人教版九年级数学上册23.2 中心对称(第1课时)公开课优质教案
人教版九年级数学上册23.2.2.1《中心对称》教学设计

人教版九年级数学上册23.2.2.1《中心对称》教学设计一. 教材分析人教版九年级数学上册23.2.2.1《中心对称》是中心对称图形的相关知识,主要介绍了中心对称图形的定义、性质及运用。
通过本节课的学习,学生能够理解中心对称图形的概念,掌握中心对称图形的性质,并能运用中心对称解决实际问题。
二. 学情分析九年级的学生已经具备了一定的图形认知能力和空间想象力,他们对平面几何图形有一定的了解。
但是,对于中心对称图形的概念和性质,学生可能初次接触,需要通过实例和操作来加深理解。
此外,学生可能对实际运用中心对称解决问题的关键点把握不准,需要教师的引导和启发。
三. 教学目标1.知识与技能:理解中心对称图形的定义,掌握中心对称图形的性质,并能运用中心对称解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象力、逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:中心对称图形的定义、性质及运用。
2.难点:中心对称图形的性质的证明和运用。
五. 教学方法1.情境教学法:通过生活中的实例,引发学生的兴趣,引导学生主动探究中心对称图形的性质。
2.操作教学法:让学生通过实际操作,观察、总结中心对称图形的性质。
3.合作学习法:引导学生分组讨论,共同解决问题,培养学生的团队合作精神。
六. 教学准备1.教学素材:准备相关的图片、实例,制作PPT。
2.教学工具:黑板、粉笔、多媒体设备。
七. 教学过程1.导入(5分钟)利用生活中的实例,如剪纸、城市规划等,引出中心对称图形的概念,激发学生的兴趣。
2.呈现(10分钟)通过PPT展示中心对称图形的定义和性质,引导学生观察、思考。
3.操练(10分钟)让学生分组讨论,每组找一个中心对称图形,分析其性质,并制作PPT进行展示。
教师在这个过程中给予适当的引导和指导。
九年级数学人教版上册23.2.1中心对称优秀教学案例

1.学生能够对数学产生兴趣和热情,培养积极的情感态度。
2.学生能够树立正确的数学观念,认识数学的重要性和价值。
3.学生能够培养坚持不懈、勇于探索的学习精神,提高他们的自主学习能力。
在教学过程中,我会注重激发学生的学习兴趣,引导他们认识数学的价值,培养他们的情感态度和价值观。同时,我会给予学生积极的评价和鼓励,帮助他们建立自信心,培养他们的自主学习能力。
九年级数学人教版上册23.2.1中心对称优秀教学案例
一、案例背景
本节内容为九年级数学人教版上册23.2.1中心对称,是在学生已经掌握了平面直角坐标系、图形的平移和旋转等知识的基础上进行学习的。中心对称是数学中的一个重要概念,它不仅可以帮助学生更好地理解图形的变换,还可以培养学生的空间想象能力和逻辑思维能力。
三、教学策略
(一)情景创设
1.利用多媒体展示中心对称的实例,如对称的花朵、建筑等,引导学生感受中心对称的美感。
2.通过实际操作,让学生体验中心对称的变换过程,如折纸、绘画等,激发学生的学习兴趣。
3.创设问题情境,如寻找生活中的中心对称图形,让学生在实践中发现和理解中心对称的概念。
在情景创设中,我会注重引导学生参与其中,让他们在实践中感受和理解中心对称的知识,从而激发他们的学习兴趣和动机。
导入新课的过程中,我会注重激发学生的学习兴趣和好奇心,引发他们的思考和探究欲望,为后续的新知识学习做好铺垫。
(二)讲授新知
1.给出中心对称的定义和性质,通过具体的例子和图示,让学生理解中心对称的概念。
2.讲解中心对称图形的变换规律,如对称中心的选取、图形的平移等,让学生掌握中心对称的变换方法。
3.结合实际问题,展示中心对称在实际中的应用,如设计图案、解决几何问题等,让学生体验中心对称的价值。
