Algorithmic randomness of closed sets

合集下载

Shamir的(k,n)门限秘密共享方案

Shamir的(k,n)门限秘密共享方案

秘密共享体制的发展和应用Shamir的(k,n)门限秘密共享方案——密码学概论课作业1310648 许子豪摘要:近年来,由于网络环境自身的问题,网络环境己存在严峻的安全隐患;为了避免由于网络中重要信息和秘密数据的丢失、毁灭以及被不法分子利用或恶意篡改,而无法恢复原始信息,研究者提出利用秘密共享机制对数据进行处理,从而达到保密通信中,不会因为数据的丢失、毁灭或篡改,而无法恢复原始信息的目的。

从而吸引了越来越多的科研人员对该研究内容的关注。

秘密共享体制己经成为现代密码学的一个重要的研究领域,同时,它也成为信息安全中的重要的研究内容。

关键字:信息安全;秘密共享;秘钥管理。

一、秘密共享体制研究背景及意义随着计算机和网络通信的广泛应用,人们的生活越来越依赖电子通信,使用电子方式来存储重要档案的做法也越来越普遍,随之而来产生的对各种不同档案如何管理也成了很大的问题。

秘密共享思想的最初动机是解决密钥管理的安全问题。

大多情况下,一个主密钥控制多个重要文件或多个其他密钥,一旦主密钥丢失、损坏或失窃,就可能造成多个重要文件或其他密钥不可用或被窃取。

为了解决这个问题,一种方法是创建该密钥的多个备份并将这些备份分发给不同的人或保存在不同的多个地方。

但是这种方法并不理想,原因在于创建的备份数目越多,密钥泄漏的可能就越大但如果同时创建的备份越少,密钥全部丢失的可能也就越大。

秘密共享可解决上述问题,它在不增加风险的同时提高密钥管理的可靠性。

在秘密共享方案中,将需共享的秘密分成若干秘密份额也称子密钥、碎片,并安全地分发给若干参与者掌管,同时规定哪些参与者合作可以恢复该秘密,哪些参与者合作不能得到关于该秘密的任何信息。

利用秘密共享方案保管密钥具有如下优点:(1)为密钥合理地创建了备份,克服了以往保存副本的数量越大,安全性泄露的危险越大,保存副本越小,则副本丢失的风险越大的缺点。

(2)有利于防止权力过分集中以导致被滥用的问题。

(3)攻击者必须获取足够多的子密钥才能恢复出所共享的密钥,保证了密钥的安全性和完整性。

蒙特卡罗方法概述7

蒙特卡罗方法概述7
设r表示射击运动员的弹着点到靶心的距离,g(r)
表示击中r处相应的得分数(环数),f(r)为该运动员的 弹着点的分布密度函数,它反映运动员的射击水平。 该运动员的射击成绩为
g0 g(r)f(r)dr
用概率语言来说,<g>是随机变量g(r)的数学期
望,即
gE g(r)
现假设该运动员进行了N次射击,每次射击的弹 着g(r点2),依…次,为g(rrN1),的算r2 术,平…均,值rN , 则 N 次 得 分 g(r1) ,
➢ 计算机模拟试验过程
计算机模拟试验过程,就是将试验过程(如投针, 射击)化为数学问题,在计算机上实现。以上述两个 问题为例,分别加以说明。
例1. 蒲丰氏问题 例2. 射击问题(打靶游戏)
由上面两个例题看出,蒙特卡罗方法常以一个 “概率模型”为基础,按照它所描述的过程,使用由 已知分布抽样的方法,得到部分试验结果的观察值, 求得问题的近似解。
一些人进行了实验,其结果列于下表 :
实验者
年份 投计次数 π的实验值
沃尔弗(Wolf) 1850 5000
3.1596
斯密思(Smith) 1855 3204
3.1553
福克斯(Fox)
1894 1120
3.1419
拉查里尼 (Lazzarini)
1901 3408
3.1415929
例2. 射击问题(打靶游戏)
1 N
gN N i1 g(ri )
作为积分的估计值(近似值)。
为了得到具有一定精确度的近似解,所需试验的
次数是很多的,通过人工方法作大量的试验相当困难, 甚至是不可能的。因此,蒙特卡罗方法的基本思想虽 然早已被人们提出,却很少被使用。本世纪四十年代 以来,由于电子计算机的出现,使得人们可以通过电 子计算机来模拟随机试验过程,把巨大数目的随机试 验交由计算机完成,使得蒙特卡罗方法得以广泛地应 用,在现代化的科学技术中发挥应有的作用。

最短路径算法的弗洛伊德算法的数学归纳法冥想证明-Version-1

最短路径算法的弗洛伊德算法的数学归纳法冥想证明-Version-1

最短路径算法的弗洛伊德算法的数学归纳法冥想证明 Version 1.0我二十年前已了解迪杰斯特拉算法,最近忽有兴趣开发了一款最短路径算法小软件EXE,了却二十年前的心愿。

余庆未了,网上了解了还有多种方法,如A-Star,johnson,bellman,SPFA等算法,其中最感兴趣的是弗洛伊德算法。

百度了,看了很多源码,大同小异。

但对弗洛伊德算法原理,网上讲的,我看后也觉似懂非懂。

利用抗战70周年纪念日放假期间,我闭关冥想,想到了N步的方法,但冥想出来的源码,总比网上讲的多一层循环。

于是继续冥想,想到了要用数学归纳法来证明弗洛伊德算法。

百度下,好似网上暂没这方面资料,于是共享出来,与诸君分享,不知对错也,网上讲到的什么迭代法,总是不太对似的,弗法可能并没有这么简单的:假设顶点数为N,N=4,5,6时,具体的弗法正确性,我就不想验证了。

