三角形的分类作业
【新】七年级 数学 人教版 三角形的有关线段和有关的角 讲义(知识点+练习题)【精编版】

11.1 三角形有关的线段:1.三角形的定义及表示方法:由不在同一直线的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形有3个顶点,3个角,三条线段。
三个角对应3个边。
三角形的符号,记为“⊿”。
3.三角形的分类:(1)按角分类;(2)按边分类:(1)按角分:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形 (2)按边分:⎧⎪⎧⎨⎨⎪⎩⎩三边都不相等的三角形三角形等边三角形等腰三角形底边和腰不相等的等腰三角形 三角形三边的关系:两边之和大于第三边,两边之差小于第三边。
4.三角形三条重要的线段:高,中线,角平分线,都是线段。
高:三角形的高2⎧⎪⎪⎨⎪⎪⎩锐角三角形:三角形内(交点在内部)直角三角形:两个直角边,三角形内有一条(交点是直角顶点)钝角三角形:个锐角所对的边上的高在三角形外, 钝角所对的边上的高在三角形内部(交点在外部)中线:交点在三角形内部,一条中线将三角形分成面积相等的2部分,三条中线的 交点,又叫重心。
角平分线:交点在三角形的内部。
5.三角形具有稳定性,四边形具有不稳定性,若将多边形转化为三角形,四边形至少需要订1根木条,五边形需要订2根,六边形需要订3根,、、、、n 边形需要(n —3)(n 为正整数)6.三角形的内角和等于180°。
证明方法:做平行线,裁剪3个角,拼成一个平角。
7.补充讲解外角专题训练一:数三角形的个数:DCBEADECBACDBADE CGFBA训练(1)训练(2)专第2题专第3题专题二:三角形的分类:1.三角形按边分类可分为三角形和三角形,其中等腰三角形又可以分为三角形和三角形;三角形按角分类可分为三角形和三角形,其中斜三角形又可分为三角形和三角形。
2.如图所示,(1)图中共有个三角形,它们是;(2)以AD为边的三角形有;(3)∠C分别为⊿AEC,⊿ADC,⊿ABC中,,边的对角。
(4)∠AED是、的内角。
(5)⊿AED的三条边是,,,三个内角是,,。
八年级数学上学期与三角形有关的线段(基础)知识讲解——含课后作业与答案

与三角形有关的线段(基础)知识讲解【学习目标】1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法;2. 理解并会应用三角形三边间的关系;3. 理解三角形的高、中线、角平分线及重心的概念,学会它们的画法及简单应用;4. 对三角形的稳定性有所认识,知道这个性质有广泛的应用.【要点梳理】要点一、三角形的定义及分类1. 定义: 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角; ③三角形的顶点:即相邻两边的公共端点.(2)三角形定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3) 三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC ”,读作“三角形ABC ”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示.【高清课堂:与三角形有关的线段 2、三角形的分类 】2.三角形的分类(1)按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形 要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.(2)按边分类:要点诠释:①等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;②等边三角形:三边都相等的三角形.要点二、三角形的三边关系定理:三角形任意两边的和大于第三边.推论:三角形任意两边的差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.要点三、三角形的高、中线与角平分线1、三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.三角形的高的数学语言:如下图,AD 是ΔABC 的高,或AD 是ΔABC 的BC 边上的高,或AD⊥BC 于D ,或∠ADB =∠ADC=∠90°.注意:AD 是ΔABC 的高 ∠ADB=∠ADC=90°(或AD⊥BC 于D);要点诠释:(1)三角形的高是线段;(2)三角形有三条高,且相交于一点,这一点叫做三角形的垂心;(3)三角形的三条高:(ⅰ)锐角三角形的三条高在三角形内部,三条高的交点也在三角形内部;(ⅱ)钝角三角形有两条高在三角形的外部,且三条高的交点在三角形的外部;(ⅲ)直角三角形三条高的交点是直角的顶点.2、三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.三角形的中线的数学语言:如下图,AD 是ΔABC 的中线或AD 是ΔA BC 的BC 边上的中线或BD =CD =21BC.要点诠释:(1)三角形的中线是线段;(2)三角形三条中线全在三角形内部;(3)三角形三条中线交于三角形内部一点,这一点叫三角形的重心;(4)中线把三角形分成面积相等的两个三角形.3、三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的角平分线的数学语言:如下图,AD 是ΔABC 的角平分线,或∠BAD=∠CAD 且点D 在BC 上.注意:AD 是ΔABC 的角平分线 ∠BAD=∠DAC=21∠B AC (或∠BAC=2∠BAD=2∠DAC) . 要点诠释:(1)三角形的角平分线是线段;(2)一个三角形有三条角平分线,并且都在三角形的内部;(3)三角形三条角平分线交于三角形内部一点,这一点叫做三角形的内心;(4)可以用量角器或圆规画三角形的角平分线.要点四、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.【典型例题】类型一、三角形的定义及表示1.如图所示.(1)图中共有多少个三角形?并把它们写出来;(2)线段AE是哪些三角形的边?(3)∠B是哪些三角形的角?