七年级数学下册第八章第10课时 小结与复习
最新人教版七年级数学下册精品教案第八章 小结与复习

第八章复习教案教学设计思想本课是第八章的章节复习课,是学生再认知的过程,因此本课教学时老师提出问题,引导学生独立完成,从过程中提高学生对问题的进一步认识。
首先让学生思考回答:①二元一次方程组的解题思路及基本方法。
②列一次方程组解应用题的步骤;然后师生共同讲评训练题;最后小结。
教学目标知识与技能熟练地解二元一次方程组;熟练地用二元一次方程组解决实际问题;对本章的内容进行回顾和总结,进一步感受方程模型的重要性。
过程与方法通过反思二元一次方程组应用于实际的过程(由实际问题中的数量关系,经“逐步抽象”到建立方程组(实现数学化),由方程组的解再到实际问题的答案),体会数学模型应用于实际的基本步骤。
情感态度价值观通过反思消元法,进一步强化数学中的化归思想;学会如何归纳知识,反思自己的学习过程。
教学方法:复习法,练习法。
重、难点重点:解二元一次方程组、列二元一次方程组解应用题。
难点:如何找等量关系,并把它们转化成方程。
解决办法:反复读题、审题,用简洁的语言概括出相等关系。
课时安排1课时。
教具准备投影片教学过程设计(一)明确目标前面已学过二元一次方程组及一次方程组的应用题,这一节课主要把这一部分内容小结一下,并加以巩固练习。
(二)整体感知本章含有两个主要思想:消元和方程思想。
所谓方程思想是指在求解数学问题时,从题中的已知量和未知量之间的数量关系人手,找出相等关系,运用数学符号形成的语言将相等关系转化为方程(或方程组),再通过解方程(组)使问题获得解决,方程思想是中学数学中非常重要的数学思想方法之一,它的应用十分广泛。
(三)复习通过提问学生一些相关问题,引导总结总结出本节的知识点,形成以下的知识网络结构图。
(四)练习1.2x -5y=18找学生写出它的五个解。
2.4(x y 1)3(1y)2y x 223--=--⎧⎪⎨+=⎪⎩分别用代入消元法、加减消元法求出它的解来。
答案:{x 2y 3== 3.1号仓库与2号仓库共存粮450吨,现从1号仓库运出存粮的60%,从2号仓库运出存粮的40%,结果2号仓库所余的粮食比1号仓库所余的粮食多30吨。
第八章小结与复习

5.计算. (1) (0.125)16×(-8)17 15×(215)3 (2) (0.125) 4· 5· 4 (3) 2 4 (-0.125)
6.(1)比较340与430的大小; (2)比较2100与375的大小.
同底数幂的除法知识点梳理:
1.同底数幂的除法运算性质:同底数幂相除,
底数不变,指数相减.
一、同底数幂的乘法
am·an=am+n(m、n都是正整数)
同底数幂相乘,底数不变 ,指数 相加 . m n s am+n+s
a ·a ·a =
(m、n、s都是正整数) 当我们学了负指数幂之后,指数不再受正负性的限 制.
例:
am· -n=am-n a am· -n· -p= a a am-n-p
口答:
初中数学七年级下册 (苏科版)
用科学记数法表示下列各数.
(1) 360000000=____________;
(2) -2730000=_____________; (3) 0.00000012=____________;
(4) ) -0.00000000901=_________;
m÷an=am–n (m,n为正整数) a
2.任何不等于0的数的0次幂等于1.
