结构动力学5
对结构动力学的认识

结构动力学是一种研究结构在外部载荷下的动态响应和振动特性的学科。
它主要关注
的是结构在受到外部激励(如风、地震、交通等)时的振动响应,分析结构的稳定性、自然频率、振型和振幅等参数。
结构动力学的研究对于工程实践和安全评估具有重要
意义。
结构动力学研究的对象可以是各种类型的结构,如房屋、桥梁、塔楼、船舶、飞行器等。
在研究中,结构动力学通常采用数学模型来描述结构的振动响应,包括质点模型、连续体模型、有限元方法等。
在工程实践中,结构动力学的应用十分广泛。
例如,在建筑结构设计中,需要考虑地震、风荷载等外部载荷对结构的影响,通过结构动力学分析可以确定结构的合理构造
和材料选型;在航空航天领域,需要对飞行器结构进行动力学分析,以保证其安全性
和可靠性。
总之,结构动力学是一门研究结构在外部载荷下的动态响应和振动特性的重要学科,
对于工程实践和安全评估具有重要意义。
结构动力学5任意荷载反应时域频域

u( ) 0
5.1 时域分析方法—Duhamel积分
1、单位脉冲反应函数 u( ) 0
u( ) 1
m
无阻尼体系的单位脉冲反应函数为:
[n (t
)]
t
0
t
有阻尼体系的单位脉冲反应函数为:
h(t
)
u(t)
1
mD
e n (t )
sin[D (t
)]
t
0
t
5.1 时域分析方法—Duhamel积分 1、单位脉冲反应函数
3、应用Fourier逆变换,由频域解U(ω)得到时域解u(t):
U () 逆Fu(t)
5.2 频域分析方法—Fourier变换法 离散Fourier(DFT)变换
在用频域法分析中涉及到两次Fourier变换,均为无穷域 积分,特别是Fourier逆变换,被积函数是复数,有时 涉及复杂的围道积分。当外荷载是复杂的时间函数 (如地震动)时,用解析型的Fourier变换几乎是不可 能的,实际计算中大量采用的是离散Fourier变换。
i2nU ()
n2U ()
1 m
P()
单自由度体系运动的频域解为:
U () H (i)P()
H (i)
1 k
[1
(
1
/ n )2]
i[2
(
/ n )]
H(iω)—复频反应函数,i是用来表示函数是一复数。
再利用Fourier逆变换,即得到体系的位移解:
u(t) 1 H (i)P()eitd 2
例如,对于无阻尼体系,当存在非零初始条件时,问题 的完整解为:
u(t)
u(0)
cosnt
u(0)
n
结构动力学课后习题答案

结构动力学课后习题答案结构动力学是研究结构在动态载荷作用下的响应和行为的学科。
它涉及到结构的振动、冲击响应、疲劳分析等方面。
课后习题是帮助学生巩固课堂知识、深化理解的重要手段。
以下内容是结构动力学课后习题的一些可能答案,供参考:习题1:单自由度系统自由振动分析解答:对于一个单自由度系统,其自由振动的频率可以通过以下公式计算:\[ f = \frac{1}{2\pi}\sqrt{\frac{k}{m}} \]其中,\( k \) 是系统的刚度,\( m \) 是系统的总质量。
系统自由振动的振幅随着时间的衰减可以通过阻尼比 \( \zeta \) 来描述,其衰减系数 \( \delta \) 可以通过以下公式计算:\[ \delta = \sqrt{1-\zeta^2} \]习题2:单自由度系统受迫振动分析解答:当单自由度系统受到周期性外力作用时,其受迫振动的振幅可以通过以下公式计算:\[ A = \frac{F_0}{\sqrt{(k-m\omega^2)^2+(m\zeta\omega)^2}} \] 其中,\( F_0 \) 是外力的幅值,\( \omega \) 是外力的角频率。
习题3:多自由度系统模态分析解答:对于多自由度系统,可以通过求解特征值问题来得到系统的模态。
特征值问题通常表示为:\[ [K]{\phi} = \lambda[M]{\phi} \]其中,\( [K] \) 是系统的刚度矩阵,\( [M] \) 是系统的质量矩阵,\( \lambda \) 是特征值,\( {\phi} \) 是对应的特征向量,即模态形状。
习题4:结构的冲击响应分析解答:对于结构的冲击响应分析,通常需要考虑冲击载荷的持续时间和冲击能量。