假设N<=n时,弗法是正确的,如何证明N=n+1时,弗法仍是正确的?先研究下N=n弗法正确时的特性。

N=n时,所有的n个顶点两两组合的边D[i,j],不论虚边实边(直接的称实边,要通过其他顶点的叫虚边,我如此定义先),全部有值,且为最小值最短路径。

N当N=n+1时,新加一点,称最后一点K。

令最后一点K总在循环中排在最后一位,三重循环中都是排在最后一位。

令最外层循环为k,中间层循环为j,最内层循环为i。

定理一:最后一点k若改变i与j之距D[i,j],则所有经过i与j之最短路必同步更新且不分先后。

证明:假设点x经过最短路径D[i,j],D[i,x]=D[i,j]+D[j,x]或D[i,x]=D[i,j]-D[j,x]。

D[i,j]已被替换成为了D[i,k]+D[j,k],而D[j,k]+D[j,x]>=D[k,x]或D[j,k]+D[j,x]>=D[k,x].所以D[i,x]>=D[i,k]+D[k,x],所以x点必被更新,也就是执行松驰操作。

定理二:最后一点k若改变i与j之距D[i,j],则经过i与j之最短路必不经过最后一点k。

logistic映射混沌加密算法

logistic映射混沌加密算法

logistic映射混沌加密算法混沌理论是一种非线性动力学系统的研究方法,其核心思想是通过微小的初始条件差异引起系统的巨大变化,表现出复杂、随机且不可预测的行为。

混沌理论在信息安全领域具有重要的应用,其中logistic映射混沌加密算法是一种常用的加密方法。

logistic映射是一种简单而有效的动力学系统,其公式为Xn+1 = r*Xn*(1-Xn),其中Xn表示第n个时间点的状态值,r为控制参数,通常取值在0到4之间。

