实际问题与方程(二)练习题及解析
实际问题与方程练习题(含答案)

实际问题与方程练习题一、看图列方程并求解。
二、解方程并检验。
9X+15=123 8X-7=49 49-4X=17 55+5X=90三、故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米,天安门广场的面积是多少万平方米?四、猎豹是世界上跑得最快的动物,能达到每小时110千米,比大象的2倍还多30千米。
比汽车的2倍少10千米。
1.大象最快能达到每小时多少千米?2.汽车每小时行多少千米?一、解方程。
7X+15=29 3X-6=48 16×5+5X=90 6.8X-4.4=0.4×6二、小红和小明家住一条街,相距810米,两人同时从家中出发9分钟相遇,小红每分钟行40米,小明每分钟行多少米?三、红红买了6支铅笔和6个练习本,一共用去13.8元。
每个练习本的售价是1.5元,每支铅笔的售价是多少元?四、每千克苹果2.2元,买3千克桃子比买5千克苹果多花2.5元,每千克桃子多少元?五、一天需运走35吨货物,如果货车每次能运5吨,上午运了3次,下午要运几次才能运完?答案:一、50 + 2x=150 x=50 4×+2=74 x=18二、x=12 x=7 x=8 x=7三、解:设天安门广场的面积是x万平方米。
2x-16=72 x=44四、1.解:设大象最快能达到每小时x千米。
2x+30=110 x=402. 解:设汽车每小时行x千米。
2x-10=110 x=60答案:一、x=2 x=18 x=2 x=1二、解:设小明每分钟行x米。
( x+40) ×9=810 x=50三、解:设每支铅笔的售价是x元。
1.5×6+6x =13.8 x=0.8四、解:设每千克桃子x元。
3x-5×2.2=2.5 x=4.5五、解:设下午要运x次才能运完。
5(3+x)=35 x=4。
苏教版五年级数学下册试题-1.5 列方程解决简单的实际问题(二) 同步练习(含答案)

列方程解决简单的实际问题(二)班级:姓名:等级:一、判断题1.方程8X+11=35与27-4X=15的解相同。
()。
2.解方程25x=325时,方程左右两边应同时除以25。
()3.x=6是方程5x﹣4=24的解.()二、计算题4.解方程(1)5x=20 (2)1.6x=4.8 (3)6x=36 (4)x÷9=135 (5)x÷1.1=5 (6)x-0.54=4 (7)x÷0.9=4.5 (8)7x=84 三、解答题5.列方程并求解。
一个数的6倍比这个数的10倍少12.8,求这个数。
6.列方程解决问题。
7.看图列方程并解答.正方形周长10米三角形面积0.39平方米8.小明去书店买了3本练习本和2本科技书一共用去35.8元,已知科技书共9.4元,一本练习本多少元?(用方程解答)9.妈妈买了一个6千克重的西瓜,付出20元,找回3.2元。
每千克西瓜多少元?(列方程解答)10.地球绕太阳一周要用365天,比水星绕太阳一周所用的时间的4倍多13天.水星绕太阳一周要用多少天?(用方程解)11.叮当生活超市的女员工一共有84人,比男员工的2倍还多12人。
叮当生活超市的男员工一共有多少人?(列方程解答)12.学校印制画册一共用去2240元,画册的印刷费是3.6元/本,其余费用是800元。
学校印制了多少本画册?(用方程解)13.王老师在商店买了8支一样的钢笔,付了100元,找回24元。
每支钢笔多少元?14.我国测量温度常用℃(摄氏度)作单位,有时还使用℉(华氏度)作单位,它们之间的换算关系是:华氏温度=摄氏温度×1.8+32。
某天温度为77℉,相当于多少℃?(列方程解答)15.甲乙两地相距1300米,小明和小李同时从两地出发相向而行,小明每分钟行70米,小李每分钟行60米。经过几分钟两人相遇? (列方程解答)16.甲乙两艘轮船同时从相距841km的两港相向开出,经过5.8小时两船相遇.已知甲艘轮船每小时行驶72km,乙艘轮船每小时行驶多少千米?(列方程解)参考答案1.√2.√3.×4.(1)x=4;(2)x=3;(3)x=6;(4)x=1215(5)x=5.5;(6)x=4.54;(7)x=4.05;(8)x=12 5.10x-6x=12.8x=3.26.x=0.67.(1)2.5米;(2)0.6米8.解:设每本练习本x元,得:3x+9.4=35.8 3x=26.4x=8.8答:每本练习本8.8元.9.2.8元10.88天.11.36人12.400本13.9.5元14.25℃15.10分钟16.73。