九年级数学上册(人教版)23.2中心对称(第一课时)优秀教学案例

根据学生的实际情况,九年级的学生已经具备了一定的几何学习基础,对几何语言和图形变换有了一定的认识,但如何将已有的知识体系与中心对称的概念有效结合,如何在教学中兼顾知识的系统性和学生个体差异,是本节课教学设计中需要关注的问题。因此,一个优秀的教学案例应当充分调动学生的积极性,设计富有启发性和层次性的教学活动,让学生在轻松愉快的氛围中掌握中心对称的知识,发展他们的数学思维。
2.学生通过观察、操作、思考等活动,培养空间想象能力和逻辑推理能力。
3.学生能够在实际问题中运用中心对称的知识,提高解决实际问题的能力。
(三)情感态度与价值观
1.学生能够积极参与课堂活动,对中心对称的知识产生兴趣,树立自信心。
2.学生在探究中心对称的过程中,培养勇于探索、坚持不懈的精神,增强合作意识。
(四)总结归纳
1.教师可以引导学生进行总结归纳,让学生将所学到的中心对称的性质进行梳理和总结。例如,可以提出一个问题:“你们觉得中心对称图形具有哪些重要的性质?请进行总结归纳。”
2.教师可以对学生的总结归纳进行点评和补充,确保学生能够全面理解和掌握中心对称的性质。
(五)作业小结
1.教师可以布置一些与中心对称相关的作业,让学生巩固所学知识。例如,可以设计一些练习题,让学生运用中心对称的知识进行解答。
2.教师可以引导学生进行小组合作探究,让学生通过合作完成一些实际问题或者任务。例如,可以设计一个小组任务,要求每个小组设计一个中心对称的图形,并解释其中心对称的性质。
人教版数学九年级上册23.2.1中心对称教学设计

1.教学活动:教师引导学生回顾本节课所学内容,总结中心对称的定义、性质和寻找对称中心的方法。
2.归纳要点:
-中心对称是平面几何中的一种重要对称性;
-中心对称图形具有独特的性质,如对称中心唯一、对应点距离相等等;
-寻找对称中心的方法有观察法、解析法等;
-中心对称在生活中的应用广泛,如设计图案、解决实际问题等。
(二)过程与方法
1.引导学生通过观察、思考、讨论的方式,发现中心对称图形的特点和性质;
2.设计丰富的教学活动,如小组合作、动手操作等,让学生在实践中掌握中心对称的知识;
3.利用现代教育技术手段,如多媒体课件、网络资源等,直观演示中心对称的过程,帮助学生形成清晰的认识;
4.引导学生运用中心对称的知识解决实际问题,提高学生解决问题的能力和创新意识。
2.学生在寻找对称中心、判断中心对称图形时的思维方法,帮助他们建立正确的思维模式;
3.学生在解决实际问题时,对中心对称知识的应用能力,引导他们运用所学知识解决具体问题;
4.针对不同学生的学习特点和能力水平,制定合适的教学策略,使每个学生都能在原有基础上得到提高。
三、教学重难点和教学设想
(一)教学重难点
2.提出问题:这些图案有什么共同之处?它们是如何形成的?
3.学生回答:图案通过对称轴进行折叠或旋转,两边完全一致。
4.引入新课:今天我们将学习一种新的对称性——中心对称。
(二)讲授新知
1.教学活动:教师引导学生回顾已学的轴对称知识,然后介绍中心对称的定义和性质。
2.讲解中心对称的定义:在平面内,存在一个点,使得该点与平面内任意一点关于这个点对称,这样的对称性称为中心对称。
-总结反馈:对本节课的内容进行总结,了解学生的学习情况,针对问题进行反馈和指导。
最新人教版初中数学九年级上册《23.2.1 中心对称》精品教学课件

布置作业
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
总结点评 同学们,我们今天的探索很成
功,但探索远还没有结束,让我们 在今后的学习生涯中一起慢慢去发 现新大陆吧!
再见
探究新知
【思考】两个图形成中心对称需要具备什么条件?
两个图形成中心对称须具备三个条件: ①能找到一个对称中心; ②旋转角为180°; ③这两个图形旋转后能重合.