结构的冲击响应可以通过冲击响应谱(IRF)来分析,它描述了结构在不同频率下的响应。
冲击响应分析的结果可以用来评估结构的耐冲击性能。
习题5:疲劳分析解答:结构的疲劳分析需要考虑结构在重复载荷作用下的寿命。
结构动力学试题及答案

结构动力学试题及答案(本文按试题和答案格式进行编写)试题一:1. 请问什么是结构动力学?2. 简述结构动力学的研究对象和主要内容。
3. 结构动力学分析常用的方法有哪些?4. 结构动力学分析中常用的数学模型有哪些?5. 结构动力学的应用领域有哪些?答案一:1. 结构动力学是研究结构在外力作用下的动态响应及其稳定性的学科。
2. 结构动力学的研究对象是各种工程结构,主要内容包括结构的振动、冲击响应、瞬态响应和稳态响应等。
3. 结构动力学分析常用的方法有模态分析法、频率响应分析法、时程分析法等。
4. 结构动力学分析中常用的数学模型有单自由度体系、多自由度体系、连续体系等。
5. 结构动力学的应用领域广泛,包括建筑结构工程、桥梁工程、风力发电机组、地震工程等。
试题二:1. 结构动力学分析中,模态分析的基本原理是什么?2. 简述模态分析的步骤和计算方法。
3. 常用的模态分析软件有哪些?4. 请问什么是结构的固有频率和阻尼比?5. 结构的模态振型对结构动力响应有什么影响?答案二:1. 模态分析是基于结构的振动特性,通过求解结构的固有频率、模态振型和阻尼比等参数,来研究结构的动力响应。
2. 模态分析的步骤包括建立结构有限元模型、求解结构的固有频率和模态振型、计算结构的阻尼比等。
常用的计算方法有有限元法、拉普拉斯变换法等。
3. 常用的模态分析软件有ANSYS、ABAQUS、MSC.NASTRAN等。
4. 结构的固有频率是结构在无外力作用下自由振动的频率,阻尼比是结构振动过程中能量耗散的程度。
5. 结构的模态振型对结构动力响应有很大影响,不同的模态振型会导致不同的振动特性和反应。
试题三:1. 结构动力学分析中,频率响应分析的基本原理是什么?2. 简述频率响应分析的步骤和计算方法。
3. 频率响应分析和模态分析有什么区别?4. 结构的频率响应函数和传递函数有什么区别?5. 频率响应分析在结构设计中的应用有哪些?答案三:1. 频率响应分析是研究结构在单频激励下的响应特性,通过求解结构的频率响应函数,来获得结构的响应。
结构动力学

第一章概述1.动力荷载类型:根据何在是否随时间变化,或随时间变化速率的不同,荷载分为静荷载和动荷载根据荷载是否已预先确定,动荷载可以分为两类:确定性(非随机)荷载和非确定性(随机)荷载。
确定性荷载是荷载随时间的变化规律已预先确定,是完全已知的时间过程;非确定性荷载是荷载随时间变化的规律预先不可以确定,是一种随机过程。
根据荷载随时间的变化规律,动荷载可以分为两类:周期荷载和非周期荷载。
根据结构对不同荷载的反应特点或采用的动力分析方法不同,周期荷载分为简谐荷载(机器转动引起的不平衡力)和非简谐周期荷载(螺旋桨产生的推力);非周期荷载分为冲击荷载(爆炸引起的冲击波)和一般任意荷载(地震引起的地震动)。
2.结构动力学与静力学的主要区别:惯性力的出现或者说考虑惯性力的影响3.结构动力学计算的特点:①动力反应要计算全部时间点上的一系列解,比静力问题复杂且要消耗更多的计算时间②于静力问题相比,由于动力反应中结构的位置随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要的影响4.结构离散化方法:将无限自由度问题转化为有限自由度问题集中质量法:是结构分析中最常用的处理方法,把连续分布的质量集中到质点,采用真实的物理量,具有直接直观的优点。
广义坐标法:广义坐标是形函数的幅值,有时没有明确的物理意义,但是比较方便快捷。
有限元法:综合了集中质量法与广义坐标法的特点,是广义坐标的一种特殊应用,形函数是针对整个结构定义的;有限元采用具有明确物理意义的参数作为广义坐标,形函数是定义在分片区域的。
①与广义坐标法相似,有限元法采用了形函数的概念,但不同于广义坐标法在全部体系(结构)上插值(即定义形函数),而是采用了分片的插值(即定义分片形函数),因此形函数的公式(形状)可以相对简单。
②与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接直观的优点。