22.3.2 实际问题与二次函数(销售最大利润问题)(练习)(解析版)

第二十二章二次函数22.3.2 实际问题与二次函数(销售最大利润问题)精选练习答案基础篇一、单选题(共12小题)1.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为()A.60元B.70元C.80元D.90元【答案】C【解析】设销售该商品每月所获总利润为w,则w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴当x=80时,w取得最大值,最大值为3600,即售价为80元/件时,销售该商品所获利润最大,故选C.2.某品牌钢笔进价8元,按10元1支出售时每天能卖出20支,市场调查发现如果每支每涨价1元,每天就少卖出2支,为了每天获得最大利润,其售价应定为()A.11元B.12元C.13元D.14元【答案】D【解析】设利润为w,由题意得,每天利润为:w=(2+x)(20–2x)=–2x2+16x+40=–2(x–4)2+72.所以当涨价4元(即售价为14元)时,每天利润最大,最大利润为72元.故选D.3.某超市有一种商品,进价为2元,据市场调查,销售单价是13元时,平均每天销售量是50件,而销售价每降低1元,平均每天就可以多售出10件.若设降价后售价为x元,每天利润为y元,则y与x之间的函数关系为()A.y=10x2﹣100x﹣160B.y=﹣10x2+200x﹣360C.y=x2﹣20x+36D.y=﹣10x2+310x﹣2340【答案】B【分析】根据等量关系“利润=(售价﹣进价)×(50+10×降价)”列出函数关系式即可.【详解】根据题意得:y=(x ﹣2)[50+10(13﹣x )]整理得:y=﹣10x 2+200x ﹣360.故选:B .【点睛】此题考查了从实际问题中抽象出二次函数关系式,掌握销售问题中的基本数量关系是解决问题的关键.4.某产品进货单价为9元,按10一件售出时,能售100件,如果这种商品每涨价1元,其销售量就减少10件,设每件产品涨x 元,所获利润为y 元,可得函数关系式为( )A .y =−10x 2+110x +10B .y =−10x 2+100xC .y =−10x 2+100x +110D .y =−10x 2+90x +100【答案】D【分析】根据总利润=单件利润×数量建立等式就可以得出结论.【详解】解:由题意,得y=(10+x -9)(100-10x ),y=-10x 2+90x+100.故选:D .【点睛】本题考查了销售问题的数量关系的运用,总利润=单件利润×数量的运用,解答时找准销售问题的数量关系是关键.5.出售某种文具盒,若每个可获利x 元,一天可售出(6-x)个.当一天出售该种文具盒的总利润y 最大时,x 的值为( )A .1B .2C .3D .4 【答案】C【解析】y=x (6-x )=-x 2+6x,x =-2b a =32=3.故选C. 6.在1~7月份,某地的蔬菜批发市场指导菜农生产和销售某种蔬菜,并向他们提供了这种蔬菜每千克售价与每千克成本的信息如图所示,则出售该种蔬菜每千克利润最大的月份可能是( )A .1月份B .2月份C .5月份D .7月份【答案】C【分析】先根据图中的信息用待定系数法表示出每千克售价的一次函数以及每千克成本的二次函数,然后每千克收益=每千克售价﹣每千克成本,得出关于收益和月份的函数关系式,根据函数的性质得出收益的最值以及相应的月份.【详解】设x 月份出售时,每千克售价为y 1元,每千克成本为y 2元,根据图甲设y 1=kx+b ,∴ {3k +b =56k +b =3, ∴ {k =−23b =7, ∴y 1=﹣23x+7,根据图乙设y 2=a (x ﹣6)2+1,∴4=a (3﹣6)2+1,∴a=13,∴y 2=(13x ﹣6)2+1,∵y=y 1﹣y 2,∴y=﹣23x+7﹣[13(x ﹣6)2+1], ∴y=﹣13x 2+103x ﹣6.∵y=﹣13x 2+103x ﹣6,∴y=﹣13(x ﹣5)2+73.∴当x=5时,y 有最大值,即当5月份出售时,每千克收益最大.故选C .【点睛】本题主要考查了一次函数和二次函数的应用,要注意需先根据图中得出两个函数解析式,然后再表示出收益与月份的函数式,再求解.7.