通过迭代计算,logistic映射可以产生一系列的状态值,这些值呈现出混沌的特性。

logistic映射混沌加密算法的基本思想是将待加密的数据与logistic映射的状态值进行异或运算,以增加数据的随机性和不可预测性。

具体加密过程如下:1. 初始化:设置初始状态X0和控制参数r的值,选择合适的初始状态和控制参数是保证加密效果的关键。

2. 生成密钥流:通过迭代计算logistic映射的状态值,得到一系列的随机数作为密钥流。

密钥流的长度取决于需要加密的数据长度。

3. 加密:将待加密的数据与密钥流进行异或运算,生成密文。

异或运算的特点是相同位上的数字相同则结果为0,不同则结果为1,这样可以实现简单而高效的加密过程。

4. 解密:使用相同的初始状态和控制参数,再次生成密钥流,将密文与密钥流进行异或运算,得到原始数据。

logistic映射混沌加密算法具有以下特点:1. 高度随机性:由于logistic映射本身的混沌性质,生成的密钥流具有高度随机性,使得加密后的数据无法被破解。

2. 非线性变换:logistic映射混沌加密算法采用非线性的异或运算,使得加密后的数据与原始数据之间的关系变得非常复杂,增加了破解的难度。

3. 实时性:logistic映射混沌加密算法具有较高的加密速度,适用于对大量数据进行实时加密和解密的场景。

4. 简单性:logistic映射混沌加密算法的实现较为简单,只需要进行简单的数学运算,不需要复杂的计算和存储。

普林斯顿算法

普林斯顿算法

普林斯顿算法
普林斯顿算法是一种用于解决最短路径问题的一种经典算法,也称为迪杰斯特拉算法。

它是一种贪婪算法,逐步构建最短路径树,从起始节点开始,依次选择与当前节点距离最近的节点,并更新该节点到其他节点的距离。

通过不断选择最短路径上的节点,最终得到起点到各个节点的最短路径。

普林斯顿算法的基本步骤如下:
1. 创建一个距离列表distances,用于保存起始节点到各个节点的最短距离,初始值为无穷大(表示未知路径)。

2. 创建一个前驱列表predecessors,用于保存路径上每个节点
的前驱节点,初始值为None。

3. 将起始节点的距离设置为0,即distances[start_node] = 0。

4. 选择距离最短且未被访问的节点作为当前节点。

5. 更新当前节点到邻居节点的距离,如果新的距离比原来的距离小,则更新距离和前驱节点。

6. 标记当前节点为已访问。

7. 重复步骤4-6直到所有节点都被访问。

8. 根据distances和predecessors构建最短路径。

普林斯顿算法的时间复杂度为O(V^2),其中V为节点数。


适用于处理节点数不太大的图,但在节点数非常大时,性能可能较差。

为了提高效率,还有一种优化的算法称为堆优化的迪杰斯特拉算法,它使用优先队列来选择最短距离的节点,使得时间复杂度降为O((V+E)logV),其中E为边数。

无密钥泄露的变色龙hash函数及其应用的开题报告

无密钥泄露的变色龙hash函数及其应用的开题报告

无密钥泄露的变色龙hash函数及其应用的开题报告一、选题背景哈希函数是密码学中重要的一类函数,它可以将任意长度的消息转换为固定长度的哈希值。

哈希函数广泛应用于数字签名、消息认证、密码学散列等领域。

在实际应用中,常常要求哈希函数具有抗碰撞、不可逆、无密钥泄露等安全性质。

目前,广泛使用的哈希函数包括MD5、SHA-1、SHA-2等。

然而,近年来,这些哈希函数的安全性受到了严重的挑战。

例如,在2017年,Google团队报道了SHA-1被破解的情况。

因此,设计新的安全的哈希函数是一个重要的研究方向。

变色龙哈希函数是一种新型的哈希函数,它的安全性有望超过目前广泛使用的哈希函数。

与传统的哈希函数不同,变色龙哈希函数采用了一种新的思路,通过采用多个哈希函数并在运行时动态切换不同的哈希函数来提高安全性。

此外,变色龙哈希函数还具有无密钥泄露的优点,在某些场景下有着较好的应用前景。

二、研究意义和目的当前广泛使用的哈希函数安全性遭到了严重的挑战,设计新的哈希函数已成为密码学领域的一个热点研究。

因此,研究变色龙哈希函数及其应用具有重要的理论和实践意义。

本研究将研究变色龙哈希函数及其在密码学领域中的应用。

具体而言,本研究将实现变色龙哈希函数,并分析其安全性。

此外,本研究还将探索无密钥泄露的变色龙哈希函数应用于一些具体场景下的效果,并比较与传统哈希函数在同等场景下的表现。

三、研究内容和方法本研究的主要内容包括以下三个方面:1. 变色龙哈希函数的设计及实现本研究将设计并实现基于变色龙思想的哈希函数。

具体来说,我们将综合多个哈希函数,并在运行时动态切换不同的哈希函数来提高安全性。

此外,为了降低攻击者猜测哈希函数序列的难度,我们还将采用“随机撒盐”技术来增强哈希函数的安全性。

2. 安全性分析及实验验证本研究将对设计的变色龙哈希函数进行安全性分析。

具体而言,我们将对其进行抗碰撞性、前向安全性、后向安全性等安全性质论证。

此外,我们将在多重环境下进行实验验证,比较变色龙哈希函数与传统哈希函数的表现,以验证其实用价值。

基于频繁项集发现的匿名隐私保护算法

基于频繁项集发现的匿名隐私保护算法
第2 8卷 第 1 0期 21 0 1年 1 0月
计 算 机 应 用 研 究
Ap l ain Re e rh o o u es pi t s ac fC mp tr c o
Vo . 8 No 1 12 . O
0c .2 1 t 0 1
基 于频 繁 项 集 发 现 的 匿名 隐私保 护算 法 术
mn g , in ) 匿名过程仅仅对不满足隐私保护要求等价组中准码属性取值进行泛化。实验结果表 明, i 该方法可以减 少信 息损 失, 求解得到更加符合数据分析任务需求的局部最优匿名表。
关 键词 :数据 发布 ;隐私 保护 ;k 匿名 ;频繁 项 集 一
中图分 类号 :T39 P0
文献标 志 码 :A
据隐私保护方法 Ap a+。该方法 首先 利用 ( lh , ) l h apa k 生成 原
问题则是指如何在保护数据主体敏感信息不被泄露 的同时 , 保 持发布数据仍然具有足够效 用 的问题。针对 满足 - 匿名模 型 要求的发布表 仍然 可能遭 受 同质攻 击 ( o gn i t c ) hmoeeya ak 而 t t
可获得访 问指定文档 的授权 。针 对 已有 的 J匿名 和 Z j } - - 多样 性
O 引言
数据 发布过程中的隐私泄 露主要 是指在发 布含有 敏感信 息数据过程中造成 的个 人私有 信息 的泄 露 。20 0 2年 Smaa a rt i 等人 首次 指出攻击 者可以通过将 发布数 据 中的某 些非 标志信 息与从其他渠道获得的数据进行链接 , 将具体 的数据对应 到特 定的个体上 , 造成个体 隐私信息 的泄露 ; 进一 步提 出保 护发 布 数据主体隐私的 j匿名模型 J } . 。数据 发布过程 中的隐私保 护

图灵奖

图灵奖

图灵奖简介图灵奖(A.M. Turing Award,又译“杜林奖”),由美国计算机协会(ACM)于1966年设立,又叫“A.M. 图灵奖”,专门奖励那些对计算机事业作出重要贡献的个人。

其名称取自计算机科学的先驱、英国科学家阿兰·麦席森·图灵。

由于图灵奖对获奖条件要求极高,评奖程序又是极严,一般每年只奖励一名计算机科学家,只有极少数年度有两名合作者或在同一方向作出贡献的科学家共享此奖。

因此它是计算机界最负盛名、最崇高的一个奖项,有“计算机界的诺贝尔奖”之称。

每年,美国计算机协会将要求提名人推荐本年度的图灵奖候选人,并附加一份200到500字的文章,说明被提名者为什么应获此奖。

任何人都可成为提名人。

美国计算机协会将组成评选委员会对被提名者进行严格的评审,并最终确定当年的获奖者图灵奖对获奖者的要求极高,评奖程序极严,一般每年只奖励一名计算机科学家,只有极少数年度有两名在同一方向上做出贡献的科学家同时获奖。