a = 1(a ≠ 0)
3.任何不等于0的数的-n次幂,等于这个数的 n次幂的倒数.(n是正整数)
0
1 a = n (a ≠ 0,n为正整数) a
-n
1.计算. (1) m19÷m14· 3÷m2· m m
(2) (-x2y)5÷(-x2y)3
解答: (1) 已知:8· 2m-1· 3m=217,求 2 2 m的值. m-n=7,am+n=13,求 (2) 已知a 2m. a
人教版七年级下册数学第八章教案小结与复习

人教版七年级下册数学教案第八章小结与复习教学设计思想本课是第八章的章节复习课,是学生再认知的过程,因此本课教学时老师提出问题,引导学生独立完成,从过程中提高学生对问题的进一步认识。
首先让学生思考回答:①二元一次方程组的解题思路及基本方法。
②列一次方程组解应用题的步骤;然后师生共同讲评训练题;最后小结。
教学目标知识与技能熟练地解二元一次方程组;熟练地用二元一次方程组解决实际问题;对本章的内容进行回顾和总结,进一步感受方程模型的重要性。
过程与方法通过反思二元一次方程组应用于实际的过程(由实际问题中的数量关系,经“逐步抽象”到建立方程组(实现数学化),由方程组的解再到实际问题的答案),体会数学模型应用于实际的基本步骤。
情感态度价值观通过反思消元法,进一步强化数学中的化归思想;学会如何归纳知识,反思自己的学习过程。
教学方法:复习法,练习法。
重点:解二元一次方程组、列二元一次方程组解应用题。
难点:如何找等量关系,并把它们转化成方程。
解决办法:反复读题、审题,用简洁的语言概括出相等关系。
教具准备投影片教学过程(一)明确目标前面已学过二元一次方程组及一次方程组的应用题,这一节课主要把这一部分内容小结一下,并加以巩固练习。
(二)整体感知本章含有两个主要思想:消元和方程思想。
所谓方程思想是指在求解数学问题时,从题中的已知量和未知量之间的数量关系人手,找出相等关系,运用数学符号形成的语言将相等关系转化为方程(或方程组),再通过解方程(组)使问题获得解决,方程思想是中学数学中非常重要的数学思想方法之一,它的应用十分广泛。
(三)复习通过提问学生一些相关问题,引导总结总结出本节的知识点,形成以下的知识网络结构图。
(四)练习1.2x -5y=18让学生写出它的五个解。
2.分别用代入消元法、加减消元法求出它的解来。
答案:3.1号仓库与2号仓库共存粮450吨,现从1号仓库运出存粮的60%,从2号仓库运出存粮的40%,结果2号仓4(x y 1)3(1y)2y x 223--=--⎧⎪⎨+=⎪⎩{x 2y 3==库所余的粮食比1号仓库所余的粮食多30吨。
最新冀教版数学七年级下册第八章-小结与复习ppt课件(含答案)

=(2x3y2-2x2y) ×3x2y
= 6x5y3-6x4y2 . 当x=1,y=3时,原式=6×27-6×9=108. 方法归纳 在整式的乘法运算中,一要注意运算顺序,
先算括号内的,再算括号外的;二要熟练正确地运用
运算法则.
针对训练
2. 一个长方形的长是a-2b+1,宽为a,则长方形的面积
为 a2-2ab+a .
3.乘法公式 公式 名称 两数和乘以这两数的差 两数和(差)的平方 两数和(差)的平方, 文字 表示
两数和与这两数差的积,等于这两数的______ 平方和
等于这两数的平方差 加上(减去)________ 这两数积
的2倍
式子 表示 (a±b)2= (a+b)(a-b)=_______ a2±2ab+b2 ___________ a2-b2
将一个代数式看做一个字母,这就是整体思想,应用 这种思想方法解题,可以简化计算过程,且不易出错. 针对训练 6.若xn=5,则(x3n)2-5(x2)2n= 15000 . 7.若x+y=2,则
1 2 1 x xy y 2 = 2 2
2 .
数形结合思想
例6 如图所示,在边长为a的正方形中剪去边长为b的
考点三 乘法公式的运用 例3 先化简,再求值:[(x-y)2+(x+y)(x-y)] -2x2,其中 x=3,y=1.5. 解:原式=(x2-2xy+y2+x2-y2) -2x2
=(2x2-2xy) -2x2
=-2xy.
当x=3,y=1.5时,原式=-9.
针对训练
3. 求方程(x-1)2-(x-1)(x+1)+3(1-x)=0的解. 解:原方程可化为 x2-2x+1-(x2-1)+3-3x=0, 即 -5x+5=0, 解得x=1.
人教版七年级下册数学第八章 小结与复习课件

a=3, b=1.
2a-2b=4, 2a+2b=8.
所以6a-3b=6×3-3×1=15.
专题四 二元一次方程组的实际应用
分析:等量关系式: ①减少6辆汽车后运输的货物=原规定运输货物; ②增加4辆汽车后运输的货物=原规定的货物.
解:设这个汽车运输队原有汽车x辆,原规定完成的天
数为y天,每辆汽车每天的运输量为1. 根据题意可得 (x-6)(y+3)=xy,
3n-2m=1, 解得: m=1,
n=1.
【归纳拓展】首先理解二元一次方程或二元一次方 程组定义的几大因素,并且通过定义得到需要的等 式,由等式得到最后的求解.
【迁移应用1】
已知方程(m-3) x n 1+(n+2) ym28 =0是关于x、y的二元一 次方程,求m、n的值.