探究新知
填一填: 如图,△OCD与△OAB关于点O中心对称 ,则 __O__是对称中心,点A与___C__是对称点, 点B 与__D__是对称点. C
就是成轴对称的图形. (×)
课堂检测
2. 如下所示的4组图形中,左边数字与右边数字成中心 对称的有( D )
A.1组
B.2组
C.3组
D.4组
3.如图,已知△AOB与△DOC成中心对称,△AOB的面积
是6,AB=3,则△DOC中CD边上的高是( B )
A.2
B.4
C.6
D.8
C
D
O
A
B
课堂检测
能力提升题
A′ B′
O
C′
C
B A
探究新知
A′ B′
O
C′
C
B A
探究新知
A′ B′
O
C′
C
B
有什么发现? A
探究新知
【观察】观察下列图形的运动,说一说它们有什么 共同点.你发现了什么?
C
O
D
O
B
旋转角为180°
重合
A
探究新知
你发现了什么?
把一个图形 绕着某一点旋转180° ,如果 它 能够与另一个图形重合 ,那么就说这两个图 形关于这个点 对称 或 中心对称 ,这个点 叫做 对称中心(简称中心) . 这两个图形在旋 转后能重合的对应点叫做关于对称中心的对称点.
人教版九年级数学上册23.2.2.1《中心对称》教案

人教版九年级数学上册23.2.2.1《中心对称》教案一. 教材分析人教版九年级数学上册第23章《中心对称》是学生在学习了平面几何相关知识的基础上,进一步引导学生探索中心对称的性质和运用。
本节内容通过具体的实例,让学生了解中心对称的定义,掌握中心对称图形的性质,并能够运用中心对称解决实际问题。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生动手操作和观察分析的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的了解。
但学生在学习过程中,可能对中心对称的概念和性质理解不够深入,需要通过大量的练习和操作来巩固。
此外,学生对实际问题的解决能力有待提高,需要通过具体的例子来引导和培养。
三. 教学目标1.了解中心对称的定义,掌握中心对称图形的性质。
2.能够运用中心对称解决实际问题,提高学生的应用能力。
3.培养学生的动手操作和观察分析能力,激发学生学习几何的兴趣。
四. 教学重难点1.中心对称的定义和性质。
2.中心对称在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过具体的实例和问题,引导学生探索中心对称的性质,培养学生的动手操作和观察分析能力。
同时,学生进行小组合作学习,鼓励学生发表自己的观点和思考,提高学生的合作能力和沟通能力。
六. 教学准备1.准备相关的图片和实例,用于引导学生探索中心对称的性质。
2.准备一些实际问题,用于巩固学生对中心对称的应用。
3.准备黑板和粉笔,用于板书重要的概念和性质。
七. 教学过程1.导入(5分钟)通过展示一些图片,如天安门、蝴蝶等,引导学生观察这些图片的共同特点,引发学生对中心对称的思考。
让学生发表自己的观点,教师总结并引入中心对称的概念。
2.呈现(10分钟)教师通过展示一些实例,如将一张纸折叠后,对折线两侧的图形完全重合,引导学生探索中心对称的性质。
教师引导学生动手操作,观察分析中心对称图形的性质,如对称轴的性质、对称点的性质等。
人教版九年级数学上册23.2.1中心对称一等奖优秀教学设计

人教版义务教育课程标准实验教科书九年级上册23.2.1中心对称一、教材分析1、地位作用:中心对称图形是“轴对称图形”、“图形的平移与旋转”知识的延伸与拓展。
通过本节课的学习,使学生对“对称图形”的认识更加完善,同时又向学生渗透了“旋转变换”的思想,使学生学会用运动的观点研究问题,发展学生的空间智能。
为日后学习立体几何打下坚实的基础。
本节的内容主要是在旋转的基础上来认识中心对称及其它的性质。
教学时,根据教材编写思路,自制教具创造性使用新教材中的问题情景,把教材中不动的问题情景转化为学生互动的问题情景,使学生在互动中去感受。
2、教学目标:(1)通过具体实例认识两个图形关于某一点或中心对称的本质:就是一个图形绕一点旋转180°而成。
(2)掌握成中心对称的两个图形的性质,以及利用两种不同方式来作出中心对称的图形。
(3)通过观察、发现、交流、探索等一系列活动,培养学生的创新精神、提升学生的观察智能、语言智能、空间智能及数理逻辑智能。
3、教学重、难点教学重点:中心对称图形定义及其基本性质。
教学难点:运用中心对称图形的有关概念和基本性质解决问题。
突破难点的方法:让学生分组讨论,合作探究,引导学生对实际问题情景的全面的分析。