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x 元,月销售利润为y 元,则y 与x 的函数关系式为( )A .y =(x ﹣40)(500﹣10x )B .y =(x ﹣40)(10x ﹣500)C .y =(x ﹣40)[500﹣10(x ﹣50)]D .y =(x ﹣40)[500﹣10(50﹣x )]【答案】C【解析】分析:设销售单价定为每千克x 元,获得利润为y 元,则可以根据成本,求出每千克的利润.以及按照销售价每涨1元,月销售量就减少10千克,可求出销量.从而得到总利润关系式.详解:设销售单价为每千克x 元,此时的销售数量为500−10(x −50),每千克赚的钱为x −40, 则y =(x −40)[500−10(x −50)].故选C.点睛:此题主要考查了二次函数在实际问题中的运用,根据利润=(售价-进价)×销量,列出函数解析式,求最值是解题关键.8.某商品的进价为每件40元,当售价为每件80元时,每星期可卖出200件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出8件,店里每周利润要达到8450元.若设店主把该商品每件售价降低x 元,则可列方程为( )A .()()8020088450x x -+=B .()()4020088450x x -+=C .()()40200408450x x -+=D .()()402008450x x -+=【答案】B【解析】利润=售价﹣进价,由每降价1元,每星期可多卖出8件,可知每件售价降低x 元,每星期可多卖出8x 件,从而列出方程即可.解:原来售价为每件80元,进价为每件40元,利润为每件40元,所以每件售价降价x 元后,利润为每件(40﹣x )元.每降价1元,每星期可多卖出8件,因为每件售价降低x 元,每星期可多卖出8x 件,现在的销量为(200+8x ).根据题意得:(40﹣x )×(200+8x ) =8450.故选B .点睛:本题主要考查列一元二次方程解决实际问题.解题的关键在于要理解题意,并根据题中的数量关系建立方程.9.某商店经营皮鞋,所获利润y(元)与销售单价x(元)之间的关系为2242956y x x =-++,则获利最多为( ).A .3144B .3100C .144D .2956【答案】B【解析】试题解析:利润y (元)与销售的单价x (元)之间的关系为2242956y x x =-++, 2(12)3100.y x ∴=--+∵−1<0∴当x =12元时,y 最大为3100元,故选B.10.黄山市某塑料玩具生产公司,为了减少空气污染,国家要求限制塑料玩具生产,这样有时企业会被迫停产,经过调研预测,它一年中每月获得的利润y (万元)和月份n 之间满足函数关系式y=﹣n 2+14n ﹣24,则企业停产的月份为( )A .2月和12月B .2月至12月C .1月D .1月、2月和12月【答案】D【分析】知道利润y 和月份n 之间函数关系式,求利润y 大于0时x 的取值.【详解】由题意知,利润y 和月份n 之间函数关系式为y=-n 2+14n -24,∴y=-(n -2)(n -12),当n=1时,y <0,当n=2时,y=0,当n=12时,y=0,故停产的月份是1月、2月、12月.故选:D .【点睛】考查二次函数的实际应用,判断二次函数y >0、y=0、y <0,要把二次函数写成交点式,看看图象与x 轴的交点,结合开口分析,进行判断.11.某产品进货单价为90元,按100元一件出售时能售出500件.若每件涨价1元,则销售量就减少10件.则该产品能获得的最大利润为( )A .5000元B .8000元C .9000元D .10000元 【答案】C【解析】设单价定为x ,总利润为W ,则可得销量为:500-10(x -100),单件利润为:(x -90),由题意得,W=(x -90)[500-10(x -100)]=-10x2+2400x -135000=-10(x -120)2+9000,故可得当x=120时,W 取得最大,为9000元,故选C .【点睛】本题考查了二次函数的应用,解答本题的关键是表示出销量及单件利润,得出W 关于x 的函数解析式,注意掌握配方法求二次函数最值的应用.12.(2019·黑龙江中考真题)某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( ).A .20%;B .40%;C .18%;D .36%. 