因此,尽管“图灵”的奖金数额不算高,但它却是计算机诺贝尔奖”之称。

美国计算机协会1966年图灵奖获得者美国科学家艾伦·佩利(Alan J.Perlis):ALGOL语言和计算机科学的“催生者”。

获奖演说“算法系统的综合”(The Sy nthesis of AlgorithmicSy stem)。

1967年图灵奖获得者英国科学家莫里斯·威尔克斯(Maurice V.Wilkes):世界上第一台存储程序式计算机EDSAC的研制者。

获奖演说“计算机的过去和现在”(ComputerThen and Now)。

1968年图灵奖获得者美国科学家理查德·汉明(RichardW.Hamming):发明了纠错码——汉明码(HammingCode)。

获奖演说“对计算机科学的看法”(On Man‟s View of ComputerScience)。

1969年图灵奖获得者美国科学家马文·明斯基(Marv in L.Minsky):“人工智能之父”,知识的框架理论(Frame Theory)创立者。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Algorithmic Randomness of Closed SetsGeorge BarmpaliasSchool of Mathematics,University of LeedsLeeds LS29JTPaul Brodhead,Douglas Cenzer,Seyyed Dashti Department of Mathematics,University of Florida P.O.Box118105,Gainesville,Florida32611email:cenzer@math.ufl.edu fax:352-392-8357Rebecca WeberDepartment of Mathematics,Dartmouth CollegeHanover,NH03755-3551June8,2007AbstractWe investigate notions of randomness in the space C[2N]of nonempty closed subsets of{0,1}N.A probability measure is given and a version of the Martin-L¨o f test for randomness is defined.Π02random closed sets exist but there are no randomΠ01closed sets.It is shown that any randomclosed set is perfect,has measure0,and has box dimension log243.Arandom closed set has no n-c.e.elements.A closed subset of2N may bedefined as the set of infinite paths through a tree and so the problem ofcompressibility of trees is explored.If T n=T∩{0,1}n,then for anyrandom closed set[T]where T has no dead ends,K(T n)≥n−O(1)butfor any k,K(T n)≤2n−k+O(1),where K(σ)is the prefix-free complexityofσ∈{0,1}∗..1IntroductionThe study of algorithmic randomness has been of great interest in recent years. The basic problem is to quantify the randomness of a single real number;here The authors wish to thank Jack Lutz and Joe Miller for helpful discussions,and the referee for comments that greatly improved the paper.Much of the contents of this paper was discussed during the AIM workshop on Effective Randomness in August,2006.A preliminary version of this paper appeared in the Proceedings of CIE2006[2]Research partially supported by National Science Foundation grants DMS0532644, 0554841and0652732.Keywords:Computability,Randomness,Π01Classes1we will extend this problem to the randomness of the set of paths through a finitely-branching tree.Early in the last century,von Mises [30]suggested that a random real should obey reasonable statistical tests,such as having a roughly equal number of zeroes and ones of the first n bits,in the limit.Thus a random real would be stochastic in modern parlance.If one considers only computable tests,then there are countably many and one can construct a real satisfying all tests.An early approach to randomness was through betting.Effective betting on a random sequence should not allow one’s capital to grow unboundedly.The betting strategies used are constructive martingales,introduced by Ville [29]and implicit in the work of Levy [21],which represent fair double-or-nothing gambling.Martin-L¨o f [23]observed that stochastic properties could be viewed as special kinds of measure zero sets and defined a random real as one which avoids certain effectively presented measure 0sets.That is,a real x ∈2N is Martin-L¨o f randomif for every effective sequence S 1,S 2,...of c.e.open sets with µ(S n )≤2−n ,x /∈ n S n .It is easy to see that this is equivalent to the condition that we get if we replace 2−n above with q n for a computable sequence (q i )of rationals such that lim i q i =0.At the same time Kolmogorov [17]defined a notion of randomness for fi-nite strings based on the concept of incompressibility .The stronger notion of prefix-free complexity was developed by Levin [20],G´a cs [16]and Chaitin [9]and extended to infinite words.Schnorr later proved [26]that the notions of constructive martingale randomness,Martin-L¨o f randomness,and prefix-free randomness are equivalent.In this paper we want to consider algorithmic randomness on the space C of nonempty closed subsets P of 2N .Some definitions are needed.Fix a finite alphabet A ={0,1,...,k −1}=k ;we will make use of the alphabets {0,1}and {0,1,2}.For a finite string σ∈A n ,let |σ|=n .Let λdenote the empty string,which has length 0.A word (a )of length 1is may be identified with the symbol a .For two strings σ,τ,say that τextends σand write σ τif |σ|≤|τ|and σ(i )=τ(i )for i <|σ|.Similarly σ x for x ∈2N means that σ(i )=x (i )for i <|σ|.Let σ τdenote the concatenation of σand τ.Let X n =(x (0),...,x (n −1)).Now a nonempty closed set P may be identified with a tree T P ⊆A ∗as follows.For a finite string σ,let I (σ)denote {x ∈2N :σ⊂x }.Then T P ={σ:P ∩I (σ)=∅}.Note that T P has no dead ends,that is if σ∈T P then either σ 0∈T P or σ 1∈T P .For an arbitrary tree T ⊆A ∗,let [T ]denote the set of infinite paths through T ,that is,x ∈[T ]⇐⇒(∀n )x n ∈T.It is well-known that P ⊆2N is a closed set if and only if P =[T ]for some tree T .P is a Π01class,or effectively closed set,if P =[T ]for some computabletree T .Note that if P is a Π01class,then T P is a Π01set,but not in generalcomputable.P is said to be a decidable Π01class if T P is computable.P is said tobe a strong Π02class ,if T P is a Π02set,or equivalently if P =[T ]for some ∆02tree;2P is said to be a strong∆02class if T P is∆02.Thus anyΠ01class is also a strong ∆02class.Any decidableΠ01class contains a computable element(in particular the leftmost and rightmost paths)and similarly any strong∆02class contains a∆02element.On the other hand,there existΠ01classes with no computable elements and strongΠ02classes with no∆02elements.The complement of aΠ01 class is sometimes called a c.e.open set.There is a natural effective enumeration P0,P1,...of theΠ01classes and thus an enumeration of the c.e.open sets.Thus we can say that a sequence S0,S1,...of c.e.open sets is effective if there is a computable function,f,such that S n=2N−P f(n)for all n.For a detailed development ofΠ01classes,see[7] or[8].For background and terminology on computable functions and computably enumerable sets,see[27].The betting approach to randomness is formalized as follows:Definition1.1(Ville[29]).