5.结构的动力特性:自振频率、振型、阻尼第二章分析动力学基础及运动方程的建立1.广义坐标:能决定质点系几何位置的彼此独立的量;必须是相互独立的参数2.约束:对非自由系各质点的位置和速度所加的几何或运动学的限制;(从几何或运动学方面限制质点运动的设施)3.结构动力自由度,与静力自由度的区别:结构中质量位置、运动的描述动力自由度:结构体系在任意瞬间的一切可能的变形中,决定全部质量位置所需要的独立参数的数目静力自由度:是指确定体系在空间中的位置所需要的独立参数的数目为了数学处理上的简单,人为在建立体系的简化模型时忽略了一些对惯性影响不大的因素确定结构动力自由度的方法:外加约束固定各质点,使体系所有质点均被固定所必需的最少外加约束的数目就等于其自由度4.有势力的概念与性质:有势力(保守力):每一个力的大小和方向只决定于体系所有各质点的位置,体系从某一位置到另一位置所做的功只决定于质点的始末位置,而与各质点的运动路径无关。
[美]R.克里夫《结构动力学》补充详解及习题解
![[美]R.克里夫《结构动力学》补充详解及习题解](https://img.taocdn.com/s3/m/198055225627a5e9856a561252d380eb629423b8.png)
前言结构动力学是比较难学的一门课程,但是你一旦学会并且融会贯通,你就会为成为结构院士、大师和总工垫定坚实的基础。
结构动力学学习的难点主要有以下两个方面。
1 概念难理解,主要表现在两个方面,一是表达清楚难,如果你对概念理解的很透彻,那么你写的书对概念的表述也会言简意赅,切中要害(克里夫的书就是这个特点),有的书会对一个概念用了很多文字进行解释,但是还是没有说清楚,也有的书受水平限制,本身表述就不清楚。
二是理解难,有点只可意会不可言传的味道,老师讲的头头是道,自己听得云山雾绕。
2 公式推导过程难,一是力学知识点密集,推导过程需要力学概念清析,并且需要每一步的力学公式熟悉;二是需要一定的数学基础,而且有的是在本科阶段并没有学习的数学知识。
克里夫《结构动力学》被称为经典的结构动力学教材,但是也很难看懂。
之所以被称为经典,主要就是对力学的概念表达的语言准确,概念清楚。
为什么难懂呢?是因为公式的推导过程比较简单,省略过多。
本来公式的推导过程既需要力学概念清楚也需要数学公式熟悉,但是一般人不是力学概念不清楚,就是数学公式不熟悉,更有两者都不熟悉者。
所以在学习过程中感觉很难,本学习详解是在该书概念清楚的基础上,对力学公式推导过程进行详细推导,并且有的加以解释,帮助你在学习过程中加深理解和记忆。
达到融会贯通,为你成为结构院士、大师和总工垫定坚实的基础。
以下黑体字是注释,其它为原书文字。
[美] R∙克里夫《结构动力学》辅导学习详解第1章结构动力学概述… …第Ⅰ篇单自由度体系第2章基本动力体系的组成… …§2-5 无阻尼自由振动分析如上一节所述,有阻尼的弹簧-质量体系的运动方程可表示为mv̈(t)+cv̇(t)+kν(t)=p(t)(2-19)其中ν(t)是相对于静力平衡位置的动力反应;p(t)是作用于体系的等效荷载,它可以是直接作用的或是支撑运动的结构。
为了获得方程(2-19)的解,首先考虑方程右边等于零的齐次方程,即mv̈(t)+cv̇(t)+kν(t)=0(2-20)mv(t)+kν(t)=0(2-20a)此处公式应该为mv(t)+kν(t)=0,因为该节是无阻尼自由振,而且(2-20)的解,式(2-21)也是公式mv(t)+kν(t)=0的解在作用力等于零时产生的运动称为自由振动,现在要研究的即为体系的自由振动反应。
结构动力学克拉夫

结构动力学克拉夫结构动力学是研究结构在外力作用下的变形和运动规律的学科。
它能够揭示结构的响应特性,并应用于工程和建筑物的设计、分析和优化等领域。
在结构动力学中,克拉夫方法是一种常用的数值分析方法,可以有效地求解结构的动力响应。
下面将详细介绍克拉夫方法的原理和应用。
克拉夫方法是一种离散激励动力分析方法,适用于求解线性多自由度系统的动力响应。
克拉夫方法的基本原理是离散化结构,将其简化为一系列互相连接的质点,然后通过求解质点的加速度、速度和位移来获取结构的动态特性。
克拉夫方法中引入了模态分析的概念,将结构的振型表示为一系列正交的模态,并通过求解每个模态的响应来得到结构的总响应。