【答案】A【分析】可设降价的百分率为x ,第一次降价后的价格为()251x -,第一次降价后的价格为()2251x -,根据题意列方程求解即可.【详解】解:设降价的百分率为x根据题意可列方程为()225116x -= 解方程得115x =,295x =(舍) ∴每次降价得百分率为20%故选:A .【点睛】本题考查了一元二次方程的在销售问题中的应用,正确理解题意,找出题中等量关系是解题的关键.二、填空题(共5小题)13.(2018·北京101中学初三月考)数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价(元/件)100 110 120 130 … 月销量(件) 200 180 160 140 …已知该运动服的进价为每件60元,设售价为x (x≥100)元,则月销量是___________件,销售该运动服的月利润为___________元(用含x 的式子表示).【答案】 2x +400 −2x 2+520x −24000【解析】分析:运用待定系数法求出月销量;根据月利润=每件的利润×月销量列出函数关系式. 详解:设月销量y 与x 的关系式为y=kx+b ,由题意得,{100k +b =200110k +b =180, 解得{k =−2b =400 . 则y=-2x+400;由题意得,y=(x -60)(-2x+400)=-2x 2+520x -24000点睛:本题考查的是二次函数的应用,一次函数的运用,掌握待定系数法求函数解析式是解题的关键. 14.某商场以30元/件的进价购进一批商品,按50元/件出售,平均每天可以售出100件.经市场调查,单价每降低5元,则平均每天的销售量可增加20件.若该商品想要平均每天获利1400元,则每件应降价多少元?设每件应降价x 元,可列方程为_________.【答案】(5030)1002014005x x ⎛⎫--+⨯= ⎪⎝⎭【解析】利润=单件利润⨯数量,本题中,单件利润=售价-成本单价 (50)30x =--提升篇5030x =--. 数量100205x =+⨯. ∴利润为1400时,单价利润⨯数量1400=,得到(5030)1002014005x x ⎛⎫--+⋅= ⎪⎝⎭. 15.(2008·吉林中考真题)某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为 元时,获得的利润最多.【答案】70【解析】解:设销售单价定为每千克x 元,获得利润为y 元,则:y=(x -40)[500-(x -50)×10],=(x -40)(1000-10x ),=-10x 2+1400x -40000,=-10(x -70)2+9000,∴当x=70时,利润最大为9000元.16.某种商品的进价为40元,在某段时间内若以每件x 元出售,可卖出(100﹣x )件,当x=____时才能使利润最大.【答案】70【分析】根据题意可以得到利润与售价之间的函数关系式,然后化为顶点式即可解答本题.【详解】解:设获得的利润为w 元,由题意可得,w=(x ﹣40)(100﹣x )=﹣(x ﹣70)2+900,∴当x=70时,w 取得最大值,故答案是:70.【点睛】考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.17.某旅行社有100张床位,每床每日收费10元,客床可全部租出,若每床每日收费提高2元,则租出床位减少10张,若每床每日收费再提高2元,则租出床位再减少10张,以每提高2元的这种变化方法变化下去,每床每日提高____元可获最大利润。
专题04 实际问题与一元二次方程销售问题2020-2021学年九年级数学重点题型通关训练(解析版)

专题04 实际问题与一元二次方程(2)——销售利润(提高版)【专题导入】1.某市农科园绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地,上市时,外商李经理按市场价格10元/千克在该州收购了2000千克香菇存放入冷库中,准备冷藏一段时间后一次性出售.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售,设存放x天后出售.(1)填表(不需化简)【答案】(1)设存放x天后出售,则香菇的出售单价为(10+0.5x)元,可出售的香菇重量为(2000-6x).故答案为:2000-6x;10+0.5x.