(i)A martingale is a function m:k<ω→[0,∞)such that for allσ∈k<ω,m(σ)=1kk−1i=0m(σ i).(ii)A martingale m succeeds on X∈k N iflim supn→∞d(X n)=∞.That is,the betting strategy results in an unbounded amount of money made on the k-ary infinite sequence X.(iii)The success set of m is the set S∞[m]of all sequences on which m succeeds.That is,a martingale on2<ωis the capital function of a fair double-or-nothing betting strategy.When working on3<ωthe strategy is triple-or-nothing. Definition1.2.A martingale m is constructive(effective,c.e.)if it is lower semi-computable;that is,if there is a computable functionˆm:k<omega×N→Q such that(i)for allσand t,ˆm(σ,t)≤ˆm(σ,t+1)<m(σ),and(ii)for allσ,lim t→∞ˆm(σ,t)=m(σ).In other words,m(w)is approximated from below by rationals uniformly in w.A sequence in k N is constructive martingale random if no constructive martingale succeeds on it.Someflexibility may be gained by also considering nonmonotonic martin-gales;i.e.,martingales which bet on the bits of a sequence out of order.While for a monotonic martingale only the amount of the next bet is determined from the bits seen previously,for a nonmonotonic martingale both the amount and3the location of the next bet are determined from the bits seen previously (the next bit may precede them,follow them,or lie in the middle).These martingales must obey two rules:the standard fair-betting rule that monotonic martingales obey,and the rule that they never bet on the same bit twice.We refer the reader to Downey and Hirschfeldt [11]for the formal definition.Although a priori allowing nonmonotonic martingales strengthens the no-tion of randomness,since more strategies must be defeated,in fact in the c.e.case they are equivalent.Muchnik,Semenov,and Uspensky [24](Theorem 8.9)show that ML-random sequences defeat all computable nonmonotonic martin-gales (in fact they show this with respect to general measures,not just the coin-toss measure).The proof does not depend on the computability of the martingale,however;the martingale is used to define a Martin-L¨o f test which may be enumerated equally well alongside the enumeration of the martingale.Therefore,as defeating all c.e.nonmonotonic martingales is clearly sufficient to be ML-random,the two are equivalent.Prefix-free randomness for reals is defined as follows.A Turing machine M which takes inputs from A ∗,where A is a finite alphabet,is called prefix-free if it has prefix-free domain dom (M );that is,if σ τare strings in dom (M ),then σmust equal τ.For any finite string τ,the prefix-free complexity of τwith respect to M isK M (τ)=min {|σ|,∞:M (σ)=τ}.There is a universal prefix-free function U such that,for any prefix-free M ,there is a constant c such that for all τK U (τ)≤K M (τ)+c.We let K (τ)=K U (τ)and call it the prefix-free complexity of τ.Then x is called prefix-free random if there is a constant c such that K (x n )≥n −c for all n .This means that the initial segments of x are not compressible .The equivalence of these three notions of randomness (via tests,betting or incompressibility)is a result of Schnorr [26]and is a fundamental result in the theory of algorithmic randomness.While these definitions and results are usually given for binary strings and sequences,they carry over to k -ary strings and sequences as well.See for example Calude [5,6].The following lemma will be needed.Lemma 1.3.If P is a Π01class of measure 0,then P has no random elements.Proof.Let T be a computable tree such that P =[T ],and for each n ,letP n = {I (σ):σ∈T ∩{0,1}n }.Then {P n }n ∈N is an effective sequence ofclopen sets with P = n P n and lim n µ(P n )=µ(P )=0.Furthermore,µ(P n )=2−n |T ∩{0,1}n |and is therefore a computable sequence.Thus {P n }n ∈N is a Martin-L¨o f test,showing that P has no random elements.We will want to use the following result from the literature [30].4Theorem1.4(Von-Mises–Church–Wald Computable Selection The-orem).For any random sequence x and any computable1-1function g,the sequence z(n)=x(g(n))is random.2Martin-L¨o f Randomness of Closed SetsIn this section,we define a measure on the space C of nonempty closed subsets of2N and use this to define the notion of randomness for closed sets.We then obtain several properties of random closed sets.An effective one-to-one correspondence between the space C and the space 3N is defined as follows.Let a closed set Q be given and let T=T Q be the tree without dead ends such that Q=[T].Define the code x=x Q∈{0,1,2}N for Q as follows.Letλ=σ0,σ1,σ2,... enumerate the elements of T in order,first by length and then lexicographically. We now define x=x Q=x T by recursion as follows.For each n,x(n)=2if σ n0andσ n1are both in T,x(n)=1ifσ n0/∈T andσ n1∈T and x(n)=0 ifσ n0∈T andσ n1/∈T.For example,if Q={0,1}N,then x Q=(2,2,...) and if Q={y},then x Q=y.Let Q x denote the unique closed set Q such that x Q=x.Now define the measureµ∗on C byµ∗(X)=µ({x Q:Q∈X}).Informally this means that givenσ∈T Q,there is probability13that bothσ 0∈T Q andσ 1∈T Q and,for i=0,1,there is probability13that onlyσ i∈T Q.In particular,this means that