解:由题可得:|n| -1=1,m≠3,m2-8=1,n ≠-2. 解得:m=-3,n=2.
专题二 二元一次方程与二元一次方程组的解
ax-2y=3, x-by=4
解:把x=1,y=-2代入二元一次方程组得
a+4=3, 1+2b=4,
解得:a=-1,b=1.5.
【归纳拓展】一般情况下,提到二元一次方程(组) 的解,须先把解代入二元一次方程(组),得到解 题需要的关系式,然后解关系式,即可解决问题.
(x+4)(y-1)=xy.
化简整理得 3x-6y=18, ①
-x+4y=4 ,②
由②可得x=4y-4 ,③
把③代入①可得3(4y-4)-6y=18, 解得y=5.
把y=5代入③得 x=16. 由此可得
x=16, y=5.
答:原有汽车16辆,原规定完成的天数为5天.
【精品华师大版】七年级数学下册《第8章 小结与复习》课件

考点二 解一元一次不等式
2x 1 9x 2 例2 解不等式: 1 .并把解集表示在数轴上. 3 6
【解析】解一元二次不等式的一般步骤是:去分母、 去括号、移项、合并同类项、系数化为1. 解:去分母,得 2(2x-1)-(9x+2)≤6, 去括号,得 4x-2-9x-2≤6, 移项,得 4x-9x≤6+2+2, 合并同类项,得 -5x≤10,
方法总结
解不等式的应用问题的步骤包括审、设、列、解、
找、答这几个环节,而在这些步骤中,最重要的是利 用题中的已知条件,列出不等式(组),然后通过解
出不等式(组)确定未知数的范围,利用未知数的特
征(如整数问题),依据条件,找出对应的未知数的 确定数值,以实现确定方案的解答.
课堂小结
不等式的解集
不 等 式 一 元 一 次 不 等 式 (组) 不等式的基本性质 解集
4.列出不等式(组)并求出其解集
5.检验并根据实际问题的要求写出符合题意 的解或解集,并写出答案
考点讲练
考点一 运用不等式的基本性质求解
例1 下列命题正确的是 A.若a>b,b<c,则a>c C.若a>b,则ac2>bc2 (D) B.若a>b,则ac>bc D.若ac2>bc2,则a>b
【解析】选项A,由a>b,b<c,不能根据不等式的性质确
4.不等式还具有传递性:如果a > b,b > c,那么a > c.
三、解一元一次不等式 解一元一次不等式和解一元一次方程类似,有 去分母 去括号 移项 合并同类项 系数化为1等步骤.
四、解一元一次不等式组 1.分别求出不等式组中各个不等式的解集; 2.利用数轴求出这些不等式的解集的公共部分.
【初中数学】部编本新人教版七年级下册数学第八章 小结与复习
第八章复习教案教学设计思想本课是第八章的章节复习课,是学生再认知的过程,因此本课教学时老师提出问题,引导学生独立完成,从过程中提高学生对问题的进一步认识。
首先让学生思考回答:①二元一次方程组的解题思路及基本方法。
②列一次方程组解应用题的步骤;然后师生共同讲评训练题;最后小结。
教学目标知识与技能熟练地解二元一次方程组;熟练地用二元一次方程组解决实际问题;对本章的内容进行回顾和总结,进一步感受方程模型的重要性。
过程与方法通过反思二元一次方程组应用于实际的过程(由实际问题中的数量关系,经“逐步抽象”到建立方程组(实现数学化),由方程组的解再到实际问题的答案),体会数学模型应用于实际的基本步骤。
情感态度价值观通过反思消元法,进一步强化数学中的化归思想;学会如何归纳知识,反思自己的学习过程。
教学方法:复习法,练习法。
重、难点重点:解二元一次方程组、列二元一次方程组解应用题。
难点:如何找等量关系,并把它们转化成方程。
解决办法:反复读题、审题,用简洁的语言概括出相等关系。
课时安排1课时。
教具准备投影片教学过程设计(一)明确目标前面已学过二元一次方程组及一次方程组的应用题,这一节课主要把这一部分内容小结一下,并加以巩固练习。
(二)整体感知本章含有两个主要思想:消元和方程思想。
所谓方程思想是指在求解数学问题时,从题中的已知量和未知量之间的数量关系人手,找出相等关系,运用数学符号形成的语言将相等关系转化为方程(或方程组),再通过解方程(组)使问题获得解决,方程思想是中学数学中非常重要的数学思想方法之一,它的应用十分广泛。
(三)复习通过提问学生一些相关问题,引导总结总结出本节的知识点,形成以下的知识网络结构图。
(四)练习1.2x -5y=18找学生写出它的五个解。
2.4(x y 1)3(1y)2y x 223--=--⎧⎪⎨+=⎪⎩分别用代入消元法、加减消元法求出它的解来。
答案:{x 2y 3== 3.1号仓库与2号仓库共存粮450吨,现从1号仓库运出存粮的60%,从2号仓库运出存粮的40%,结果2号仓库所余的粮食比1号仓库所余的粮食多30吨。
人教版七年级数学下册知识点总结(第八章-二元一次方程组)