【思路点拨】在(1)问中数三角形的个数时,应按一定规律去找,这样才会不重、不漏地找出所有的三角形;在(2)问中,突破口在于由三角形定义知,除了A、E再找一个第三点,使这点不在AE上,便可得到以AE为边的三角形;(3)问的突破口是∠B一定是以B为一个顶点组成的三角形中.【答案与解析】解:(1)图中共有6个三角形,它们是△ABD,△ABE,△ABC,△ADE,△ADC,△AEC.(2)线段AE分别为△ABE,△ADE,△ACE的边.(3)∠B分别为△ABD,△ABE,△ABC的角.【总结升华】在数三角形的个数时一定要按照一定的顺序进行,做到不重不漏.举一反三:【变式】如图,,以A为顶点的三角形有几个?用符号表示这些三角形.【答案】3个,分别是△EAB, △BAC, △CAD.类型二、三角形的三边关系2. 三根木条的长度如图所示,能组成三角形的是( )【答案】D.【解析】要构成一个三角形.必须满足任意两边之和大于第三边.在运用时习惯于检查较短的两边之和是否大于第三边.A、B、C三个选项中,较短两边之和小于或等于第三边.故不能组成三角形.D选项中,2cm+3cm>4cm.故能够组成三角形.【总结升华】判断以三条线段为边能否构成三角形的简易方法是:①判断出较长的一边;②看较短的两边之和是否大于较长的一边,大于则能够成三角形,不大于则不能够成三角形.【高清课堂:与三角形有关的线段 例1】举一反三:【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8.【答案】(1)能; (2)不能; (3)能.3.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______.【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7, 即5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b.举一反三:【变式】(2015春•盱眙县期中)四边形ABCD 是任意四边形,AC 与BD 交点O .求证:AC+BD >(AB+BC+CD+DA ).【答案】证明:∵在△OAB 中OA+OB >AB在△OAD 中有OA+OD >AD ,在△ODC 中有OD+OC >CD ,在△OBC 中有OB+OC >BC ,∴OA+OB+OA+OD+OD+OC+OC+OB >AB+BC+CD+DA即2(AC+BD )>AB+BC+CD+DA ,即AC+BD >(AB+BC+CD+DA ).类型三、三角形中重要线段4. (2016春•江阴市月考)如图,AD ⊥BC 于点D ,GC ⊥BC 于点C ,CF ⊥AB 于点F ,下列关于高的说法中错误的是( )A .△ABC 中,AD 是BC 边上的高B .△GBC 中,CF 是BG 边上的高C .△ABC 中,GC 是BC 边上的高D .△GBC 中,GC 是BC 边上的高【思路点拨】根据三角形的一个顶点到对边的垂线段叫做三角形的高对各选项分析判断后利用排除法求解.【答案与解析】解:A 、△ABC 中,AD 是BC 边上的高正确,故本选项错误;B 、△GBC 中,CF 是BG 边上的高正确,故本选项错误;C 、△ABC 中,GC 是BC 边上的高错误,故本选项正确;D 、△GBC 中,GC 是BC 边上的高正确,故本选项错误.故选C .【总结升华】本题考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,是基础题,熟记概念是解题的关键.举一反三:【变式】(2015•长沙)如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .【答案】A . 5.如图所示,CD 为△ABC 的AB 边上的中线,△BCD 的周长比△ACD 的周长大3cm ,BC =8cm ,求边AC 的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD =BD ,②△BCD 的周长比△ACD 的周长大3.【答案与解析】解:依题意:△BCD 的周长比△ACD 的周长大3cm ,故有:BC+CD+BD-(AC+CD+AD)=3.又∵ CD 为△ABC 的AB 边上的中线,∴ AD =BD ,即BC-AC =3.又∵ BC =8,∴ AC =5.答:AC 的长为5cm .【总结升华】运用三角形的中线的定义得到线段AD =BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法.举一反三:【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S △,则S 阴影为________.【答案】1.类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.与三角形有关的线段(基础)巩固练习【巩固练习】一、选择题1.(2016•西宁)下列每组数分别是三根木棒的长度,能用他们摆成三角形的是( ).A.3cm ,4cm,8cm B.8cm,7cm,15cmC.5cm ,6cm,11cm D.13cm ,12cm,20cm2.如图所示的图形中,三角形的个数共有( ).A.1个 B.2个 C.3个 D.4个3.(2015春•常州期中)如果三角形的两边长分别为4和5,第三边的长是整数,而且是奇数,则第三边的长可以是()A. 6 B. 7 C. 8 D. 94.为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( ).A.5m B.15m C.20m D.28m5.三角形的角平分线、中线和高都是( ).A.直线 B.线段 C.射线 D.以上答案都不对6.下列说法不正确的是( ).A.三角形的中线在三角形的内部 B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部 D.三角形必有一高线在三角形的内部7.如图,AM是△ABC的中线,那么若用S1表示△ABM的面积,用S2表示△ACM的面积,则S1和S2的大小关系是( ).A.S1>S2 B.S1<S2 C.S1=S2 D.以上三种情况都有可能8.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( ).A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短二、填空题9.