小波分析在图像降噪中的应用
小波变换在图像处理中的应用

小波变换在图像处理中的应用导言随着数字图像处理技术的飞速发展,小波变换成为处理图像的重要技术之一。
小波变换具有时域和频域分析的优点,能有效处理图像中的高频细节和低频全局特征。
本文将介绍小波变换在图像处理中的应用。
第一章小波变换的基本概念小波变换是一种局部时频分析工具,它能够分解信号的局部时频特性并进行分析。
小波变换的基本步骤包括:选取一组小波基函数,将原始信号分解成一组小波基函数的线性组合,得到小波函数的系数。
小波基函数是一组有限长、局部化的函数。
小波基函数具有多尺度、多分辨率、正交性的特点。
常用的小波基函数有哈尔(Haar)小波、Daubechies小波、Symlets小波等。
小波分解包括一个低频部分和一组高频部分。
低频部分是原始信号的全局特性,高频部分是信号的细节信息。
第二章小波变换在图像压缩中的应用图像压缩是数字图像处理中的重要任务之一。
小波变换在图像压缩中有广泛的应用。
它能够快速地对图像进行分解,压缩和重构。
小波变换的压缩过程包括选取一组小波基函数,将原始图像分解成一组小波基函数的线性组合,并将系数量化,得到压缩后的系数。
小波变换的压缩比较容易理解和实现,并且具有良好的压缩效果。
小波变换的压缩方法包括基于熵编码的方法和基于补偿性编码的方法。
基于熵编码的方法能够获得更好的压缩效果,但计算量比较大。
基于补偿性编码的方法虽然计算量小,但压缩效果相对较差。
第三章小波变换在图像去噪中的应用图像去噪是数字图像处理中的重要任务之一。
小波变换在图像去噪中有广泛的应用。
小波变换能够分解图像成低频和高频成分,低频成分是图像中的全局特征,高频成分是图像中的细节特征。
在去除噪声的过程中,低频成分基本不受影响,而高频成分中通常会存在噪声。
因此,将高频成分进行滤波处理,就能够去除噪声。
小波变换的滤波方法包括基于硬阈值和基于软阈值的方法。
基于硬阈值的方法是根据阈值进行二值化处理,能够较好地去除噪声,但易造成图像的失真。
小波变换在数字图像处理中的应用

小波变换在数字图像处理中的应用数字图像处理是一门跨学科的科学,它涉及到数学、计算机科学、物理学等多个领域。
其中,小波变换是数字图像处理中一种非常重要的技术,它在图像去噪、边缘检测、压缩编码等方面都有广泛的应用。
一、小波变换的基本概念小波变换(Wavelet Transform)是一种信号处理技术,它是通过对信号进行分解和重构来描述信号的局部特征。
与傅里叶变换不同,小波变换可以对信号的高频部分和低频部分进行细致的分析。
小波变换的基本思想是将信号分解成不同频率的小波基函数,并利用这些基函数来描述信号的局部特征。
这里的小波基函数是满足正交归一性和母小波的语法结构,它可以用不同的参数来描述不同的频率和尺度。
常用的小波函数包括Haar小波、Daubechies小波、Symlets小波等。
二、1. 图像去噪图像噪声是数字图像处理中普遍存在的问题,它会影响图像的视觉效果和后续处理结果。
小波变换可以对图像进行频域分析,在不同频率和尺度上对信号进行分解和重构,从而去除图像中的噪声。
例如,可以采用离散小波变换对图像进行处理,利用小波基函数的多尺度特性来分解图像,然后通过阈值去噪的方法来去除噪声。
在这个过程中,可以根据具体的应用需求选择不同的小波基函数和去噪方法。
2. 图像边缘检测图像中的边缘是图像中非常重要的信息,它可以用来描述图像中不同物体的边界。
小波边缘检测可以通过对图像的小波变换进行处理,提取出不同尺度的边缘信息,从而实现图像的边缘检测。
例如,可以利用Gabor小波函数来进行图像边缘检测,将图像分解为不同尺度和方向上的小波系数,然后通过计算其幅度和相位来提取边缘信息。
这个过程可以实现图像的边缘检测,并具有良好的鲁棒性和灵敏度。
3. 图像压缩编码数字图像的压缩编码是数字图像处理中广泛应用的技术,它可以减少存储和传输的开销,并提高图像的传输效率。
小波变换也可以应用于图像的压缩编码中,通过小波分解和量化来实现图像压缩。
论述小波分析及其在信号处理中的应用

论述小波分析及其在信号处理中的应用小波分析是一种数学工具,用于在时域和频域中对信号进行分析。
它可以将信号分解成具有不同频率和时间尺度的小波函数,从而更好地捕捉信号的局部特征和变化。
小波分析在信号处理中有广泛的应用,以下是一些主要的应用领域:1. 信号压缩:小波分析可以提供一种有效的信号压缩方法。