Q∩I(σ)=∅implies that for i=0,1,Q∩I(σ i)=∅with probability23.Let us comment briefly on why some other natural representations were re-jected.Supposefirst that we simply enumerate all strings in{0,1}∗asσ0,σ1,... and then represent T by its characteristic function so that x T(n)=1⇐⇒σn∈T.Then in general a code x might not represent a tree.That is,once we have (01)/∈T we cannot later decide that(011)∈T.Suppose then that we allow the empty closed set by using codes x∈{0,1,2,3}∗and modify our original definition as follows.Let x(n)=i have the same definition as above for i≤2 but let x(n)=3mean that neitherσ n0norσ 1is in rmally,thiswould mean that for i=0,1,σ∈T implies thatσ i∈T with probability12.The advantage here is that we can now represent all trees.But this is also a disadvantage,since for a given closed set P,there are many different trees T with P=[T].The second problem with this approach is that we would have [T]=∅with positive probability.We briefly return to this subject in Section6.Now we will say that a closed set Q is(Martin-L¨o f)random if the code x Q is Martin-L¨o f random.This definition clearly relativizes to any oracle in accordance with the definitions of relative randomness in the Cantor space. Since random reals exist,it follows that random closed sets exists.Furthermore, there are∆02random reals,so we have the following.5Theorem 2.1.There exists a random closed set Q such that TQ is ∆02.Note that if T Q is ∆02,then Q must contain ∆02elements (in particular theleftmost path).Since there exist strong Π02classes with no ∆02elements,thereare strong Π02classes Q such that T Q is not ∆02.The following lemma will be needed throughout.Lemma 2.2.For any Q ⊆2N which is either closed or open,µ∗({P :P ⊆Q })≤µ(Q ).Proof.Let P C (Q )denote {P :P ⊆Q }.We first prove the result for nonempty clopen sets U in place of Q by the following induction.Suppose U = σ∈S I (σ),where S ⊆{0,1}n .For n =1,either µ(U )=1=µ∗(P C (U ))or µ(U )=12and µ∗(P C (Q ))=13.For the induction step,let S i ={σ:i σ∈S },letU i = σ∈S i I (σ),let u i =µ(U i )and let v i =µ∗(P C (U i )),for i =0,1.Then considering the three cases in which S includes both initial branches or just one,we calculate that µ∗(P C (U ))=13(v 0+v 1+v 0v 1).Thus by induction we haveµ∗(P C (U ))≤13(u 0+u 1+u 0u 1).Now2u 0u 1≤u 20+u 21≤u 0+u 1,and thereforeµ∗(P C (U ))≤13(u 0+u 1+u 0u 1)≤12(u 0+u 1)=µ(U ).For a closed set Q ,let Q = n U n ,where U n is clopen and U n +1⊆U n for alln .Then P ⊂Q if and only if P ⊆U n for all n .ThusP C (Q )= n P C (U n ),so thatµ∗(P C (Q ))=lim n →∞µ∗(P C (U n ))≤lim n →∞µ(U n )=µ(Q ).Finally,for an open set Q ,let Q = n U n be the union of an increasing sequenceof clopen sets U n .Then,by compactness,P C (Q )= nP C (U n ),so thatµ∗(P C (Q ))=lim n →∞µ∗(P C (U n ))≤lim n →∞µ(U n )=µ(Q ).This completes the proof of the lemma.6Next we will consider the intersection of a random closed set with an interval I(σ)and the disjoint union of random closed sets.First recall van Lambalgen’s theorem.Theorem2.3(van Lambalgen[28]).The following are equivalent.1.A⊕B is n-random.2.A is n-random and B is n-A-random.3.B is n-random and A is n-B-random.4.A is n-B-random and B is n-A-random.Let us call the coding of a closed set Q by the nodes of its representative tree with no dead ends the canonical code of Q.We wish now to introduce a second method of coding,the ghost code.A ghost code of Q is an infinite ternary string whose terms correspond to all nodes of2<ωin lexicographical order.The terms corresponding to the nodes of Q’s tree(the“canonical nodes”)agree with the corresponding terms in the canonical code;the remaining“ghost nodes”may hold any values.Ghost codes are non-unique,and every closed set has a non-random ghost code(if the closed set itself is random take the code with ghost nodes all equal to zero,say).This method of coding is more convenient for some purposes;for example,we will use it to show that if Q0,Q1are closed sets and Q={0 x:x∈Q0}∪{1 x:x∈Q1},Q is random if and only if the Q i are random relative to each other.The utility of the ghost codes rests on the following correspondence.Theorem2.4.The canonical code of a closed set Q⊆2N is random if and only if Q has some random ghost code.Furthermore,for any y,the canonical code r is y-random if and only if Q has a ghost code which is y-random. Proof.(⇐)Suppose the canonical code of Q is nonrandom.Then there is a c.e. martingale m that succeeds on it.From any initial segmentσof a ghost code g for Q,the subsequenceˆσof exactly the canonical nodes ofσis computable. Therefore it is computable whether the bit of g afterσis canonical or ghost. From m,define the martingale m which bets as follows:m (σ i)=m(ˆσ i)next bit is a canonical node m (σ)next bit is a ghost node.That is,m holds its money on ghost nodes and bets identically to m on canon-ical nodes.It is clear that m succeeds on the ghost code g and thus g is nonrandom.