(2016•金平区一模)如图,自行车的三角形支架,这是利用三角形具有________性.10.如果三角形的两边长分别是3 cm和6 cm,第三边长是奇数,那么这个三角形的第三边长为________.11. 已知等腰三角形的两边分别为4cm和7cm,则这个三角形的周长为________.12. 如图,AD是△ABC的角平分线,则∠______=∠______=12∠_______;BE是△ABC的中线,则_____=_____=12____ ;CF是△ABC的高,则∠________=∠________=90°,CF________AB.13. 如图,AD、AE分别是△ABC的高和中线,已知AD=5cm,CE=6cm,则△ABE和△ABC的面积分别为________________.14.(2015春•焦作校级期中)AD是△ABC的边BC上的中线,AB=3,AC=4,则中线AD的取值范围是_____________.三、解答题15.判断下列所给的三条线段是否能围成三角形?(1)5cm,5cm,a cm(0<a<10);(2)a+1,a+2,a+3;(3)三条线段之比为2:3:5.16.如图,在△ABC中,∠BAD=∠CAD,AE=CE,AG⊥BC,AD与BE相交于点F,试指出AD、AF分别是哪两个三角形的角平分线,BE、DE分别是哪两个三角形的中线?AG是哪些三角形的高?17.(2014春•苏州期末)如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长.18.利用三角形的中线,你能否将图中的三角形的面积分成相等的四部分(给出3种方法)?【答案与解析】一、选择题1. 【答案】D.2. 【答案】C;【解析】三个三角形:△ABC, △ACD, △ABD.3. 【答案】B;【解析】解:由题意,令第三边为x,则5﹣4<x<5+4,即1<x<9,∵第三边长为奇数,∴第三边长是3或5或7.∴三角形的第三边长可以为7.故选B.4. 【答案】D;【解析】因为第三边满足:|另两边之差|<第三边<另两边之和,故|6-12<AB<16+12 即4<AB<28故选D.5. 【答案】B.6. 【答案】C;【解析】三角形的三条高线不一定都在三角形内部.7. 【答案】C;【解析】中线把三角形分成面积相等的两个三角形.8. 【答案】A.二、填空题9. 【答案】稳定.10.【答案】5 cm或7 cm;【解析】三角形三边关系的应用.11.【答案】15cm或18cm;【解析】按腰为4 cm或7 cm分类讨论.12.【答案】BAD CAD BAC;AE CE AC;AFC BFC ⊥.13.【答案】15cm2,30cm2;【解析】S△ABE=S△A CE=15 cm2,S△AB C=2 S△ABE=30 cm2.14.【答案】解:延长AD至E,使DE=AD,连接CE.∵BD=CD,∠ADB=∠EDC,AD=DE,∴△ABD≌△ECD,∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即1<2AD<7,<AD<.故答案为:<AD<.三、解答题15.【解析】解:(1)5+5=10>a(0<a<10),且5+a>5,所以能围成三角形;(2)当-1<a<0时,因为a+1+a+2=2a+3<a+3,所以此时不能围成三角形,当a=0时,因为a+1+a+2=2a+3=3,而a+3=3,所以a+1+a+2=a+3,所以此时不能围成三角形.当a >0时,因为a+1+a+2=2a+3>a+3.所以此时能围成三角形.(3)因为三条线段之比为2:3:5,则可设三条线段的长分别是2k,3k,5k,则2k+3k=5k不满足三角形三边关系.所以不能围成三角形.16.【解析】解:AD、AF分别是△ABC,△ABE的角平分线.BE、DE分别是△ABC,△ADC的中线,AG是△ABC,△ABD,△ACD,△ABG,△ACG,△ADG的高.17.【解析】解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15﹣6﹣5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21﹣6﹣8=7cm.故AC长为7cm.18.【解析】解:如图。
等腰三角形

等腰三角形性质及分类讨论(讲义)一、知识点睛1. 在等腰三角形中,顶角的平分线,底边上的中线,底边上的高重合(也称“三线合一”),这是等腰三角形的重要性质.2. 在一个三角形中,当中线,高线,角平分线“三线”中有“两线”重合时,尝试构造等腰三角形.3. 分类讨论的类型: ①定义法则.如绝对值,平方,完全平方式等. ②关键词不明确.如等腰三角形的角(底角与顶角),边(底边与腰)等. ③位置不确定.如线段端点的位置,角的位置,高等. ④对应关系不确定.如两部分的差,全等三角形对应关系等. 4. 分类讨论题目解题要点: ①辨识类型;②画出各种类型的图形并求解; ③根据标准进行取舍.标准包括限制条件,实际意义等.二、精讲精练1. 已知:如图,D ,E 分别是AB ,AC 的中点,CD ⊥AB 于D ,BE ⊥AC 于E ,CD ,BE 交于点O .求证:AB =AC .O EC DB2. 已知:如图,在△ABC 中,∠A =90º,AB =AC ,BD 平分∠ABC ,CE ⊥BD 交BD 的延长线于E ,若CE =5cm ,求BD 的长.AED3.如图,在△ABC中,延长BC到D,使CD=AC,连接AD,CF平分∠ACB,交AB于F,AF=BF.求证:BC=CD.AF4.如图,在△ABC中,点E在AB上,AE=AC,连接CE,点G为EC的中点,连接AG并延长交BC于D,连接ED,过点E作EF∥BC交AC于点F.求证:EC平分∠DEF.GEBFC A5.(1)若4x2-(m-1)xy+9y2是完全平方式,则m=_________.(2)若x2-4xy+ny2是完全平方式,则n=_________.(3)若9x2-12xy+(m+1)2y2是完全平方式,则m=_________.6.等腰三角形的一个角是另一个角的4倍,则顶角的度数为______________.7.已知一等腰三角形的三边分别是3x-1,x+1,5,则x=________.8.在直线l上任取一点A,截取AB=2cm,再截取AC=3cm,则线段BC的长为______________.9.