原方程变形为x 3=27125后,可知x 是27125的立方根.(2)把5x -3看做整体,则易知它是343的立方根,其值可求,在此基础上可求x .解:因为125x 3-27=0,所以x 3=27125.故x =35.(2)因为(5x -3)3=343,所以5x -3=3343=7, 即5x =10.故x =2.利用开立方解方程的方法:先把方程化为x 3=m 的形式,然后根据开立方得到x =3m .特别地,要注意整体思想的应用.6.立方根的性质正数的立方根是一个正数,负数的立方根是一个负数,0的立方根是0. (1)立方根的符号与被开方数的符号一致; (2)一个数的立方根是唯一的; (3)3-a =-3a ,3a 3=a ,(3a )3=a . 【例6】下列语句正确的是( ). A .64的立方根是2 B .-3是27的立方根C .125216的立方根是±56D .(-1)2的立方根是-1解析:因为64=8,而2的立方等于8,所以64的立方根是2,即A 正确,解答时不要把“求64的立方根”误解为“求64的立方根”;因为-3的立方是-27,所以-3是27的立方根是错误的;因为56的立方是125216,所以125216的立方根是56,因此C 是错误的;因为(-1)2=1,它的立方根是1,而不是-1,所以D 是错误的.故本题选A .答案:A(1)任何数都有立方根,而负数没有平方根;(2)任何数的立方根只有一个,而正数有两个平方根.7.用平方根与立方根的定义及性质解题已知一个数的平方根或立方根求原数是利用平方根与立方根的定义及性质解题中的常见题型.(1)一个正数的两个平方根互为相反数,而互为相反数的两个数的和为零. (2)对于立方根来说,任何数的立方根只有一个,根据立方根的定义可知,3-a =-3a ,也就是说,求一个负数的立方根时,只要先求出这个负数的绝对值的立方根,然后再取它的相反数即可.(3)当两个数相等时,这两个数的立方根相等.反之,当两个数的立方根相等时,这两个数也相等.这与平方根不同,在平方根的计算中,若两数的平方根相等或互为相反数时,这两个数相等;若这两个数相等时,则两数的平方根相等或互为相反数.【例7-1】已知2x -1和x -11是一个数的平方根,求这个数.分析:因为2x -1和x -11是一个数的平方根,根据平方根的定义,可知2x -1和x -11相等或互为相反数.当2x -1和x -11相等时,可列出方程2x -1=x -11,当2x -1和x -11互为相反数时,可列出方程2x -1+x -11=0,从而求出x 的值,进一步可求出这个数.解:根据平方根的定义,可知2x -1和x -11相等或互为相反数.当2x -1=x -11时,x =-10,所以2x -1=-21,这时所求的数为(-21)2=441;当2x -1+x -11=0时,x =4,所以2x -1=7,这时所求的数为72=49. 综上可知,所求的数为49或441.【例7-2】若32a -1=-35a +8,求a 2 012的值.分析:根据立方根的唯一性和3-a =-3a ,可知2a -1与5a +8互为相反数,从而可构造出关于a 的一元一次方程2a -1=-(5a +8).进一步可求出a 2 012的值. 解:因为32a -1=-35a +8,所以32a -1=3-a +,即2a -1=-(5a +8).解得a =-1.故a 2 012=(-1)2 012=1. 8.非负性的应用非负数指的是正数和零,常用的非负数主要有: (1)绝对值|a |≥0;(2)平方a 2≥0;(3)算术平方根a 具有双重非负性: ①a 本身具有非负性,即a ≥0;②算术平方根a 的被开方数具有非负性,即a ≥0. 非负数有如下性质:若两个或多个非负数的和为0,则每个非负数均为0.在解决与此相关的问题时,若能仔细观察、认真地分析题目中的已知条件,并挖掘出题目中隐含的非负性,就可避免用常规方法造成的繁杂运算或误解,从而收到事半功倍的效果.与算术平方根和平方数的非负性相关的求值问题,一般情况下都是它们的和等于0的形式.此类问题可以分成以下几种形式:一是算术平方根、平方数、绝对值三种中的任意两种组成一题〔| |+( )2=0,| |+ =0,( )2+ =0〕,甚至同一道题目中出现这三个内容〔| |+( )2+ =0〕;二是题目中没有直接给出平方数,而是需要先利用数学公式把题目中的某些内容进行变形,然后再利用非负数的性质进行计算.