(⇒)Now suppose the canonical code r for Q is random,and let q be an infinite ternary string that is random relative to r(and so by Theorem2.3r⊕q is random).We claim the ghost code g obtained by using the bits of r as the canonical nodes and the bits of q in their original order as the ghost nodes is random.It is clear that g is a ghost code for Q.7Suppose m is a c.e.martingale that bets on g.From m it is straightforward to define a nonmonotonic martingale m which mimics m’s bets exactly but performs them on r⊕q,succeeding whenever m succeeds.As r and q were chosen to be relatively random,this will show g is random.As discussed previously,from g n it is computable whether g(n)will be a ghost node or a canonical node,and which position in g or r it occupies in either case.Therefore,assuming the bits seen so far may be assembled into an initial segmentσof g,m takes the values m(σ i),i<3,as its bets on the corresponding bit of r or g,whichever is appropriate.Having seen that bit,then,it can assemble a(|σ|+1)-length initial segment of g and repeat the process.As m makes identical bets to m and has identical outcomes,since it cannot succeed on r⊕g,m cannot succeed on g and g is random.To relativize(⇒),suppose that r is y-random,so that r⊕y is random by Van Lambalgen’s Theorem2.3.Then in the proof simply choose q to be random relative to r⊕y,and then g will be random relative to y.The other direction relativizes in a straightforward way.The primary purpose of the ghost codes is to remove the dependence on the particular closed set under discussion when interpreting bits of the code as nodes of the tree.This is especially useful when subdividing the tree,as in the following definition.Definition2.5.The tree join of closed sets P0and P1is the closed setQ={0 x:x∈P0}∪{1 x:x∈P1}.Given ghost codes r0,r1for the P i,their tree join r0 r1is the code for Q with the corresponding ghost node values.The standard recursion-theoretic join is defined byr0⊕r1=(r0(0),r1(0),r0(1),r1(1),...).We wish to relate the recursion-theoretic join and the tree join.Lemma2.6.Given two ghost codes r0,r1,the tree join r0 r1is random if and only if the recursion theoretic join r0⊕r1is random.Proof.It is clear that there is a computable permutationπwhich uniformly maps any tree join r0 r1to the recursion-theoretic join r0⊕r1.That is,in r0⊕r1,the entries of r0and r1alternate,whereas r0 r1starts with a2,followed by blocks from r0and r1,as follows.First r0(0),r1(0),then r0(1),r0(2),r1(1), r1(2),and continuing with pairs of blocks of size4,8and so on.The result now follows from the Von-Mises–Church–Wald Computable Selection Theorem 1.4.We now obtain the following corollary of Theorems2.3and2.4and Lemma 2.6.8Corollary2.7.Suppose P i,i=0,1,are closed sets with canonical codes r iand let P be the tree join of P0,P1.Then P is random if and only if r0⊕r1israndom.Proof.(⇐)Suppose that r0⊕r1is random.Then by Theorem2.3,r0and r1are mutually relatively random.By Theorem2.4,P0has a ghost code g0whichis random relative to r1,and so also vice-versa,and then P1has a ghost codeg1which is random relative to g0.Again by2.3,the recursion-theoretic joing0⊕g1is random,so by Theorem2.6the tree join g0 g1is also random,and hence P possesses a random ghost code and is random.(⇒)Suppose now that P is random,and therefore possesses a random ghost codeg.The code g may be thought of as a tree join g0 g1,which is therefore random, and so by Theorem2.6,g0⊕g1is random.By Theorem2.3,the individual codes g0,g1are therefore mutually relatively random.Now by the relatived version of Theorem2.4,r0is random relative to g1.But r1is computable from g1and hence r0is random relative to r1as well.Similarly,r1is r0-random and thus, again by2.3,r⊕r1is random.3Members of Random Closed SetsFor anyfinite stringσof length n,the probability that a closed set Q meetsI(σ)is(23)n.For a computable real y,the sqeuence{Q:Q∩I(y n)=∅}thus forms a Martin-L¨o f test in the space C of closed sets,which shows that y does not belong to any Martin-L¨o f random closed set.That is,for each n,{x:Q x∩I(y n)=∅}is a c.e.open set and has measure(23)n in{0,1,2}N,where Q x is the closed set with code x.We omit the details,since we will now prove a stronger result.For any computable,non-decreasing function f,we say that a realβ∈{0,1}N is f-c.e.if there exists a computable approximating functionφsuch that,for all i∈N,(i)φ(i,0)=0;(ii)lim sφ(i,s)=β(i);(iii){s:φ(i,s+1)=φ(i,s)}has cardinality≤f(i).The reals which are f-c.e.for some computable function f are part of the well-known Ershov hierarchy[14,27].Theorem 3.1.Suppose that f is computable and bounded by a polynomial. Then no random closed set has any f-c.e.paths.Proof.Let f be as above,βan f-c.e.real and P a closed set containingβ.Let φbe the f-approximating function forβ.Also let M n⊆{0,1}n be the set of differentφ-approximations toβ n during the stages.9A priori,|M n |is exponential.However,for a fixed n ,β n can change at most i<n f (i )times,so |M n |is also bounded by a polynomial,i.e.there is k ∈N such that for almost all n ,|M n |<n k .Now letS n = σ∈M n{P |P ∈C &P ∩I (σ)=∅}.(1)Then (S n )is a uniformly c.e.sequence of open sets in the space C of closed sets of 2N and for all n ,P ∈S n .Also for almost all n ,µ∗(S n )≤ σ∈M nµ∗({P |P ∈C &P ∩I (σ)=∅})=|M n |· 23 n ≤n k · 23 n .Since lim n [n k ·(23)n ]=0there is a computable subsequence of (S n )which is aMartin-L¨o f test and so P is notrandom.For any K -trivial real A and any unbounded nondecreasing computable function h ,A is h -c.e.(Nies [25]).Thus it follows from Theorem 3.1that a random closed set can have no K -trivial paths.We observe that Theorem 3.1cannot be extended to ω-c.e.in general,because there are left-c.e.