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为__________.10.若等腰三角形的底边长为5cm,一腰上的中线把其周长分成的两部分之差为3cm,则腰长为__________.11.已知等腰三角形的周长为20cm,两边的差为2cm,则底边长为__________.12.已知:如图,线段AB的端点A在直线l上,AB与l的夹角为30º,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?求出每个等腰三角形顶角的度数.B30°lA13.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,在直线BC或AC上取一点P,使得△P AB为等腰三角形,找出所有符合条件的点P.AB C三、回顾与思考_____________________________________________________________________ _____________________________________________________________________ ______________________________【参考答案】1.证明略(提示:连接BC,证明AC=BC,AB=BC)2.10cm(提示:延长CE交BA的延长线于点F,证明BD=2CE)3.证明略(提示:延长CF到E,使CF=EF,连接BE,证明△AFC≌△BEF,再证明BE=BC)4.证明略(提示:利用等腰三角形“三线合一”,证明AD⊥EC,再证明ED=CD,利用平行导角)5.(1)-11,13 (2)4 (3)1,-36.120°或20°7. 28.1cm或5cm9.65°或115°10. 8cm 11. 8cm 或163cm 12. 作图略 13. 作图略等腰三角形性质及分类讨论(随堂测试)1. 若x 2-(a+1)xy +4y 2是完全平方式,则a =_________.2. 等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形顶角的度数为______________.3. 如图,在△ABC 中,D ,E 为BC 上的点,AC =CD ,CF ⊥AD 交AD 于G ,交AB 于F ,AD 平分∠BAE . 求证:DF ∥AE .【参考答案】1.3或-52.50°或130°3.证明略;(利用等腰三角形“三线合一”得到AG =DG ,得到AF =FD ,证得∠F AD =∠FDA ,由角平分线可得∠FDA =∠EAD ,所以DF ∥AE ) FGEDA等腰三角形性质及分类讨论(作业)14.已知:如图,在△ABC中,AD平分∠BAC,BD=CD,E,F分别为AB,AC边上的点,BE=CF.求证:DE=DF.15.已知:如图,在等边△ABC中,D是AC的中点,E是BC延长线上一点,CE=CD,DM⊥BC,垂足为M.求证:BM=ME.16.如图,在△ABC中,D为BC上一点,DE⊥AB,DF⊥AC,垂足分别为E,F,DE平分∠ADB,AF=FC,连接AD.M DAF DAE求证:BD=CD.AFE17.若4x2-axy+16y2是完全平方式,则a=_________.18.在直线l上任取一点A,截取AB=8cm,点C为AB中点,截取CD=5cm,则线段AD的长为______________.19.若等腰三角形的一个角比另一个角大30°,则此等腰三角形顶角的度数为______________.20.已知一等腰三角形的三边分别是5x 3,3x+3,27,则x=__________.21.等腰三角形一腰的垂直平分线与另一腰所在的直线夹角为30°,则顶角的度数为__________.22.已知等腰三角形的周长为24cm,两边的差为3cm,则底边长为__________.23.在已知直线l上找一点C,和直线外的A,B两点组成一个等腰三角形.一共可以画出几个符合条件的等腰三角形?请你在直线l上找出所有符合条件的点C.l【参考答案】1.证明略(提示:延长AD到H,使DH=AD,连接BH,证明△BHD≌△CAD,导出AB=AC,再证明△BED≌△CFD)2.证明略(提示:连接BD,利用“三线合一”证明∠DBE=∠E=30°)3.证明略(提示:证明AD=DC,AD=BD)4.±165. 1cm 或9cm6. 80°或40°7. 6或88. 60°或120°9. 10cm 或6cm 10. 点C 有5个,作图略等腰三角形(讲义)一、知识点睛1. ______________的三角形叫做等腰三角形.2. 等腰三角形是_________图形.等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“__________”),它们所在的直线都是等腰三角形的_________.3. 等腰三角形的两个底角________,简称______________.如果一个三角形有两个角相等,那么它们所对的边也______,简称_________________.4. 三边都______的三角形是等边三角形.等边三角形三边都相等,三个内角都是________.二、精讲精练1. 在下面的等腰三角形中,∠A 是顶角,请分别将它们底角的度数标注在相应的图上.2. 如图,在△ACD 中,AD =BD =BC ,若∠C =25°,则∠ADB =____.ABC DABDC第2题图第3题图3. 如图,在等腰△ABC 中,AB =AC ,D 为边BC 上一点,CD =AC ,AD =BD ,则∠BAC =_________.4. 如图,在Rt △ABC 中,∠B =90°,DE 垂60°108°BA C ABC A BCA直平分AC ,交AC 于D ,交BC 于E ,连接AE ,若 ∠BAE :∠BAC =1:5,则∠C =_____.5. 如图,在△ABC 中,BE 平分∠ABC ,DE ∥BC . (1)若∠ADE =80°,则∠DEB =________.(2)若F 为BE 中点,则DF 与BE 的位置关系是________.C DAB EF6. 已知:如图,在等边△ABC 中,D 是AC 的中点,E 是BC 延长线上一点,且CE =CD ,DM ⊥BC 于M . 求证:M 是BE 的中点.7. 