【例8-1】如果y =2x -1+1-2x +2,则4x +y 的平方根是__________.解析:因为2x -1≥0且1-2x ≥0,所以2x -1=1-2x =0,即x =12.于是y =2x -1+1-2x +2=2.因此4x +y =4×12+2=4.故4x +y 的平方根为±2.答案:±2【例8-2】如果y =x 2-4+4-x 2x +2+2 012成立,求x 2+y -3的值.分析:由算术平方根被开方数的非负性知x 2-4≥0,4-x 2≥0,因此,只有x 2-4=0,即x =±2;又x +2≠0,即x ≠-2,所以x =2,y =2 012,于是得解.解:由题意可知x 2-4≥0且4-x 2≥0,因此x 2-4=0,即x =±2. 又∵x +2≠0,即x ≠-2, ∴x =2,y =2 012.故x 2+y -3=22+2 012-3=2 013.【例8-3】已知a -1+(b +2)2=0,求(a +b )2 012的值.分析:a -1表示a -1的算术平方根,所以a -1为非负数.因为(b +2)2为偶次幂,所以(b +2)2为非负数.由于两个正数相加不能为0,所以这两项都为0,因此解方程求值即可.解:因为a -1≥0,(b +2)2≥0,且a -1+(b +2)2=0,所以a -1=0,(b +2)2=0, 解得a =1,b =-2.故(a +b )2 012=(1-2)2 012=1.9.利用方根探索规律(1)可以利用计算器探究被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律. 规律:如果将被开方数的小数点向左(右)每移动2位,则它的算术平方根的小数点就相应地向同一方向移动1位.即当被开方数扩大(或缩小)100倍时,其算术平方根相应地扩大(或缩小)10倍;当被开方数扩大(或缩小)10 000倍时,其算术平方根相应地扩大(或缩小)100倍….(2)可利用计算器探究被开方数扩大(或缩小)与它的立方根扩大(或缩小)的规律. 规律:如果将被开方数的小数点向左(右)每移动3位,则它的立方根的小数点就相应地向同一方向移动1位.即当被开方数扩大(或缩小)1 000倍时,其立方根相应地扩大(或缩小)10倍;当被开方数扩大(或缩小)1 000 000倍时,其立方根相应地扩大(或缩小)100倍….(3)还可利用方根为问题背景进行规律的探索. 【例9】(1)观察下列各式:1+13=213,2+14=314,3+15=415,…,请你将发现的规律用含自然数n (n ≥1)的等式表示出来__________.(2)借助计算器可以求出42+32,442+332,4442+3332,…,观察上述各式特点,__________.解析:(1)第一个等式右边的2比左边被开方数里的1大1,被开方数13与左边被开方数的13相同且3比2大1;第二个等式右边的3比左边被开方数里的2大1,被开方数14与左边被开方数14相同且4比3大1,…,故有n +1n +2=(n +1)1n +2(n ≥1). (2)借助计算器,可以分别求得42+32=5,442+332=55,4442+3332=555,…,由此观察发现每个式子的结果都是由若干个5组成的,且5的个数为相应式子的左边4或35n 个.答案:(1)n +1n +2=(n +1)1n +2(n ≥1) (2)5555n 个10.平方根与立方根的实际应用解实际问题时,首先要读懂题意,善于构造数学模型,将它转化为数学问题.与平方根、立方根有关的实际应用多以正方形、正方体等几何图形为问题背景设题,解答时,常常根据题意列出方程,然后再利用平方根与立方根的定义及性质解方程即可.注意求出的结果要符合实际问题的实际意义.【例10-1】计划用100块地板砖来铺设面积为16 m 2的客厅,求需要的正方形地板砖的边长.解:设地板砖的边长为x m ,根据题意,得100x 2=16,即x 2=0.16,所以x =±0.16=±0.4.由于长度不能为负数,所以x =0.4(m). 故地板砖的边长为0.4 m.【例10-2】一种形状为正方体的玩具名为“魔方”,(每个面由9个小正方体面组成)体积为216 cm 3,求组成它的每个小正方体的棱长.解:设小正方体的棱长为a cm ,则玩具的棱长为3a cm ,由题意得(3a )3=216.于是27a3=216,a 3=8,a =2(cm).故每个小正方体的棱长为2 cm.。