在应用克拉夫方法进行结构动力分析时,首先需要建立结构的有限元模型。
该模型需要包括结构的几何形状、材料特性和边界条件等信息。
然后,通过解结构的动力方程可以得到结构的模态频率和振型。
一般情况下,结构的模态频率并不是均匀分布的,其中低频模态对结构的响应起主导作用。
因此,在求解结构的总响应时,可以只考虑前几个重要的低频模态。
在进行克拉夫分析时,需要给定一个外力激励。
这个外力激励可以是单个点的冲击载荷、均匀分布的动力载荷或者地震作用等。
通过将外力激励进行傅里叶变换,可以将其转化为频域中的振动谱。
然后,根据每个模态的频率和阻尼比,可以得到每个模态的响应谱。
最后,通过叠加所有模态的响应谱,可以得到结构的总响应谱。
这个总响应谱描述了结构在给定的外力激励下的动力响应特性。
克拉夫方法的优点是能够考虑结构的动态特性和边界条件,同时对结构的几何形状和材料特性并不敏感。
它可以用来分析和优化各种类型的结构,包括桥梁、建筑物、风力发电机塔等。
克拉夫方法可以帮助工程师预测结构的响应,并在设计阶段进行结构的优化,以提高结构的稳定性和安全性。
然而,克拉夫方法也有一些局限性。
首先,克拉夫方法仅适用于线性多自由度系统,对于非线性或者含有阻尼的系统,需要进行额外的处理。
5-结构动力学分析

又称时间——历程分析,用于确定承受随时间变化 的载荷的作用下结构的位移、应力及力。
必须指定初始条件,如初始位移,速度,加速度等; 必须考虑阻尼和惯性力。 时间积分步长ΔT 要足够小。
三. 瞬态动力学分析
载荷——时间曲线。
每一个拐角都应作为一个载荷步
⑥
三. 瞬态动力学分析
主要方法
二. 谐响应分析
分析过程:
3. 后处理:
① 定义变量:TimeHist Postpro>Define Variables— Add——选择显示变量——选择点——选择方向 (可多次定义,变量号由2开始。变量号1自动定义 为频率,为图形横坐标)
② 定义显示图形形式:Utility Menu >PlotCtrls >Style> Graph>Modify Grid (可取缺省)
结构动力学研究对象
1. 运动状态下的机械或结构,承受惯性及与周围介质或结 构相互作用的动力载荷。例如,高速旋转的电机、离心 压缩机,高速运行的飞行器,以及往复运动的冲压机床等。 2. 承受动力载荷的结构,这些结构可能发生破裂、倾覆和 垮塌等破坏事故。例如,建于地面的高层建筑和厂房, 石化厂的反应塔和管道,核电站的安全壳和热交换器, 近海工程的海洋石油平台等。
Full法(完全法)
Reduced法(缩减法)
ModeSuperposition法(模态叠加法)
习题20
摆杆运动分析
图示为一摆杆的起摆位置。求小球一个周期内的位移 变化情况(除重力外,不考虑其它载荷)。
摆杆:L=0.2 m A=7.85E-5 m2 Ex=100 GPa Prxy=0.3 质量忽略 小球:m=0.25 kg
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 EIl 5 m l / 60
2
120 EI ml4
2
10.95 EI 2 m l
2)假设均布荷载q作用下的挠度曲线作为Y(x)
q Y ( x) x(l 3 2lx2 x 3 ) 24EI
l 2 5 qY ( x ) dx q l 120EI 0 2 l 2 q 2 31 9 m Y ( x ) dx 0 m 24 EI 630 l
h0
为了使假设的振型尽可能的接近真实振型,尽可能减小假设振型对体系所
附加的约束, Ritz 提出了改进方法: 1、假设多个近似振型 2、将它们进行线性组合
5
1 , 2 n 都满足前述两个条件。 a2 2 an n Y ( x) a1 1
(a1、a2、·········、an是待定常数)
§10-6 近似法求自振频率 1、能量法求第一频率——Rayleigh法
变能U 之和应等于常数。
※根据简谐振动的特点可知:在体系通过静力平衡位置的瞬间,速度最大(动能具有
1
根据能量守恒定律,当不考虑阻尼自由振动时,振动体系在任何时刻的动能T 和应
最大值),动位移为零(应变能为零);当体系达到最大振幅的瞬间(变形能最大), 速度为零(动能为零)。对这两个特定时刻,根据能量守恒定律得:
替,即
1 l U 0 q( x)Y ( x)dx 2
2
l 0 m[Y ( x)]
l 0 q( x)Y ( x)dx 2
dx miYi2
例12 试求等截面简支梁的第一频率。
3
1)假设位移形状函数为抛物线
EI
m
x
y
Y ( x) x(l x)
满足边界条件且与第 一振型相近
l
3、确定待定常数的准则是:获得最佳的线性组合,这样的Y(x)代入频
率计算公式中得到的ω2 的值虽仍比精确解偏高,但对所有的a1,a2,…,an 的可能组合,确实获得了最小的ω2值。 所选的a1,a2,…,an使 ω2 获得最小值的条件是
2 0, (i 1,2, , n) ai
这是以a1,a2,…,an为未知量的n个奇次线性代数方程。令其系数行列式 等于零,得到频率方程,可以解出原体系最低 n 阶频率来。阶次越低往往 越准。
例:用Rayleigh—Ritz 法求等截面悬臂梁的最初几个频率。 解:悬臂梁的位移边界条件为:
7
I
设:Y a11 a2 2 a1 x 2 a2 x3
3)假设
2
Y ( x) asin
EIa
4 2 2
x
l
9.87 EI 2 m l
第一振型的精确解。
精 EI [ Y ( x )] dx 9 . 8696 EI 2 0 确 l2 2 解 l m[Y ( m x)] dx
2l 2
3
ma l
4 EI
似的振型曲线,得到频率的近似值。由于假定高频率的振型困难,计算
高频率误差较大。故 Rayleigh法主要用于求ω1的近似解。 3、相应于第一频率所设的振型曲线,应当是结构比较容易出现的变形
形式。曲率小,拐点少。
4、通常可取结构在某个静荷载q(x)(如自重)作用下的弹性曲线作 为Y(x)的近似表达式。此时应变能可用相应荷载q(x)所作的功来代
Umax=Tmax
※求Umax ,Tmax
ω
位移幅值
设: y( x, t ) Y ( x) sin(t ) l l l l 2 1 1 2 2 1 2 2 2 2 m ( x )v cos ( t ) m ( x ) Y ( x ) dx Tmax mdx ( x) Y ( x)dx EI [ Y ( x )] dx ※求频率 2 02 0 2 20 l0 2 l EI [ Y ( x )] dx 1 0 l 2 22 2 U max 1 l EI[ Y ( x )] dx 2 l y m2 [Y ( x )] 2 dx2 l 1 2 2 [Y dx miY dx sin ( 0x)] ( m U 0EI t ( ) EI[ Y x)] dx i
ml
4
l
2
0
例 求楔形悬臂梁的自振频率。 设梁截面宽度为 1,高度为 h=h0x/l。
4
h0 x 解: 截面惯性矩: I 1 12 l h0 x m 单位长度的质量: l
3
x l
满足边界条件:Y (l ) 0,Y (l ) 0
x 2 设位移形状函数: Y ( x) a(1 ) l
2 5 Eh 1.581 h0 2 0 , 4 2 l l2
E
1.534h0 与精确解 l2
E
l 2 EI [ Y ( x )] dx 2 0 l 2 m [ Y ( x )] dx 0
相比误差为3%
Rayleigh 法所得频率的近似解总是比精确解偏高。其原因是假设了一振型曲线 代替实际振型曲线,迫使梁按照这种假设的形状振动,相当于给梁加上了某种 约束,增大了梁的刚度,致使频率偏高。当所设振型越接近于真实,则相当于 对体系施加的约束越小,求得的频率越接近于真实,即偏高量越小。
只取第一项 代入:
l
x
l
2 1 x 2 1
0
jdx, kij EIi
[ k ] [ m] 0
2
mij m i j dx
如梁上还有集中质量mi,
. v y Y ( x) cos(t )
20
x 2
2
0
Yi为集中质量mi处的位移幅值。
0
※假设位移幅值函数Y(x)必须注意以下几点:
2
1、必须满足运动边界条件:
(铰支端:Y=0;固定端:Y=0,Y´=0) 尽量满足弯矩边界条件,以减小误差。剪力边界条件可不计。 2、所设位移幅值函数应与实际振型形状大致接近;如正好与第 n 主振 型相似,则可求的ωn的准确解。但主振型通常是未知的,只能假定一近