已知:如图,在△ABC 中,AB =AC ,D 为AC 上任意一点,延长BA 到E ,使AE =AD ,连接DE .求证:DE ⊥BC .E DCAECMAD B8. 已知:如图,△ABC 是等边三角形,D 是BC 的中点,DF ⊥AC 于F ,延长DF 到E ,使EF =DF ,连接AE .求∠E 的度数.FE DCBA9. 若等腰三角形的周长为13cm ,其中一边长为3cm ,则该等腰三角形的底边长为_______________.10. 若等腰三角形的周长是25cm ,一腰上的中线将周长分为3:2的两部分,则此三角形的底边长为_____________.11. 若等腰三角形的一个内角为40°,则此等腰三角形的顶角为______________.12. 若等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,则此等腰三角形的顶角为______________.13. 已知:如图,线段AB 的端点A 在直线l 上(AB 与l 不垂直),请在直线l上另找一点C ,使△ABC 是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.14.已知:如图,线段AB的端点A在直线l上,AB与l的夹角为60°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.三、回顾与思考_____________________________________________________________________ _____________________________________________________________________ ______________________________【参考答案】一、知识点睛1.有两边相等的三角形叫做等腰三角形.2.等腰三角形是轴对称图形.等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴.3.等腰三角形的两个底角相等,简称等边对等角.如果一个三角形有两个角相等,那么它们所对的边也相等,简称等角对等边.4.三边都相等的三角形是等边三角形.等边三角形三边都相等,三个内角都是60°.1.60°,60°;45°,45°;36°,36°2.80°3.108°4.40°5.(1)40°;(2)DF⊥BE6.提示:连接BD,由三线合一得∠DBC=∠E=30°,从而得到BD=ED,△BDE是等腰三角形,利用三线合一可以知道底边BE上的高DM也是BE边上的中线,所以M是BE的中点.7.提示:延长ED与BC交于点F,根据已知条件可以知道△AED和△ABC是等腰三角形,设∠E=α,可以表示出∠CDF=α,∠BAC=2α,∠C=90 α,得到∠EFC=90°,所以DE⊥BC.8.提示:连接AD,利用垂直平分线定理得AD=AE,从而∠E=∠ADE.9.3cm10.5cm或353cm11.40°或100°12.50°或130°13.这样的点有4个14.这样的点有2个等腰三角形(随堂测试)1.如图,在△ABC中,D为AC边上一点,且AD=BD=BC.若∠A=40°,则∠DBC=______.DC2. 等腰三角形的周长为28cm ,其中一边长为10cm ,则该等腰三角形的底边长为_______________.3. 已知:如图,在△ABC 中,E 为BC 边上一点,连接AE ,D 为AE 的中点,连接BD ,∠BAD =∠EAC +∠C .求证:AD ⊥BD .E DCB A【参考答案】1. 20°2. 10cm 或8cm3. 提示:利用外角可以得到∠AEB =∠BAD ,根据等角对等边,得到BA =BE ,因为D 是AE 的中点,利用等腰三角形三线合一,可以得到AD ⊥BD .等腰三角形(作业)1. 如图,在△ABC 中,AB =AC ,BD 平分∠ABC ,交AC 于点D ,点E 在BC 边上,且BD =BE .若∠A =84°,则∠DEC =______.E DC BA2. 已知:如图,在△ABC 中,AB =AC ,D 为AB 边上一点,若CD =AD =BC ,则∠A =_________.DCB AN MEA第2题图第3题图3. 如图,在△ABC 中,∠ABC 的平分线和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N .若BM +CN =9,则线段MN 的长为( ) A .6B .7C .8D .94. 如图,在△ABC 中,AB =AC ,点D 在△ABC 外,CD ⊥AD 于D ,12CD BC.求证:∠ACD =∠B .DB A5. 已知:如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,点P 在AD 上.求证:PB=PC .DBAP6. 已知:如图,B ,D ,E ,C 在同一直线上,AB =AC ,AD =AE . 求证:BD =CE .AB CD E7. 等腰三角形两边长分别为4和8,则这个等腰三角形的周长为________. 8. 等腰三角形的一个角比另一个角大30°,则这个三角形的顶角的度数为_____________.9. 已知:如图,线段AB 的端点A 在直线l 上,AB 与l 的夹角是30°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.1.78°2.36°3. D4.提示:过点A作AE⊥BC于E,可证Rt△ADC≌Rt△AEB(HL),从而得到∠ACD=∠B.5.提示:利用等腰三角形三线合一的性质,得AD垂直平分BC,从而得到PB=PC.6.提示:根据等边对等角可以得到∠B=∠C,∠ADE=∠AED,进而可以得到∠BAD=∠CAE,从而证明△ABD≌△ACE(ASA),根据全等三角形对应边相等,可以得到BD=CE.7.208.80°或40°9.共有4个,图略.。
三角形知识点复习总结