第八章 二元一次方程组一、知识网络结构二、知识要点1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。
2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为c by ax =+(c b a 、、为常数,并且00≠≠b a ,)。
使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。
3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。
使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。
⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧三元一次方程组解法问题二元一次方程组与实际加减法代入法二元一次方程组的解法方程组的解定义二元一次方程组方程的解定义二元一次方程二元一次方程组4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。
5、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。
6、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。
新人教版七年级数学下册第八章 小结与复习
第八章复习教案教学设计思想本课是第八章的章节复习课,是学生再认知的过程,因此本课教学时老师提出问题,引导学生独立完成,从过程中提高学生对问题的进一步认识。
首先让学生思考回答:①二元一次方程组的解题思路及基本方法。
②列一次方程组解应用题的步骤;然后师生共同讲评训练题;最后小结。
教学目标知识与技能熟练地解二元一次方程组;熟练地用二元一次方程组解决实际问题;对本章的内容进行回顾和总结,进一步感受方程模型的重要性。
过程与方法通过反思二元一次方程组应用于实际的过程(由实际问题中的数量关系,经“逐步抽象”到建立方程组(实现数学化),由方程组的解再到实际问题的答案),体会数学模型应用于实际的基本步骤。
情感态度价值观通过反思消元法,进一步强化数学中的化归思想;学会如何归纳知识,反思自己的学习过程。
教学方法:复习法,练习法。
重、难点重点:解二元一次方程组、列二元一次方程组解应用题。
难点:如何找等量关系,并把它们转化成方程。
解决办法:反复读题、审题,用简洁的语言概括出相等关系。
课时安排1课时。
教具准备投影片教学过程设计(一)明确目标前面已学过二元一次方程组及一次方程组的应用题,这一节课主要把这一部分内容小结一下,并加以巩固练习。
(二)整体感知本章含有两个主要思想:消元和方程思想。
所谓方程思想是指在求解数学问题时,从题中的已知量和未知量之间的数量关系人手,找出相等关系,运用数学符号形成的语言将相等关系转化为方程(或方程组),再通过解方程(组)使问题获得解决,方程思想是中学数学中非常重要的数学思想方法之一,它的应用十分广泛。
(三)复习通过提问学生一些相关问题,引导总结总结出本节的知识点,形成以下的知识网络结构图。
(四)练习1.2x -5y=18找学生写出它的五个解。
2.4(x y 1)3(1y)2y x 223--=--⎧⎪⎨+=⎪⎩分别用代入消元法、加减消元法求出它的解来。
答案:{x 2y 3== 3.1号仓库与2号仓库共存粮450吨,现从1号仓库运出存粮的60%,从2号仓库运出存粮的40%,结果2号仓库所余的粮食比1号仓库所余的粮食多30吨。
数学七年级下册第八章知识点
数学七年级下册第八章知识点篇1:数学七年级下册第八章知识点数学七年级下册第八章知识点(1)二元一次方程组的概念由几个一次方程组成并且含有两个未知数的方程组,叫二元一次方程组。
注意:二元一次方程组不一定由两个二元一次方程合在一起:方程可以超过两个,有的方程可以只有一元(一元方程在这里也可看作另一未知数系数为 0 的二元方程)。
(2)二元一次方程组的解二元一次方程组的解必须满足方程组中的每一个方程,同时它也必须是一个数对,而不能是一个数。
3)二元一次方程组的解法●a.代入消元法代入消元法是解二元一次方程组的基本方法之一。
通过等量代换,消去方程组中的一个未知数,使二元一次方程组转化为一元一次方程,从而求得一个未知数的值,然后再求出被消去未知数的值,从而确定原方程组的解的方法。