通过对信号进行小波变换并根据重要性剪切或量化小波系数,可以实现高效的信号压缩,同时保留主要的信号特征。
2. 图像处理:小波分析在图像处理中有重要的应用。
通过对图像进行小波变换,可以将其分解成具有不同频率和时间尺度的小波系数,从而实现图像的去噪、边缘检测、纹理分析等。
3. 语音和音频处理:小波分析可以用于语音和音频信号的分析和处理。
通过小波变换,可以提取音频信号的频谱特征,实现音频的降噪、特征提取、语音识别等。
4. 生物医学信号处理:小波分析在生物医学信号处理中有广泛的应用。
例如,通过小波分析可以对脑电图(EEG)和心电图(ECG)等生物医学信号进行时频分析,以实现对心脑信号特征的提取和异常检测。
5. 数据压缩:小波分析在数据压缩中也有应用。
通过对数据进行小波变换,并且根据小波系数的重要性进行压缩,可以实现对大量数据的高效存储和传输。
6. 模式识别:小波分析可以用于模式识别和分类问题。
通过对数据进行小波变换,可以提取重要的特征并进行模式匹配和分类,用于图像识别、人脸识别等应用。
综上所述,小波分析在信号处理中有广泛的应用,可以用于信号压缩、图像处理、语音和音频处理、生物医学信号处理、数据压缩和模式识别等领域。
它提供了一种强大的工具,用于捕捉信号的局部特征和变化,从而推动了许多相关学科的发展。
小波变换在图像增强中的应用技巧

小波变换在图像增强中的应用技巧图像增强是数字图像处理中的一个重要领域,它旨在改善图像的视觉效果,使得图像更加清晰、鲜明和易于理解。
小波变换作为一种有效的信号处理工具,已经被广泛应用于图像增强中。
本文将介绍小波变换在图像增强中的应用技巧,包括去噪、边缘增强和细节增强等方面。
一、小波变换在图像去噪中的应用图像中常常存在噪声,这些噪声会降低图像的质量和清晰度。
小波变换可以通过分析图像的频域特征,将噪声和信号分离开来,从而实现图像的去噪。
在图像去噪中,离散小波变换(DWT)是一种常用的方法。
DWT将图像分解为不同尺度的频域子带,其中低频子带包含了图像的主要信息,高频子带则包含了噪声。
通过对高频子带进行阈值处理,可以将噪声去除,然后再通过逆变换将图像恢复到空域中。
这种方法能够有效地去除图像中的噪声,同时保留图像的细节信息。
二、小波变换在图像边缘增强中的应用图像的边缘是图像中重要的特征之一,它能够提供图像中物体的形状和轮廓信息。
小波变换可以通过分析图像的局部特征,增强图像的边缘。
在图像边缘增强中,小波变换可以通过高频子带的信息来提取图像中的边缘。
通过对高频子带进行增强处理,可以使得边缘更加清晰和明显。
同时,小波变换还可以对边缘进行检测和定位,从而实现更精确的边缘增强。
三、小波变换在图像细节增强中的应用图像的细节信息对于图像的质量和清晰度至关重要。
小波变换可以通过分析图像的局部特征,增强图像的细节。
在图像细节增强中,小波变换可以通过低频子带的信息来提取图像中的细节。
通过对低频子带进行增强处理,可以使得图像的细节更加清晰和丰富。
同时,小波变换还可以对细节进行增强和增强,从而实现更好的细节增强效果。
总结小波变换作为一种强大的信号处理工具,在图像增强中发挥着重要的作用。
通过小波变换,可以实现图像的去噪、边缘增强和细节增强等效果。
在实际应用中,还可以根据具体的需求和图像特点,选择不同的小波基函数和变换参数,以达到更好的图像增强效果。
小波分析的应用领域及实际案例探究

小波分析的应用领域及实际案例探究引言:随着科学技术的发展,人们对于信号处理和数据分析的需求越来越高。
小波分析作为一种新兴的信号处理方法,因其在时频域上的优势而受到广泛关注。
本文将探讨小波分析的应用领域,并通过实际案例来展示其在各个领域的应用。
一、金融领域中的小波分析金融市场波动性大,传统的统计方法往往难以捕捉到市场的非线性特征。
小波分析通过对金融时间序列进行分解,能够将长期趋势和短期波动分离出来,从而更好地理解市场的运行规律。
例如,在股票市场中,通过小波分析可以确定股票价格的趋势和周期,帮助投资者做出更准确的决策。
同时,小波分析还可以用于金融风险管理,通过对金融市场的波动进行预测,减少风险。
二、医学领域中的小波分析医学信号通常具有非平稳性和非线性特征,如心电图、脑电图等。
小波分析在医学领域的应用非常广泛。
例如,在心电图分析中,小波分析可以用于检测心率变异性,帮助医生判断心脏病患者的病情。