三角形复习1.三角形的定义:由不在同一亶线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点•组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内 角;相邻两边的公共端点是三角形的顶点,三角形ABC 用符号表示为△ ABC,三角形ABC 的边AB 可用边AB 所对的 角C 的小写字母C 表示,AC 叮用b 表示,BC 町用a 表示.注意:(1)三条线段要不在同一直线上,且首尾顺次相接:(2) 三角形是一个封闭的图形:(3) A ABC 是三角形ABC 的符号标记,单独的△没有意义•2.三角形的分类:(1)按边分类: (2)按角分类:I 等边三角形不等边三勿形直角三欽形锐角三角形钝角三角形3. 三角形的主要线段的定义:(1)三角形的中线 三角形中,连结一个顶点和它对边中点的线段. 表示法J 是厶ABC 的BC 匕的中线.-DC 巧 BC.注意:①三角形的中线是线段:② 三角形三条中线全在三角形的内部: ③ 三角形三条中线交于三角形内部一点: ④ 中线把三角形分成两个而积相等的三角形.<2)三角形的角平分线 三角形一个内角的平分线匂它的对边相交,这个角顶点与交点之间的线段 表示法J 是AABC 的ZBAC 的平分线.等腰三角形底边和腰不相等的等腰三角形三角形AD C注意:①三角形的角平分线是线段:② 三角形三条角平分线全在三角形的内部; ③ 三角形三条角平分线交于三角形内部一点: ④ 用角器画三角形的角平分线.(3) 三角形的高 从三角形的一个顶点向它的对边所在的宜线作垂线,顶点和垂足之间的线段.表示法J 是A ABC 的BC 上的高线. 丄BC 于D.3. Z ADB=Z ADC=90\注意:①三角形的高是线段:② 锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外; ③ 三角形三条高所在直线交于一点•4. 三角形的主要线段的表示法: 三角形的角平分线的表示法:如图1.根据具体情况使用以下任意一种方式表示:① AD 是ABC 的角平分线: ② AD 平分BAC,交BC 于D :③ 如果人D 是ABC 的角平分线,那么DAU 丄BAC.2⑵三角形的中线表示法:根据具体情况使用以下任意一种方式表示: 人BC 的中线:人BC 中BC 边上的中线:(3) 三角线的高的表不法J如图2,根据具体情况,使用以下任意一种方式表示: ① AM 是A8C 的高:② AM 是A8C 中BC 边上的高:③ -◎ 如果AM 是 ABC 中BC 边上高,那么AM fiC,垂足是E; ⑤如果AM 是 人BC 中BC 边上的高,那么 &M8=人MU90 .5. 在画三角形的三条角平分线,三条中线,三条高时应注意:(1) 如图3,三角形三条角平分线交于一点,交点都在三角形内部. (2) 如图4.三角形的三条中线交点一点,交点都在三角形内部.如图567,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部, 钝角三角形的三条高的交点在三角形的外部•直角三角形的三条高的交点在直角三角如图1, ①Af 是③如果处是赵的中纯那么严 AD C CB图156•三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边. 注意:(1)三边关系的依据是:两点之间线段是短;(2)用成三角形的条件是任意两边之和大于第三边.7.三角形的角与角之间的关系: (:L)三角形三个内角的和等于180 ;(2) 三角形的一个外角等于和它不相邻的两个内角的和: (3) 三角形的一个外角大于任何一个和它不相邻的内角. (4)直角三角形的两个锐角互余.三角形的内角和;4^理宦理:三角形的内角和等于180。
七年级下册数学第四章三角形课时作业

2.如图,点 , , , 在同一条直线上, , ,AD=BF.
〔1〕试说明DE∥BC;
〔2〕假设AF=13,BD=5,求AB的长.
3.小明在做数学作业时,遇到这样一个问题:如图,AB=CD,BC=AD,∠A与∠C相等吗?请说明理由.小明用量角器测了一下,发现∠A=∠C,但是不能说明理由,你能帮助他吗?
2.如图, 中, 是 的重心,连接 并延长,交 于点 .假设 ,则
A.3B.3.5C.4D.4.5
3.如图, , , 是 的三条中线,以下结论正确的是
A. B. C. D.
4.如图,在 中,∠A=50°,∠C=72°,BD是 的一条角平分线,则∠ABD的度数为〔〕
A. B. C. D.
5.如图, 是 的中线, 的周长为 , 比 长 ,则 的周长为.
〔3〕如果右图中 和 为任意角,其他条件不变,试写出 与 、 之间数量关系.〔直接写出结论〕
认识三角形第4课时
一、根底性作业〔必做题〕
1.如图,在 中, 边上的高线是
A.线段 B.线段 C.线段 D.线段
2.以下说法错误的选项是
A.三角形的高、中线、角平分线都是线段
B.三角形的三条中线一定交于同一点
2.如图, 中, ⊥BC,角平分线 交 于点 ,假设 , , 则 的度数为.
3.:如左图,线段 、 相交于点 ,连接 、 ,如右图,在左图的条件下, 和 的平分线 和 相交于点 ,并且与 、 分别相交于 、 .试解答以下问题;
〔2〕在右图中,假设 , ,试求 的度数;〔写出解答过程〕
3.观察图形规律:
1②③
〔1〕图①中一共有个三角形,图②中共有个三角形,图③中共有个三角形.
四年级数学下册《三角形的分类》

根据提示,引发思考
(1)你准备按什么标准来进行分类?(用上你手中的测量工具) (2)可以把它们分成几类? (3)每类三角形都有什么特点?
★分完后,请将同一类的三角形摆在一起。
请小组长分好工,一起合作完成这个活动吧 !
例4: 根据三角形各个角的大小,对三角形进行分类。
3个锐角 1个直角,2个锐角
锐角三角形 直角三角形 钝角三角形
第二关:我当小法官。
(1)一个三角形里有两个锐角,必定是 (× ) 锐角三角形。 (2)一个三角形里至少有两个锐角。(√ ) (× (3)所有的等腰三角形都是锐角三角形。 (×) (4)等腰三角形都是等边三角形。
)
(5)所有的等边三角形都是等腰三角形,而 且都是锐角三角形。( √ ) (6)一个三角形最大的角是锐角,它一定是 锐角三角形。(√ )
么角,这个三角形就是什么 一个三角形中最大的角是钝角,
三角形 这个三角形就是钝角三角形
一个三角形中最大的角是锐角,
这个三角形就是锐角三角形
例4: 根据三角形各条边的长短, 对三角形进行分类。
根据提示,引发思考
(1)你准备按什么标准来进行分类?(用上你手中的测量工具) (2)可以把它们分成几类? (3)每类三角形都有什么特点?
思考题3:下面图形中各有多少个 三角形?有什么规律?