(2)依题意,得:(10+0.5x)(2000-6x)-340x-10×2000=22500,整理,得:3x2-600x+22500=0,解得:x1=50,x2=150(不合题意,舍去).答:需将这批香菇存放50天后出售.【方法点睛】在应用题中,题目难度往往与阅读量成正比,解题关键在于把所需要的量用代数式表示出来,再根据实际关系联立起来.如利润问题常见的:当对于题干过长的题目,首先要明确求的是什么,需要什么条件公式才能得到结果,把每个条件细分出来用代数式表示(或具体的数),最后汇总得到方程.一、基础型【例1】南京某特产专卖店的销售某种特产,其进价为每千克45元,若按每千克65元出售,则平均每天可售出100千克,后来经过市场调查发现,单价每降低4元,平均每天的销售量增加40千克,若专卖店销售这种特产想要平均每天获利2 240元,且销量尽可能大,则每千克特产应定价多少元?方法1:设每千克特产降价x元,由题意,每千克利润为_________元,销售量为_______千克;方法2:设每千克特产降价后定为x元,由题意,每千克利润为_________元,销售量为_______千克.选择一种方法进行解答.【答案】方法1:设每千克特产降价x元.根据题意,每千克利润为(65-x-45),销售量为(100+x×40),4×40)=2240.得(65-x-45)(100+x4解得x1=4,x2=6.销量尽可能大,只能取x=6,65-6=59(元),答:每千克特产应定价59元.方法2:设每千克特产降价后定价为x元,根据题意,×40)千克,每千克利润为(x-45)元,销售量为(100+65−x4得(x-45)(100+65−x×40)=2240,4解得x1=59,x2=61.销量尽可能大,只能取x=59,答:每千克特产应定价59元.同步练习1.“阳光玫瑰”葡萄品种是广受各地消费者的青睐的优质新品种,在我国西部区域广泛种植,重庆市某葡萄种植基地2017年种植“阳光玫瑰”100亩,到2019年“阳光玫瑰”的种植面积达到196亩.(1)求该基地这两年“阳光玫瑰”种植面积的平均增长率;(2)市场调查发现,当“阳光玫瑰”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时尽量减少库存,已知该基地“阳光玫瑰”的平均成本价为12元/千克,若使销售“阳光玫瑰”每天获利1750元,则售价应降低多少元?【答案】(1)设该基地这两年“阳光玫瑰”种植面积的平均增长率为x,依题意,得:100(1+x)2=196,解得:x1=0.4=40%,x2=-2.4(不合题意,舍去).答:该基地这两年“阳光玫瑰”种植面积的平均增长率为40%.(2)设售价应降低y元,则每天可售出(200+50y)千克,依题意,得:(20-12-y)(200+50y)=1750,整理,得:y2-4y+3=0,解得:y1=1,y2=3.∵要尽量减少库存,∴y=3.答:售价应降低3元.二、图表类【例2】某商店代销一种智能学习机,促销广告显示“如果购买不超过40台学习机,则每台售价800元,如果超出40台,则每超过1台,每台售价将均减少5元”该学习机的进货价与进货数量关系如图所示:(1)当x>40时,用含x的代数式表示每台学习机的售价;(2)当该商店一次性购进并销售学习机60台,每台学习机可以获利多少元;(3)若该商店在一次销售中获利4800元,则该商店可能购进并销售学习机多少台.【答案】(1)由题意得:当x>40时,每台学习机的售价为(单位:元):800-5(x-40)=-5x+1000;(2)设图中直线解析式为:y=kx+b,把(0,700)和(50,600)代入得:{50k +b =600,b =700,解得:{k =−2,b =700,直线解析式为:y =-2x +700.当x =60时,进价为:y =-2×60+700=580,售价为:800-5×(60-40)=700, 则每台学习机可以获利:700-580=120(元).(3)当x >40时,每台学习机的利润是:(-5x +1000)-(-2x +700)=-3x +300, 则x (-3x +300)=4800, 解得:x 1=80,x 2=20(舍).当x ≤40时,每台学习机的利润是:800-(-2x +700)=2x +100, 则x (2x +100)=4800,解得:x 1=30,x 2=-80(舍).答:则该商店可能购进并销售学习机80台或30台.同步练习2.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如表所示的一次函数关系.