二、教学准备:多媒体课件,导学案三、教学过程:活动一、观察(1)把其中一个图案绕点O旋转180°,你有什么发现?(2)线段AC,BD相交于点O,OA=OC,OB=OD.把△OCD绕点O旋转180°,你有什么发现?学生回答后教师点评归纳:像这样把一个图形绕着某一点旋转180度,如果它能够和另一个图形重合,那么,我们就说这两个图关于这个点对称或中心对称,这个点就叫对称中心,这两个图形中的对应点,叫做关于中心的对称点.例对称中心是______,点A的对称点是______,点D的对称点是______。
活动二、探究1、思考、观察:C.A.E三点的位置关系怎样?线段AC.AE的大小关系呢?(图见课件)我们可以发现::C.A.E 在一条直线上;AC=AE。
人教版数学九年级上册23.2.1中心对称教案

《23.2.1中心对称》教学设计一、内容和内容解析(一)内容23.2.1中心对称(第1课时)(二)内容解析中心对称是在学生已掌握旋转变换的基础上,由一般到特殊的方法归纳引出中心对称是特殊的旋转变换.在探索中心对称的概念、性质及应用上,让学生经历动手操作、观察、猜想、归纳等方法,进一步培养学生的自主学习能力以及合作、探究的精神,并在这个过程中增加一定的审美体验.中心对称承接平移、轴对称、旋转等知识,同时是下节学习中心对称图形的基础,又是后续学习几何的桥梁纽带.二、目标和目标解析(一)目标1.通过具体实例了解中心对称的概念;2.掌握成中心对称的两个图形的性质;3.探究作一个图形关于某点的中心对称图形的方法,利用中心对称的性质确定对称中心的位置;4.对日常生活中与中心对称有关的图形进行观察、分析、欣赏并动手操作、画图,感受生活中的对称美.(二)目标解析1.先欣赏图片,让学生形成对中心对称的初步认识,再借助电脑演示,帮助学生形成中心对称的概念;2.利用三角板画图,通过实际操作让学生感受中心对称的性质,促进形象思维向抽象思维的转化;3.通过图案设计的环节,让学生体会生活中的对称美.4.通过游戏,学生感受到中心对称在生活中的应用,也体会了“数学来源于生活又服务于生活”的数学理念.三、教学问题诊断分析在经历了动画演示,动手操作、观察实验的过程后,发现在运用精准的数学语言概括中心对称及其性质的过程中,学生概括能力不足;另一方面,在利用性质作一个图形关于某点的对称图形的过程中,学生存在动手操作能力不足及作法表述不够准确的问题.四、教学支持条件分析本节课采取直观演示法和自主探究法,借助多媒体,动态演示中心对称的形成过程,帮助学生掌握中心对称的概念,并通过学生自主操作、探究,掌握中心对称的性质以及作一个图形关于某点的对称图形.利用多媒体呈现练习题,以节省板书时间,提高课堂教学效率.五、教学过程设计(一)创设情境,导入新课问题1:观察下面每副图片中的两个图形,你有什么发现?它们具有怎样的位置关系?问题2:下面每副图片中的两个图形还成轴对称吗?若不能,它们通过怎样的变换能相互重合呢?说明:教师提问,学生观察图片,发现共同点,形成对中心对称的初步认识.【设计意图】通过欣赏图片,对比轴对称、旋转,发现特殊的旋转,形成对中心对称的初步认识(即中心对称是特殊的旋转变换),从而导入课题.(二)操作观察探究新知活动1:研究问题,形成概念(1)如图1,把其中一个图案绕点O旋转180°,你有什么发现?(2)如图2,线段AC与BD相交于点O,OA=OC,OB=OD,把△O AB绕点O旋转180º,你有什么发现?图1 图2思考:你能说说这两个旋转的共同点吗?①旋转中心是哪一点?②旋转角是多少?③涉及几个图形?④旋转前后两个图形能重合吗?说明:学生观察动画演示,初步认识什么是中心对称.【设计意图】通过动画演示,让学生发现两个图形间的特殊关系,为归纳中心对称的定义做好准备.(3)归纳:中心对称的定义:把一个图形绕某一个点旋转180º,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称;这个点叫做对称中心(简称中心).这两个图形在旋转后能重合的对应点叫做关于中心的对称点.活动2:实践操作,探究性质1.如图,旋转三角板,画关于点O对称的两个三角形;第一步,画出△ABC;第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A'B'C';第三步,移开三角板.这样画出的△ABC与△A'B'C',关于点O对称.思考1:连接OA和OA',则∠AOA'=180°.说明点O、A、A'有何位置关系?线段OA、OA'有什么关系? 说明了点O在线段AA'的什么位置?思考2:△ABC与△A'B'C'有什么关系?图3 图4 图5我们可以发现:(1)点O、A、A'三点共线,且 OA=OA',∴点O是AA′的中点;同理,点O也是线段BB',CC'的中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23.2 中心对称(1)
第一课时
教学内容
两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题.