(and hence ω-c.e.)random reals,and by Theorem 3.9each of these belongs to a random closed set.The following theorem uses a method which was used in [18]to show that every random real is effectively bi-immune.Theorem 3.2.If Q is a random closed set,then Q has no isolated elements.Proof.Let Q =[T ]and suppose by way of contradiction that Q contains an isolated path x .Then there is some node σ∈T such that Q ∩I (σ)={x }.For each n ,letS n ={P ∈C :|{τ∈{0,1}n :P ∩I (σ τ)=∅}|=1}.That is,P ∈S n if and only if the tree T P has exactly one extension of σof length n +|σ|.It follows that|P ∩I (σ)|=1⇐⇒(∀n )P ∈S nNow for each n ,S n is a clopen set in C and again by induction,S n has measure (23)n .Thus the sequence S 0,S 1,...is a Martin-L¨o f test.It follows that for some n ,Q /∈S n .Thus there are at least two extensions in T Q of σof length n +|σ|,contradicting the assumption that x was the unique element of Q ∩I (σ).Corollary 3.3.If Q is a random closed set,then Q is perfect and hence has continuum manyelements.Theorem 3.4.Every random closed set contains a random element.10Proof.Suppose that a closed set Q has no random element and consider the following Martin-L¨o f test on the space C:U i={P|P∈C and P⊆V i}where(V i)is a universal Martin-L¨o f test on the Cantor space.By Lemma2.2,µ∗(U i)≤µ(V i)≤2−i so that(U i)is a Martin-L¨o f test on C.But Q∈∩i U i,so Q is notrandom.The previous results might suggest that every element of a random closed set is a random real.However,it turns out that every random closed set contains a non-random real.We need the following classic result of Chernoff[10](a version of Bernoulli’s Weak Law of Large Numbers)here and also for another theorem to follow.See [22]for an exposition.Lemma3.5(Chernoff).Let E be an event which we will refer to as‘success’. If E occurs with probability p,then for any natural numbers n and anyεwith 0≤ε≤1,the probability that out of n mutually independent trials,the number of successes differs from pn by>εpn is≤2−ε2pn/3.Theorem3.6.Not every element of a random closed set is random;in partic-ular,the leftmost and rightmost paths in a random closed set are not random reals.Proof.We will show that,for a random closed set Q,the leftmost path is notstochastically random,that is,the asymptotic frequency of0’s is23.Since aneffectively random real in2N must have asymptotic frequence of12for0’s and1’s,this will suffice to prove that the leftmost path is not random.We define a Martin-L¨o f test as follows.Fix a rationalεsuch that0<ε<1.For each n,let S n be the family of closed sets(that is,codes for closed sets)such that thefirstn bits of the leftmost path have either<23(1−ε)n,or>23(1+ε)n occurrencesof0.By the definition of our probability measure,we haveµ∗(S n)=|m−23n|>23εnnm23m13n−m.It now follows from Chernoff’s Lemma3.5thatµ∗(S n)≤2e−ε22n/9.Thus the measures of the test sets S n have effective limit zero.It is easy to see that the sequence{S n}is computably enumerable.For each n,S n is a clopen set and in fact the union of thefinite family of intervals I(σ)in C such thatσcodes a tree up to level n in which the leftmost path has either<23(1−ε)n,or>23(1+ε)n occurrences of0.Furthermore,S n=p≥nS p is also a Martin-L¨o f test.It follows that for anyrandom closed set Q,and anyε>0,there is an n such that for all m≥n,thefrequency of0’s in thefirst m bits of the leftmost path is always withinεof23.Thus the leftmost path is not effectively random.11Recall that the leftmost and rightmost elements of any strong∆02closed set are∆02.Given Theorems3.4and3.6,we ask:Does a∆02random closed set contain a∆02random path?Theorem3.7.Every random strong∆02closed set contains a random∆02real. Proof.Let Q be a random strong∆02class.By Theorem3.4,Q contains a random real x.Let P be aΠ01class in the Cantor space which contains only randoms and contains x(this exists since the class of random reals is an effective union ofΠ01classes).Note that P∩Q is a non-empty strong∆02class and it follows that the leftmost path of P∩Q is a∆02real which must be random since it belongs to P.Note that the above theorem does not combine with the low basis theorem to establish the existence of a low random real in any random strong∆02class. Thus we pose the question of whether for any random closed set Q,if T Q is low, then Q has a low random element.Next we want tofind a random closed set which does not contain a∆02path. Now it is easy[7,8]to construct a strongΠ02class P of positive measure which contains no∆02elements;of course P must contain a random real since it has measure1.The difficult problem is to construct a random strongΠ02class with no∆02elements.We have the following result in this direction,which yields a random strong∆03closed set with no∆02elements.Theorem3.8.For any set A there is an A-random closed set Q such that T Q≤T A but Q has no elements≤T A .Proof.It is enough if we prove the claim for A=∅because the argument relativises to any oracle A in a straightforward way.For A=∅we use afinite injury construction over∅ to construct Q with the above properties.In the construction we will∅ -approximate the canonical code of a tree T which has no∆02paths.To make sure that the tree T is random wefix aΠ01class P of positive measure in the space3N(where the code for T lies)which contains only randoms,and we make sure that at every stage our approximation(as afinite ternary string)to T’s canonical code can be extended to a path in P.Then by compactness the canonical code of our tree will be in P and so the tree will be random.The changes in the approximations are motivated by the requirements: R e:ifΦ∅ e is total then the real it defines is not in[T].Letαs be afinite string approximation of the canonical codeαwe are building. We will have|αs|=s.Strategy R e will come into power after stage e and will restrainαup to some r e≥e(the default value is r e[0]=e).Also it might request some changes inαafter the e-th bit.We start withα0=∅and at stage s+1,assuming inductively thatαs↓and[αs]∩P=∅we ask for the least i<s such that R i requires attention.This happens if(i)The longest defined initial segmentτofΦ∅is larger than ever before;i,s+112。

相关文档
最新文档