【答案】(1)设y 与x 之间的函数关系式为y =kx +b , 将(22.6,34.8)、(24,32)代入y =kx +b ,{22.6k +b =34.8,24k +b =32,解得:{k =−2,b =80.∴y 与x 之间的函数关系式为y =-2x +80. 当x =23.6时,y =-2x +80=32.8.答:当天该水果的销售量为32.8千克. (2)根据题意得:(x -20)(-2x +80)=150, 解得:x 1=35,x 2=25. ∵20≤x ≤32,∴x =25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.【专题过关】1.随着经济水平的不断提升,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多的人通过淘票票,猫眼等网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜.2018年从网上平台购买5张电影票的费用比在现场购买3张电影票的费用少10元,从网上平台购买4张电影票的费用和现场购买张电影票的费用共为190元.(1)请问2018年在网上平台购票和现场购票的每张电影票的价格各为多少元?(2)2019年“元旦”当天,万达影视城的“华谊兄弟影院”按照2018年在网上平台购票和现场购票的电影票的价格进行销售,当天网上和现场售出电影票总票数为600张.“元旦”假期刚过,观影人数出现下降,于是该影院决定将1月2日的现场购票的价格下调,网上购票价格保持不变,结果发现现场购票每张电影票的价格每降价0.5元,则当天总票数比“元旦”当天总票数增加4张,经统计,1月2日的总票数中有35通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为19787.2元,请问该电影院在1月2日当天现场购票每张电影票的价格下调了多少元?【答案】(1)设现场购买每张电影票为x元,网上购买每张电影票为y元.依题意列二元一次方程组{3x−5y=10,2x+4y=190,经检验解得{x=45,y=25.答:2018年在网上平台购票和现场购票的每张电影票的价格分别为25元和45元.(2)设1月2日该电影院影票现场售价下调m元,那么会多卖出4m0.5张电影票.依题意列一元二次方程:25×(600+4m0.5)×35+(45−m)×(1−35)(600+4m0.5)=19787.2.整理得:16m2-120m-64=0解得m1=答:1月2日当天现场购票每张电影票的价格下调了8元.【专题提高】2.在网络阅读成为主流的同时,进实体书店看书买书也成为一种新的时尚,重庆杨家坪某书店打算购进一批网络畅销书籍进行销售.该书店用12000元购进甲种书籍,用14400元购进乙种书籍,且购进甲乙两种书籍数量相同,甲的进价每本比乙少2元.(1)求甲乙两种书籍进价分别每本多少元?(2)随着抖音等网络视频软件的推广,这个书店很快成为网红书店,人流量越来越大.甲种书籍按每15元很快销售一空,书店决定再次购进甲种书籍进行销售.由于纸张成本增加,甲种书籍第二次比第一次进价每本增加20%,第二次购进甲种书籍总量在第一次购进甲种书籍总量的基础上増加了a%(a>0),为了让利于读者,第二次销售单价在第一次的基础上减少了2a15%,结果第二次全部售完甲种书籍的利润达到3600元.求a的值.【答案】(1)设甲种书籍的进价为x元,乙种书籍的进价为(x+2)元,根据题意得,12 000x =14 400x+2,解得:x=10,经检验:x=10是原方程的根,∴x+2=12.答:甲种书籍的进价为10元,乙种书籍的进价为12元;(2)根据题意得,[15(1-2a15%)-10(1+20%)]×12 00010(1+a%)=3 600,解得:a=0或a=50,∵a>0,∴a=50.。
21.3实际问题与一元二次方程(第二课时)同步练习含答案

20cm 图①
解:
30cm
D
C
分析:由横、竖彩条的宽度比为 2∶3,可设每个横
彩条的宽为 2x ,则每个竖彩条的宽为3x .为更好
30cm
地寻找题目中的等量关系,通过平移可将横、竖彩
AB 20cm 图②
条分别集中,原问题转化为如图②的情况,得到矩 形
ABCD .
少?
◆课下作业 ●拓展提高
1、矩形的周长为 8 2 ,面积为 1,则矩形的长和宽分别为________.