此外,小波分析还可以用于脑电图的频谱分析,帮助医生诊断癫痫等脑部疾病。
三、图像处理中的小波分析图像处理是小波分析的另一个重要应用领域。
小波变换可以将图像分解为不同尺度的频带,从而提取图像的局部特征。
例如,在图像压缩中,小波变换可以通过去除高频细节信息来减少图像的数据量,从而实现图像的压缩。
此外,小波分析还可以用于图像去噪、边缘检测等图像处理任务。
四、语音处理中的小波分析语音信号通常具有时间-频率的非平稳特性,传统的傅里叶变换无法很好地处理这种信号。
小波分析在语音处理中有着广泛的应用。
例如,在语音识别中,小波分析可以提取语音信号的频谱特征,用于语音信号的特征匹配。
此外,小波分析还可以用于语音合成、语音增强等任务。
五、实际案例探究为了更好地理解小波分析在实际中的应用,我们以图像处理为例进行探究。
在图像处理中,小波分析被广泛应用于图像去噪任务。
通过对图像进行小波变换,可以将图像分解为不同频带的系数。
根据小波系数的分布情况,可以选择性地去除高频细节信息,从而实现图像的去噪。
小波变换在图像处理中的应用

小波变换在图像处理中的应用小波变换是一种非常有用的数学工具,可以将信号从时间域转换到频率域,从而能够更方便地对信号进行处理和分析。
在图像处理中,小波变换同样具有非常重要的应用。
本文将介绍小波变换在图像处理中的一些应用。
一、小波变换的基本原理小波变换是一种多尺度分析方法,可以将一个信号分解成多个尺度的成分。
因此,它比傅里叶变换更加灵活,可以适应不同频率的信号。
小波变换的基本原理是从父小波函数出发,通过不同的平移和缩放得到一组不同的子小波函数。
这些子小波函数可以用来分解和重构原始信号。
二、小波变换在图像压缩中的应用图像压缩是图像处理中的一个重要应用领域。
小波变换可以被用来进行图像压缩。
通过将图像分解成多个频率子带,可以将高频子带进行压缩,从而对图像进行有效的压缩。
同时,小波变换还可以被用来进行图像的无损压缩,对于一些对图像质量和细节要求较高的应用领域,如医学影像、遥感图像等,无损压缩是十分重要的。
三、小波变换在图像去噪中的应用在图像处理中,图像噪声是常见的问题之一。
可以使用小波变换进行图像去噪,通过对图像进行小波分解,可以将图像分解成多个频率子带,从而可以选择合适的子带进行滤波。
在小波域中,由于高频子带中噪声的能量相对较高,因此可以通过滤掉高频子带来对图像进行去噪,从而提高图像的质量和清晰度。
四、小波变换在图像增强中的应用图像增强是图像处理中另一个非常重要的应用领域。
在小波域中,可以对图像进行分解和重构,通过调整不同子带的系数,可以对图像进行增强。
例如,可以通过增强高频子带来增强图像的细节和纹理等特征。
五、小波变换在图像分割中的应用图像分割是对图像进行处理的过程,将图像分割成不同的对象或区域。
在小波域中,小波分解可以将图像分解成不同的频率子带和空间维度上的子带。
可以根据不同子带的特征进行分割,例如,高频子带对应细节和边缘信息,可以使用高频子带进行边缘检测和分割,从而得到更准确更清晰的分割结果。
总结小波变换是图像处理中一个非常有用的工具,可以被用来进行图像压缩、去噪、增强和分割等应用。
基于小波分析的图像去噪算法研究
基于小波分析的图像去噪算法研究一、引言图像处理是数字图像处理领域的重要分支,对于图像的去噪问题一直是研究的热点和难点。
在实际的应用中,图像去噪可以提升图像的清晰度和质量,使得图像更容易被有效使用。
将小波分析应用于图像去噪问题中,可以有效地去除噪声,提高图像质量。
本文将对基于小波分析的图像去噪算法进行研究和分析。
二、小波分析基础小波分析是一种新的信号分析方法,与传统的傅里叶分析方法相比,小波分析能更好地表示信号的局部特征。
小波分析中,使用小波基函数对信号进行多分辨率分解。
小波基函数具有有限时间和无限频率的性质,因此在图像处理领域中应用十分广泛。
三、基于小波分析的图像去噪算法小波变换将图像分解成不同的频带。
高频分量对应的是图像中的细节信息,而低频分量则表示图像大部分的基础结构。
根据这一性质,基于小波分析的图像去噪算法通常分为两个主要步骤:小波变换和阈值处理。
1.小波变换小波变换将图像分解成不同的频带,每个频带对应不同的尺度。
在小波分析中,离散小波变换(DWT)是最常用的方法。
DWT可以将图像分解成多个频带,其中LL用于表示图像基础信息,HL、LH 和 HH 分别用于表示图像的水平、垂直和对角线方向的频带。