步骤:①从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数,例如 y,用另一个未知数如 x 的代数式表示出来,即写成 y = ax + b 的形式;② y = ax + b 代入另一个方程中,消去 y ,得到一个关于x 的一元一次方程;③解这个一元一次方程,求出 x 的值;④回代求解:把求得的 x 的值代入 y = ax + b 中求出 y 的值,从而得出方程组的解。
●b.加减消元法加减法是消元法的一种,也是解二元一次方程组的基本方法之一。
加减法不仅在解二元一次方程组中适用,也是今后解其他方程(组)经常用到的方法。
步骤:①变换系数:把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数互为相反数或相等;②加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求得一个未知数的值;④回代:将求出的未知数的值代入原方程组中,求出另一个未知数的值。
●加减消元方法的选择:1、一般选择系数绝对值最小的未知数消元;2、当某一未知数的系数互为相反数时,用加法消元;当某一未知数的系数相等时,用减法消元;3、某一未知数系数成倍数关系时,直接对一个方程变形,使其系数互为相反数或相等,再用加减消元求解;4、当相同的未知数的系数都不相同时,找出某一个未知数的系数的最小公倍数,同时对两个方程进行变形,转化为系数的绝对值相同,再用加减消元求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第47课时小结与复习
教学设计思想
本课是第八章的章节复习课,是学生再认知的过程,因此本课教学时老师提出问题,引导学生独立完成,从过程中提高学生对问题的进一步认识。
首先让学生思考回答:①二元一次方程组的解题思路及基本方法。
②列一次方程组解应用题的步骤;然后师生共同讲评训练题;最后小结。
教学目标
知识与技能
熟练地解二元一次方程组;
熟练地用二元一次方程组解决实际问题;
对本章的内容进行回顾和总结,进一步感受方程模型的重要性。
过程与方法
通过反思二元一次方程组应用于实际的过程(由实际问题中的数量关系,经“逐步抽象”到建立方程组(实现数学化),由方程组的解再到实际问题的答案),体会数学模型应用于实际的基本步骤。
情感态度价值观
通过反思消元法,进一步强化数学中的化归思想;
学会如何归纳知识,反思自己的学习过程。
教学方法:
复习法,练习法。
重、难点
重点:解二元一次方程组、列二元一次方程组解应用题。
难点:如何找等量关系,并把它们转化成方程。
解决办法:反复读题、审题,用简洁的语言概括出相等关系。
课时安排1课时。
教具准备投影片
教学过程设计
(一)明确目标
前面已学过二元一次方程组及一次方程组的应用题,这一节课主要把这一部分内容小结一下,并加以巩固练习。
(二)整体感知
本章含有两个主要思想:消元和方程思想。
所谓方程思想是指在求解数学问题时,从题中的已知量和未知量之间的数量关系人手,找出相等关系,运用数学符号形成的语言将相等关系转化为方程(或方程组),再通过解方程(组)使问题获得解决,方程思想是中学数学中非常重要的数学思想方法之一,它的应用十分广泛。
(三)复习
通过提问学生一些相关问题,引导总结总结出本节的知识点,形成以下的知识网络结构图。
(四)练习
1.2x-5y=18
找学生写出它的五个解。
2.
4(x y1)3(1y)2 y
x2
23
--=--⎧⎪
⎨+=
⎪⎩
分别用代入消元法、加减消元法求出它的解来。
答案:
{x2y3==
3.1号仓库与2号仓库共存粮450吨,现从1号仓库运出存粮的60%,从2号仓库运出存粮的40%,结果2号仓库所余的粮食比1
号仓库所余的粮食多30吨。
1号仓库与2号仓库原来各存粮多少吨?
答案:设1号仓库存粮x吨,2号仓库存粮y吨。
{x y 450(10.6)x (10.4)y 30+=-=--
解得
{x 240
y 210==
4.用1块A 型钢板可制成2块C 型钢板,1块D 型钢板;用1块B 型钢板可制成1块C 型钢板,2块D 型钢板。
现需15块C 型钢板,18块D 型钢板,可恰好用A 型钢板,B 型钢板各多少块?
答案:设用x 块A 型钢板,用y 块B 型钢板。
{
2x y 15x 2y 18+=+= 解得
{x 4
y 7== 5.(我国古代问题)有大小两种盛酒的桶,已经知道5个大桶加上1个小桶可以盛酒3斛(斛,音hu 是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛。
1个大桶、1个小桶分别可以盛酒多少斛?
答案:设1个大桶可盛酒x 斛、1个小桶分别可以盛酒y 斛。
{5x y 3
x 5y 2+=+=
解得
13x 247y 24⎧=⎪⎨=⎪⎩
(五)小结
引导学生总结本节的知识点。
(六)板书设计。