●拓展提高
1、 2 2 7 , 2 2 7 . 设矩形的长 x ,则宽为 4 2 x .
根据题意,得 x(4 2 x) 1.
整理,得 x2 4 2x 1 0 .
用公式法解方程,得 x1 2 2+ 7,x2 2 2 7 ,
当长为 x1 2 2+ 7 时,则宽为 2 2 7 .
解这个方程,得:6 ,x
100 2=200+ 3
6
.
∵x
100 2=200+ 3
6
不合题意,舍去.
∴
x
100 =200- 3
6
≈118.4.
∴相遇时补给船大约航行了 118.4海里.
●体验中考
1、B. 依题意, 满足的方程是 (50 2x)(80 2x) 5400 , x
∴则修建的路宽应为 1 米.故选 A.
3、解:设此长方体箱子的底面宽是 x 米,则长是 (x 2) 米.
根据题意,得: x(x 2) 15 ,
整理,得: x 2x 15 0 , 因式分解得,2(x 3)(x 5) 0 ,
解得, x1 3, x2 5 .
人教版数学五年级上册 第五单元《 实际问题与方程》 同步练习 (含答案)

《实际问题与方程》(同步练习)-五年级上册数学人教版一.填空题(共12小题)1.王叔叔以八五折的优惠价购买了一辆自行车,比原价购买少付120元。
若将自行车的原价设为x元,则本题可列方程。
2.乐乐有65元零花钱,弟弟有y元零花钱,乐乐给弟弟8元之后两人的钱数就同样多了。
根据题意,可列方程为,解得y=。
3.小芳身高1.5m,在与妹妹的合影中她的高度是5cm,妹妹在这张照片中的高度是3cm。
在求“妹妹实际身高是多少米”时用比例的知识解决,设妹妹身高为x米后可列式是,妹妹的身高是m。
4.五年级绘画兴趣小组有23名女生,比男生人数的2倍少7人,求男生人数列方程为。
(不解答)5.果园里种了桃树和梨树共180棵,桃树的棵数是梨树的3倍。
如果设梨树的棵数为x,则可列方程为。
6.一本漫画书105页,芳芳每天看x页,看了5天,还剩页;当x=15时,还剩页。
7.芳芳和明明两个同学玩猜数游戏。
一个人先想好一个数,另一个人猜。
芳芳说:“我想的这个数乘4再减去2等于10”,明明说:“我想的这个数先乘2再加上4也等于10。
”两人都马上猜出了结果,原来两人想的数一样。
他们想的数是,如果用学过的方程来解答,方程可以分别列成和。
8.如图,用方程表示数量关系为。
9.两地间的距离是300km。
甲、乙两辆汽车同时从两地开出,相向而行,经过2.5小时相遇。
甲车每小时行64km,乙车每小时行x千米。
请用方程表示等量关系:。
10.实验小学“献爱心”活动中,五年级捐的钱数是一年级的1.8倍,五年级比一年级多捐96元,一年级捐款多少元?题中的等量关系是;解:设一年级捐款x元,应列方程为。
11.在如图中描出长度是(150+x)的一段。
x=。
12.水果店购进一批苹果,若卖2.4元/kg,就会亏40元;若把单价提到2.7元/kg,就会赚80元。
老板购买这批苹果一共用了元。
(建议用方程思维解题)二.选择题(共5小题)13.一个长方形的周长是180厘米,长比宽多30厘米,求长是多少厘米。
【小学数学】人教版五年级上册数学 5简易方程练习题(9份打包)(,含解析)

实际问题与方程2知识基础练1.看图列方程并求解。
1 22.根据下面的对话,求天安门广场的面积约是多少平方千米,可设天安门广场的面积约是m2,列方程为。
A.6+=B.6-=C.6-=D.+6=3.据有关报告显示,我国不吸烟而受二手烟危害的约有亿人,比烟民数量的3倍少亿人。
我国烟民约有多少亿人?列方程解答。
能力综合练4.把128袋牛奶装入箱子中每箱装的同样多,装了5箱后还余下8袋,每箱装了多少袋牛奶?列方程解答。
5.【思维拓展题】佳佳超市“十一”周食用油的销售情况如下:1销售的玉米油比大豆油的2倍多6桶。
2销售的玉米油比花生油的倍少12桶。
3玉米油销售了48桶。