三角形中 线段的条数 三角形的 个数
0 1
1
2
3 10
3
6
课后作业:剪一剪
• 1、练习十四8、13题
• 2、用一张长方形纸或圆形纸剪出一个 自己喜欢的三角形。
小结:
请谈谈你的收获吧。
等边三角形
直角三角形
按边分
按角分
三
角 形 的 分 类
苏教版小学数学四年级下册《三角形、平行四边形和梯形》作业设计
小学数学单元作业设计一、单元信息二、单元分析本单元教学内容是小学阶段图形与几何部分的重要基础知识之一。
认识三角形、平行四边形和梯形的基本特征,积累平面图形的学习经验,培养观察、操作、比较、分析、抽象、概括、归纳、类比等能力,发展空间观念,为后续学习和探索多边形的面积计算打下基础。
本单元的教学重点:认识三角形的基本特征,知道三角形中任意两边之和大于第三边,三角形的内角和等于180°,了解三角形的分类方法,掌握锐角三角形、直角三角形、钝角三角形,等腰三角形、等边三角形的特征。
认识平行四边形和梯形的基本特征,能正确测量或画出三角形、平行四边形和梯形底边上的高。
教学难点:探索和发现三角形任意两边之和大于第三边,三角形内角和等于180°。
正确画出三角形、平行四边形和梯形的高。
三、单元学习与作业目标认识并掌握三角形、平行四边形、梯形的基本特性,认识三角形、平行四边形、梯形的底和高,能测量或画出三角形、平行四边形、梯形的高。
理解三角形的三边关系,懂得三角形的内角和是180°。
认识直角三角形、锐角三角形和钝角三角形,认识等腰三角形和等边三角形,能判断一种三角形是什么三角形。
认识等腰梯形。
能运用所学解释某些生活现象、解决相关的实际问题。
经历探索三角形、平行四边形、梯形基本特性的过程,培养观测、操作、分析、概括、推理等能力,积累认识图形的经验,发展空间观念。
感受数学问题的探索性和数学结论确定性,体验合作交流的乐趣,增强学好数学的信心。
四、单元作业设计思路分层设计作业。
每课时均设计“基础性作业”(面向全体,体现课标,题量2-5大题,要求学生必做)和“发展性作业”(体现个性化,探究性、实践性,题量为2-6大题,要求学生有选择的完成)。
具体设计体系如下:五、课时作业认识三角形基础性作业三角形有()个角,()条边。
三角形最多有()个锐角,最多有()个直角,最多有()个钝角。
一个三角形中最少有()个锐角,最多有()个钝角。
小学奥数模块教程三角形
一、 三角形的定义:(一)、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。
(二)、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。
三角形只有3条高。
重点:三角形高的画法。
底二、 三角形的特性:(一)、物理特性:稳定性。
如:自行车的三角架,电线杆上的三角架。
(二)、边的特性:任意两边之和大于第三边。
为了表达方便,用字母A 、B 、C 分别表示三角形的三个顶点,三角形可表示成三角形ABC 。
A+B ﹥C三、 三角形的分类:(一)、按照角大小来分:锐角三角形,直角三角形,钝角三角形。
(二)、按照边长短来分:等边三角形(正三角形)、等腰三角形、三条边都不相等的三角形 ※三角形的内角和等于180°;四边形的内角和是360°;五边形的内角和是540°四、 图形的拼组:(一)、用任意2个完全一样的三角形一定能拼成一个平行四边形。
(二)、用2个相同的直角三角形可以拼成一个长方形、一个平行四边形、一个大等腰三角形。
(三)、用2个相同的等腰直角的三角形可以拼成一个正方形、一个平行四边形、一个大的等腰的直角的三角形。
五、 密铺:可以进行密铺的图形有长方形、正方形、三角形以及正六边形等。
顶点 边高知识框架三角形A BC哪种方法更牢固,为什么?【例 1】 是三角形的打“√”,不是三角形的画“○”。
( ) ( ) ( ) ( ) ( )【巩固】 一个三角形有( )个顶点,( )个角和( )条边。
【例 2】 一个三角形有( )条高。
A 、1B 、3C 、无数【巩固】 直角三角形、钝角三角形只有一条高。
( )【巩固】 锐角三角形都有三条高。
( )【例 3】 根据下面每个图形标出的底,画出图形的高。
【例 4】底底底例题精讲【巩固】自行车的三角架运用了三角形的()的特征。
A、稳定性B、有三条边的特征C、易变形【例 5】在能拼成三角形的小棒下面画“☆”。
《三角形的分类》(导学案)四年级下册数学北师大版
四年级数学下册《三角形分类》导学单学习目标:1、经历三角形分类的探索活动,认识直角三角形、锐角三角形、钝角三角形、等腰三角形、等边三角形的特征。
2、通过分类活动,培养观察、比较、操作能力,发展空间观念。
3、发展合作交流的意识,提高倾听能力。
重难点:重点:按角、边给三角形分类。
难点:认识直角三角形、锐角三角形、钝角三角形、等腰三角形、等边三角形的特征。
教具:课件、方格纸、各种形状的三角形学具:方格纸、彩纸、量角器、小剪刀等学生学案教师导案我的学习过程:一、复习旧知1、你知道下面三角形中的各个角分别是什么角吗?2、它们都是三角形,但它们都是同一类三角形吗?二、自主探究、合作交流(一)用学具分一分。
一、复习旧知、引发思考1、师:你知道下面三角形中的各个角分别是什么角吗?(出示三个不同的三角形,师指任意角,生说角的名称)2、它们都是三角形,但它们都是同一类三角形吗?生思考。
3、今天,我们就来给三角形分类(板书课题)。
二、自主探究、合作交流1、认一认,笑笑是这样分的,你知道笑笑这样分的道理吗?得出结论:三角形按()分,可以分成()2、淘气发现下面两个三角形比较特殊,说一说,认一认。
得出结论:三角形按()分,可以分成()三、尝试练习1、独立完成书上23页第1、2、3题。
2、合作完成书上第4题:剪一剪。
(1)独立完成把一张长方形纸片沿图中虚线剪成两个三角形。
剪出的两个三角形是()三角形。
(2)两人合作,在一张长方形纸上剪出一个等腰三角形。
(3)将一张正方形纸沿图中虚线剪成两个三角形。
剪成的两个三角形是()三角形。
1、学生分小组讨论如何给三角形分类。
(1)每组一个学具袋。
要求:先独立思考,再组内交流想法。
(2)合作探究,师巡视。
2、全班交流分类标准。
学生汇报自己的分类标准并动手分一分,演示给全班同学看。
(1)按角分学生汇报后,师演示课件“按角分”,让学生把附页3中的图1所有三角形按角分一分,后集体交流。
(2)按边分师:如果按边的特征进行分类,又应如何分类?让学生把附页3中的图1所有三角形按边分一分,后集体交流。
初三中考一轮复习(15)解直角三角形题型分类含答案(全面非常好)