6.1 《从实际问题到方程》 课件 华师大版 (5)

6.1 《从实际问题到方程》 课件 华师大版 (5)
初中数学七年级下册
(华师大版)
1.创设情境,引入新课





问 题
问题一: 回顾应用方程解决问题一般步骤?
(1)审:审题,分析题中的已知量、未知量,明确它们之 间的关系; (2)找:找出能表示问题中全部含义的一个等量关系; (3)设:设未知数(一般求什么就设什么)并写单位名称; (4)列:根据等量关系列出方程; (5)解:解所列出的方程,求出未知数的值; (6)答:检验所求解是否符合题意,写出答案.
1.创设情境,引入新课





问 题
问题一: 回顾应用方程解决问题一般步骤?
鸡兔同笼:今有鸡兔同笼,上有三十五头, 下有九十四足,问鸡兔各几何?
2.合作质疑,探索新知





问 题
问题二:
等量关系式:鸡足数量+兔足数量=总的足数 设鸡有x只,则兔有(35-x)只
数量 鸡 兔 头 足
x (35-x)
生产螺钉1200个或螺母2000个,一个螺钉要配2
个螺母,为了使每天的产品刚好配套,应该分配 多少名工人生产螺钉,多少名工人生产螺母?
用 5.发展能力,拓展延伸




问 题
古代有这样一个寓言故事,驴子和骡子一同走,他们驮着
不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担
太重,骡子说:你抱怨干嘛?如果你给我一袋,那么我所负
3.自主归纳,形成方法





问 题
学生自主归纳:如何利用列表方法分析实际问题?
巩固练习


一元一次方程知识精华

一元一次方程知识精华

一元一次方程知识精华6.1从实际问题到方程知识点一:方程的概念分析:代数式是用运算符号()把数字和表示数字的字母连接起来的式子(单独的一个数字或字母也叫代数式),(两个代数式用等号连接起来就成了等式。

二方程式是含有未知数的等式),即方程式是特殊的等式,据此即可做出正确判断。

知识解读:1、含有未知数的等式,叫做方程。

2、方程和等式的区别:方程是含有未知数的等式;等式可以含有未知数,也可以不含有未知数。

注意:(1)方程是特殊的等式,但等式不一定是方程。

(2)方程中的未知数可以是多个。

知识点二:方程的解点拨:检验一个数是不是方程的解有3个步骤:(1)分别代入;(2)分别计算;(3)得出结论。

知识点三:把实际问题转化为数学问题—列方程知识解读:使方程左右两边的值相等的未知数的值,叫做方程的解。

注意:(1)方程的解是指方程中未知数的取值。

一般来说,这个值是通过解方程求出来的。

(2)可根据方程解的意义来检验所给的数值是否是原方程的解。

检验方法如下:将所给的未知数的值分别代入原方程的左边和右边,如果左边=右边,说明所得的解释原方程的解;如果左边≠右边,说明所得的解不是原方程的解。

知识解读:根据题目中的等量关系列出方程,应先分析题目中的数量关系,列出未知数,再根据得到的等量关系列出方程。

题型一:检验一个数是否是方程的解。

点拨:检验一个数是不是一些方程的解,需把握两点:(1)它是否是方程中未知数的值;(2)将它分别代入方程的左、右两边,看它们的值是否相等。

二者缺一不可。

题型二:列方程—和、差、倍、分问题点拨:列方程解应用题,首先要设未知数某,用代数式表示题中其他的量,然后找出题中的等量关系,列出方程。

题型三:列方程—劳力分配问题点拨:劳力分配问题中要弄清楚调配前、调配、调配后的人数;还要弄清楚从哪个量调出调入哪个量及调配后的两量之间的关系,从而找出相等关系。

题型四:利用隐含的等量关系列方程点拨:隐含的等量关系是指问题中的一些隐含的条件,这类关系需充分地去挖掘、分析,才能清晰地找出其中的等量关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从实际问题到方程练习题
一、选择题。