2.阈值处理在小波变换的基础上,阈值处理是去噪算法的核心步骤。
不同的阈值处理方法会使用不同的阈值来抑制噪声和细节信息。
其中,软阈值和硬阈值是最常用的两种阈值处理方法。
硬阈值将小于某个阈值的系数都置为0,而大于这个阈值的保持不变。
软阈值的作用则是将小于某个阈值的系数都置为0,而对于大于这个阈值的部分,使用某个函数进行调整,以减少降噪过程中过多的数据丢失。
四、实验结果本文使用了8个测试图像进行了实验,比较了不同去噪算法的最终效果。
实验结果表明,基于小波分析的图像去噪算法比传统的傅里叶变换等其他方法有更好的去噪效果。
同时,软硬阈值处理也是影响去噪效果的重要因素。
其中,软阈值方法能够更加准确地去除图像中的噪声,保留更多的图像细节信息。
小波分析在图像处理中的应用实践
小波分析在图像处理中的应用实践一、引言图像处理技术在工业、医学、军事等诸多领域都有广泛的应用。
而小波分析是一种能够在时频域中分析和处理信号的重要技术,逐渐在图像处理中得到了广泛的应用。
二、小波分析基础小波分析是一种广泛应用于信号分析和处理的数学工具。
它是由Laurent Cohen于1984年首次提出,是一种不仅可以分析信号的频率特征,同时也可以分析信号的时域特征的分析方法。
小波分析与傅里叶分析不同,可以在时间和频率空间中分析信号的特征。
三、小波分析在图像压缩中的应用小波分析可以将原始的图像分解成不同的尺度和方向上的子图像,每个子图像都有不同的贡献。
通过舍弃以后的系数,可以实现图像的压缩。
小波变换是一种无损压缩方法,处理后的图像保留了较高的细节和清晰度,对于高分辨率图像的压缩是很有效的。
四、小波分析在图像增强中的应用小波分析可以将图像分为较低频和高频的分量,较低频的部分表示图像的整体特征,较高频的部分表示图像的高频细节。
可根据需求选择保留较高或较低频部分,从而实现图像的增强和去噪。
较低频信号的滤波可以使得图像的边缘信息得到更加明显的突出,同时保持图像的平滑度。
五、小波分析在图像识别中的应用小波变换可以将2D图像变换到小波域,并提取有用的特征。
在图像识别中,可以使用小波分析对图像特征进行提取和分类。
小波分析还可以将图像信息进行二维压缩,减少了图像信息点的数量,从而实现更加快速的识别。
六、小波分析在图像去噪中的应用图像中存在着噪声,噪声会影响图像质量和可视化效果。
小波分析是一种可以用来解决图像噪声的技术。
可以在小波域中对图像进行去噪,舍弃高频分量,达到去噪的效果,保留图像的细节和清晰度。
七、小波分析在图像特征提取中的应用小波分析可以提取不同尺度和方向的图像特征,获取不同层次的图像特征信息,因此在图像特征提取方面具备一定的优势。
可以对图像的边缘、轮廓等特征进行提取,从而用于目标检测和识别。
八、小波分析在图像拼接中的应用在图像拼接中,大小、亮度、角度等因素都会造成无缝连接的困难。
小波变换在医学图像处理中的应用
小波变换在医学图像处理中的应用医学成像设备的使用在辅助医生对病情做出正确诊断的过程中发挥了越来越重要的作用。
由于人体器官本身具有复杂、运动、多样的特性,因此处理医学图像时需要综合多个方面的因素,这使处理医学图像的技术变得非常复杂。
本文从小波变换说起,探讨其在医学图像处理上的边缘提取、去噪、图像特征加强等方面的应用,简要阐述小波变换技术在医学图像处理上的局限性,并展望小波变换的未来发展方向。
标签:小波变换;医学图像处理;图像去噪随着医学和科学技术的快速发展,越来越多的精密医学仪器设备运用于临床诊断中,以提高医学诊断水平。
在医学技术的发展中,医学影像技术无疑成为其中一个重要分支,其发展使医生能直接观察到人体内部病变的部位,确诊率提高。
小波分析是在Fourier分析的基础上发展而来的,是新兴的数学分支,在信号、图像处理中应用广泛[1]。
小波变换与Fourier变换相比,解决了Fourier变换中许多不能解决的问题,它继承了傅立叶变换局部化思想,克服了窗口大小不随频率变化的缺点,提供一个随频率改变的时间-频率窗口,是信号处理与图像处理的理想工具[2]。
在医学图像处理上应用小波变换,可以在不同尺度上获得信号的细节,展示出最佳图像效果,尤其是在信号微弱、背景复杂的医学图像处理上,应用小波变换能取得良好效果。
1小波变换在医学图像处理上的应用1.1小波变换在医学图像特征增强上的应用在医学图像处理上,增强图像的某些特征是非常必要的,剔除无用信息,增强图像的可读性,提高图像的视觉效果,便于医生更好地观察患者的症状。