教学过程解直角三角形【基础知识回顾】一、锐角三角函数定义:在Rtz\ABCt\ /C=9d, /A、ZEk /C的对边分别为a、b、c,则/A的正弦可表示为:sinA= , /A的余弦可表示为cosA= /A的正切: tanA= ,它们统称为/ A的锐角三角函数二、特殊角的三角函数值:三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在图上标上仰角和俯角i视线水平线⑵坡度坡角:如图:斜坡AB的垂直度h和水平宽度l的比叫做坡度,用i表示, 即1= 坡面与水平面得夹角为用字母%表示,则i=tan %=上。
11 T⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA^Z K OB 表木OC 表木O味示(也可称东南方向)北_ A南例2 在Rtz\ABOt\ /C=90° , AB=2BC现给出下歹U结论:①sinA= § ;②cosB=■1 ;③tanA=殍;④tanB=#,其中正确的结论是(只需填上正确结论的序号)解:如图所示:故答案为:②③④.对应训练2.计算6tan45 -2cos60 °的结果是()A. 4 3B. 4C. 5 3D. 52. D考点三:化斜三角形为直角三角形例3 在△ABC^, AB=AC=5 sin /ABC=0.8,贝U BC=故答案为:6.对应训练3.如图,四边形ABCD勺对角线AG BD相交于点Q且B阡分AC若BD=8 AC=6/BOC=120,则四边形ABCD勺面积为 .(结果保留根号)3.12 .3考点四:解直角三角形的应用4.如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AR现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,/PAB=38.5 , / PBA=26.5.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A, B为参照点,结果精确到0.1米)(参考数据:sin38.5 =0.62 , cos38.5 =0.78 , tan38.5 =0.80 , sin26.5 =0.45, cos26.5 =0.89 , tan26.5 =0.50)4.解:设PD=x^,・.PDL AB,・•・/ADPN BDP=90 ,在Rt^PAD中,tan / PAD=^ ,AD・•・ AD=-—= 5x, tan38.5o0.8 4在RtWBD中,tan/PBD-DB又.78=80.0 米,55x+2x=80.0 ,4解得:x=24.6,即P[> 24.6 米,・•. DB=2x=492答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米.【聚焦中考】1.6cos30 °的值是1,但22.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:收,则AB的长为( )A.12B.4石米C. 5痣米D. 673米B2. A3.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处处,望见渔船D在南偏东60方向,若海监船的速度为50海里/小时,则A, B之间的距离为(取4=1.7,结果精确到0.1海里).5. 67.56.如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A、B上的观测点进行观测,从A岛测得渔船在南偏东37方向C处,B岛在南偏东66°方向,从B岛测得渔船在正西方向,已知两个小岛间的距离是72海里, A岛上维修船的速度为每小时20海里,B岛上维修船的速度为每小时28.8海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船?(参考数据:cos37 =0.8, sin37 =0.6, sin66 =0.9, cos66 =0.4)6.解:如图,作ADLBC的延长线于点D.北D C B在Rt^ADB中,AD=ABcos/BAD=72< cos66 =72X 0.4=28.8 (海里),BD=ABsin / BAD=72 sin66 =72X 0.9=64.8 (海里).在Rt/XADC^, AC=—AD— ^88- 空=36(海里),cos DAC cos37o0.8CD=ACsin / CAD=36 sin37 =36X 0.6=21.6 (海里).BC=BD-CD=64.8-21.6=43.2 (海里).A岛上维修船需要时间t A=^ ^=1.8 (小时).20 20B岛上维修船需要时间t B=坨432=1.5 (小时).28.8 28.8- t A> t B,.•・调度中心应该派遣B岛上的维修船.10.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CDW l垂直,测得CD的长等于21米,在l上点D的同侧取点A B,使/ CAD=30 , / CBD=60 .(1)求AB的长(精确到0.1米,参考数据:石=1.73, 72=1.41 );(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒, 这辆校车是否超速?说明理由.S DC10.解:(1)由题意得,在Rtz\ADC^, AD= CD”马=21 阴=36.33 (米),tan30o .33在Rt^BDC^ , BD=_CD V=Z1 =75/3 = 12.11 (米),tan60 3贝U AB=AD-BD=36.33-12.11=24.22= 24.2 (米)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的分类练习作业
一、下面的说法,对的打“√”,错的打“×”。
1.有一个是锐角的三角形是锐角三角形。
()
2.直角三角形只有两个锐角。
()
3.一个三角形不是锐角三角形,就是钝角三角形。
()
4.所有等边三角形都是等腰三角形,而且都是锐角三角形。
()
5.在一个三角形中,不可能有两个或两个以上的直角。
()
6.在同一个三角形中,只能有一个角是钝角。
()
二、填空题。
1.三角形按角分类可分成()三角形、()三角形和()三角形。
2.一个三角形中最大的角是锐角,这个三角形是()三角形。
3.你能给三角形分类吗?。