1、下列方程解为12
的是( ) A 3x+2 B 2x+1=0 C 12 x=2 D 12 x= 14
2、下列说法不正确的个数是( )
①等式都是方程;②方程都是等式;③不是方程的就不是等式;④未知数的值就是方程的解。

A 3个
B 2个
C 1个
D 0个
3、下列式子中:①3x+5y=0 ②x=0 ③3x 2-2x ④5x<7 ⑤x 2+1=4 ⑥x 5
+2=3x 是方程的有( )个。

A 1 B 2 C 3
D 4
4、下列说法正确的是( )
A,x=- 6是x-6的解 B,x=5是3x+15的解
C,x=- 1是- x 4
=4的解 D x= 0.04是25x=1的解 5、在代数式x 3- ax 中,当x=- 2时值为4,则a 的值为( )
A 6
B -6
C 2
D -2
6、下列各式方程后面括号里的数是该方程的解的是( )
A,3x+4= -13 {-4} B,23 x- 1=5 {9} C,6-2x=113 {-1} D, 5- y=- 16 {23
} 7、小明买书需用48元钱,付款时恰好用了1元和5元的纸币共12张,设所用的1元纸币为张,根据题意,下面所列方程正确的是( )。

A x+5(12-x)=48
B x+5(x-12)=48
C 5x+(12-x)=48
D x+12(x-5)=48
8、某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%,设把x 公顷旱地改为林地,则可列方程 ( )
A,54-x=20%×108 B ,54-x=20%(108+x) C ,54+x=20%×162 D108-x=20%(54+x)
二 填空题。

1、数值-1,-2,0,1,2中,方程3x+3=x+1的解是 .
2、3个连续奇数的和是21,设最大的奇数为y ,则可列方程为 .
3、根据下列条件列方程:
(1)某数的3倍比它的2倍小1,设某数为x ,则可列出方程 .
(2)x 与3的差的2倍等于x 的13
: . (3)某仓库存放面粉x 千克,运出25%后,还剩余300千克:
4、当x=2时,代数式ax-2的值是4,那么当x=- 2时,这个代数式的值为 .
5、任写一个以x=2为解的方程,可以是 .
三、根据题意,只列方程,不必求解
1、某校初一年级组织学生去科技馆参观,共租用9辆大客车,每辆车有座位60个,老师共去20人,若该年级的男生比女生多30人,刚好每人都有座位,则该校女生有多少人?若设该校女生有x 人,则可列方程 。

2、某工厂三天共运出货物60箱,第一天运出20箱,第二天运出第一天的2
1,问第三天运出多少箱?若设第三天运出x 箱,则可列方程 。

3、练习本比中性笔的单价少2元,小刚买了5本练习本和3支中性笔正好用去14元。

如果设中性笔的单价为x 元,则可列方程 。

4、圆圆今年8岁,他的妈妈今年32岁,几年后他妈妈的年龄是他的2倍,若设X 年后他妈妈的年龄是他的2倍,则可列方程为_________________________________.
5、在一次数学竞赛中,卷面共有25道选择题,每道题都有四个选项,而且四个选项中只有一个是正确的,评分规则是:答对一道给4分,不答或打错一道倒扣一分,请问:小花得了85分,他答对了几道题?(只列方程不解答)
6、一通讯员需在规定时间内,骑摩托车把文件送达到某地,若每小时走60千米,则会早到12分钟,若每小时走50千米,则会迟到7分钟,求路程是多少千米?(只列方程不解答)。

相关文档
最新文档