医生在临床诊断中需要利用医学图像确定患者的具体病况,而图像边缘特征、信噪比、对比度等都会影响到诊断的正确性,为了提高医学图像的清晰度和可读性,进行图像特征增强处理,突出病变部分是必要的[3]。
小波变换运用于图像特征增强具有无可比拟的优势。
小波变换在时间-频率分析上具有表征局部信号特征的能力,医学图像经小波分解之后,低频部分:频率分辨率高,时间分辨率低;高频部分:频率分辨率低,时间分辨率高。
图像的动态降噪原理及应用
图像的动态降噪原理及应用图像动态降噪是一种图像处理技术,用于去除图像中的噪声,并提高图像的质量和清晰度。
本文将介绍图像动态降噪的原理及其应用。
1.原理与方法图像动态降噪的原理是通过对图像进行分析和处理,消除或减弱图像中的噪声。
根据噪声的类型和分布,可以采用不同的降噪方法。
(1) 统计方法:统计方法通过对图像的像素进行统计分析,计算其均值、方差等特征参数,进而判断像素是否为噪声点。
常用的统计方法包括均值滤波、中值滤波、高斯滤波等。
(2) 自适应方法:自适应方法是根据像素的邻域信息来进行滤波处理。
主要思想是对于局部区域内的像素,根据其周围像素的值来确定其滤波参数,从而实现自适应滤波。
常用的自适应方法包括自适应中值滤波、自适应高斯滤波等。
(3) 小波变换方法:小波变换方法是一种频域分析方法,可以将图像分解为多个尺度的子带图像,进而对每个子带图像进行降噪处理。
常用的小波变换方法包括离散小波变换(DWT)、小波包变换(WPT)等。
2.应用领域图像动态降噪在各个领域都有广泛的应用。
以下是一些常见的应用领域示例:(1) 数字摄影:在数字摄影中,图像的质量和清晰度对于拍摄者来说非常重要。
图像动态降噪可以帮助提高照片的清晰度和细节,并降低图像的噪声水平,从而提高用户体验。
(2) 医学成像:在医学成像中,图像的噪声会影响诊断的准确性。
通过图像动态降噪,可以减少图像中的噪声,提高医生对疾病或异常情况的检测和识别能力。
(3) 无人驾驶:无人驾驶车辆需要依赖图像传感器来感知周围环境,以实现自动驾驶。
图像动态降噪可以提高图像传感器的性能,降低图像中的噪声,从而提高无人驾驶车辆的感知能力和安全性。
(4) 视频监控:在视频监控领域,图像质量对于实时监控和事件识别非常重要。
通过图像动态降噪,可以提高视频图像的清晰度和细节,从而提高监控系统的效果和准确性。
(5) 图像识别和计算机视觉:在图像识别和计算机视觉任务中,噪声会对算法的性能和准确性产生负面影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
性, 基 于 小波 分析 应 用在 图像 降 噪领 域 的原 理 与 优 势 , 在 D o n o h o阈 值 降 噪 方 法 基 础 上 , 提 出 了一 种 改
ma g e Pr o ce s s i n g a nd Mu l t i me d i a Te c h n o l o g y
小 波分析在 图像降噪 中的应用
董 广 杰 ,林 旭 梅 ( 青 岛 理 工 大 学 自动 化 工 程 学 院 , 山东 青 岛 2 6 6 5 2 0 )
Ap p l i c a t i o n o f wa v e l e t a n a l y s i s i n i ma g e d e n o i s i n g
D o n g G u a n g j i e , L i n X u me i
( A u t o ma t i z a t i o n E n g i n e e r i n g C o l l e g e , Q i n g d a o T e c h n o l o g i c a l U n i v e r s i t y , Q i n g d a o 2 6 6 5 2 0 , C h i n a )