请你选择以上信息中的两条,在所选择信息的后面画“√”,并提出一个数学问题,列方程解答。
参考答案1.13+12=102解:=30解析:根据图中的信息可知“3个+12个=102个”,据此可以列出方程并解方程。
24-48=376解:=106解析:根据图中的信息可知“西瓜质量的4倍-48 g=376 g”,据此可以列出方程并解方程。
2.A解析:根据等量关系式“颐和园的面积-天安门广场面积的6倍=m2”或“天安门广场面积的6倍+m2=颐和园的面积”选择正确的方程。
3.解:设我国烟民约有亿人。
3-==3解析:根据等量关系式“烟民数量的3倍-亿=受二手烟危害的人数”列方程解答。
4.解:设每箱装了袋牛奶。
5+8=128=24解析:根据“每箱装的牛奶的袋数×箱数+余下牛奶的袋数=牛奶的总袋数”这一等量关系式列方程解答。
5.第一种选法:1√、3√,问题:大豆油销售了多少桶?解:设大豆油销售了桶。
2+6=48=21第二种选法:2√、3√,问题:花生油销售了多少桶?解:设花生油销售了桶。
-12=48=40解析:由题中的信息可知大豆油和花生油的销售数量均与玉米油的销售数量有关,所以可选择1、3或2、3作为条件,根据所选择的条件对未知的数据进行提问并解答。
实际问题与方程3知识基础练1.根据给出的信息和方程补充条件及问题。
人教版五年级数学上册第五单元第8课时《实际问题与方程》练习题(附答案)

人教版五年级数学上册
第五单元第8课时《实际问题与方程》练习题(附答案)
一、解方程。
8x+9=179+6x=45
32-9x=59-5x=0
二、看图列方程解答。
1.每盘()元。
2.每瓶插()朵花。
三、小明有50张画片,比小丽的3倍少1张。
小丽有多少张画片?
四、飞机的速度是每小时860千米,比火车速度的8倍少20千米。
火车的速度是多少?
五、学校自然兴趣小组今年养蚕2500条,比去年养的3倍还多100条,自然兴趣小组去年养蚕多少条?
六、当a等于多少时,下面的式子的结果等于0?当a等于多少时,下面式子的结果等于2?
(10-2.5a)÷4
参考答案
一、x=1x=6x=3x=1.8
二、1.6.45x+3.2=35.2x=6.4 2.40150-3x=30x=40
三、解:设小丽有x张画片。
3x-1=503x-1+1=50+13x÷3=51÷3x=17答:小丽有17张画片。
四、解:设火车的速度是每小时x千米。
8x-20=8608x-20+20=860+208x÷8=880÷8x=110答:火车的速度是每小时110千米。
五、解:设自然兴趣小组去年养蚕x条。
3x+100=25003x+100-100=2500-100 3x÷3=2400÷3x=800答:自然兴趣小组去年养蚕800条。
六、当a=4时结果等于0,a=0.8时结果等于2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题与方程(二)练习题及解析
【一】解方程。
7X+15=293X-6=4816×5+5X=906.8X-4.4=0.4×6
【二】小红和小明家住一条街,相距810米,两人同时从家中动身9分钟相遇,小红每分钟行40米,小明每分钟行多少米?
【三】红红买了6支铅笔和6个练习本,一共用去13.8元。
每个练习本旳售价是1.5元,每支铅笔旳售价是多少元?
【四】每千克苹果2.2元,买3千克桃子比买5千克苹果多花2.5元,每千克桃子多少元? 【五】一天需运走35吨物资,假如货车每次能运5吨,上午运了3次,下午要运几次才能运完?
【答案】:
【一】x=2x=18x=2x=1
【二】解:设小明每分钟行x米。
(x+40)×9=810x=50
【三】解:设每支铅笔旳售价是x元。
1.5×6+6x=13.8x=0.8
【四】解:设每千克桃子x元。
3x-5×2.2=2.5x=4.5
【五】解:设下午要运x次才能运完。
5〔3+x〕=35x=4。