Ab s t r a c t :h n a g e s a r e c o r r u p t e d b y t h e n o i s e s d u r i n g t h e i r a c q u i s i t i o n o r t r a n s mi s s i o n , S O d e n o i s i n g i s e s s e n t i a l i n o r d e r t o i m— p o r v e t h e S i g n a l t o No i s e R a t i o a n d t h e i r a c c u r a c y a n d p r a c t i c a l i t y . An i mp r o v e d i ma g e d e n o i s i n g me t h o d i s p r o p o s e d b a s e d o n h a r d t h r e s h o l d a l l d s o f t t h r e s h o l d me t h o d r a i s e d b y D o n o h o , w h i c h i s a l l a p p l i c a t i o n o f t h e p i r n c i p l e s a n d a d v a n t a g e s o f w a y e l e t a n a l y s i s u s e d i n t h e i f l e d o f i ma g e d e n o i s i n g . I n o r d e r t o g e t a mo r e e f f e c t i v e t h r e s h o l d f u n c t i o n, t h e p a r a me t e s r o f t h e i mp r o v e d f o r mu l a c a n b e s e l e e t e d a c c o r d i n g t o i ma g e s . Th e a d v a n t a g e o f t h i s me t h o d i s t h e c a l c u l a t i o n o f w a v e l e t c o e f i f c i e n t s , e s p e c i a l l y i n t h e i n a c c u r a e i y e r r o r s o f l a r g e c o e f f i c i e n t s , t h e y a r e s ma l l e r t h a n s ma l l c o e ic f i e n t s , S O t h e l e v e l o f d e n o i s i n g i s i mp r o v e d . F r o m n mt l a b s i mu l a t i o n r e — s u i t s a n d d e n o i s i n g o f a c t u a l i ma g e s 。 t h i s me t h o d i S b e t t e r t h a n t h e t r a d i t i o n a l me t h o d s ma i n l y i 1 3 t h e a s p e c t o f l f e x i b l e s e l e c t i o n ( ) t t h r e s h o l d, s mo o t h t r e a t me n t o f ma r g i n a l i mf o r ma t i o n a n d g o o d e f e c t o f d e n o i s i n g .
选取 灵 活 、 边缘 信 息处 理 平 滑 、 降噪 效果 好 等 方 面 。
关 键 词 :小 波 变 换 ;降 噪 ;阈值 ;滤 波
中 图 分 类 号 :T N 9 1 1 . 7 3 文 献 标 识 码 :A 文 章 编 号 :1 6 7 4 — 7 7 2 0 ( 2 0 1 3 1 1 2 — 0 0 3 2 — 0 3
进 的 图像 降噪 方 法。 应 用 改进 公 式 , 可 以根 据 图像 具 体 情 况选 择 参数 , 获得 更有 效 的 阈值 函数 。该 方 法 的优 势 在 于计 算 小波 系数 方 面 , 尤其 是 计 算 大 的 系数误 差 比 小的 系数 误 差 要 小 , 从 而提 高 了降 噪 水 平 。 通 过 Ma t l a b仿 真 和 实 际 图 像 降 噪 结 果 分 析 , 该 方法 明 显优 于传 统 阈值 降噪 方 法 , 主 要 体 现 在 阂值