教学目标
了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题.
复习运用旋转知识作图,•旋转角度变化,•设计出不同的美丽图案来引入旋转180°的特殊旋转──中心对称的概念,并运用它解决一些实际问题.
重难点、关键
1.重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题.
2.难点与关键:从一般旋转中导入中心对称.
教具、学具准备
小黑板、三角尺
教学过程
一、复习引入
请同学们独立完成下题.
如图,△ABC 绕点O 旋转,使点A 旋转到点D 处,画出旋转后的三角形,•并写出简要作法. 老师点评:分析,本题已知旋转后点A 的对应点是点D ,且旋
转中心也已知,所以关键是找出旋转角和旋转方向.显然,逆时针
或顺时针旋转都符合要求,•一般我们选择小于180°的旋转角为
宜,故本题选择的旋转方向为顺时针方向;•已知一对对应点和旋转
中心,很容易确定旋转角.如图,连结OA 、OD ,则∠AOD 即为旋转
角.接下来根据“任意一对对应点与旋转中心的连线所成的角都是
旋转角”和“对应点到旋转中心的距离相等”这两个依据来作图即
可.
作法:(1)连结OA 、OB 、OC 、OD ;
(2)分别以OB 、OB 为边作∠BOM=∠CON=∠AOD ;
(3)分别截取OE=OB ,OF=OC ;
(4)依次连结DE 、EF 、FD ;
即:△DEF就是所求作的三角形,如图所示.
二、探索新知
问题:作出如图的两个图形绕点O旋转180°的图案,并回答下列的问题:
1.以O为旋转中心,旋转180°后两个图形是否重合?
2.各对称点绕O旋转180°后,这三点是否在一条直线上?
老师点评:可以发现,如图所示的两个图案绕O旋转180°都是重合的,即甲图与乙图重合,△OAB 与△COD重合.
像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那
么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.
这两个图形中的对应点叫做关于中心的对称点.
例1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.
(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.
(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点.
分析:(1)根据中心对称的定义便直接可知这两个图形是中心对称图形,•对称中心就是旋转中心.(3)旋转后的对应点,便是中心的对称点.
解:作法:(1)延长AD,并且使得DA′=AD
(2)同样可得:BD=B′D,CD=C′D
(3)连结A′B′、B′C′、C′D,则四边形A′B′C′D为所求的四边形,如图23-44所示.
答:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D点.
(2)A、B、C、D关于中心D的对称点是A′、B′、C′、D′,这里的D′与D重合.
例2.如图,已知AD是△ABC的中线,画出以点D为对称中心,与△ABD•成中心对称的三角形.
分析:因为D是对称中心且AD是△ABC的中线,所以C、B为一对的对应点,
因此,只要再画出A关于D的对应点即可.
解:(1)延长AD,且使AD=DA′,因为C点关于D的中心对称点是B(C′),B•点关于中心D的对称点为C(B′)
(2)连结A′B′、A′C′.
则△A′B′C′为所求作的三角形,如图所示.
三、巩固练习
教材P74 练习2.
四、应用拓展
例3.如衅,在△ABC中,∠C=70°,BC=4,AC=4,现将△ABC沿CB方向平移到
△A′B′C′的位置.
(1)若平移的距离为3,求△ABC与△A′B′C′重叠部分的面积.
(2)若平移的距离为x(0≤x≤4),求△ABC与△A′B′C′重叠部分的面积y,写出y与x的关系式.分析:(1)∵BC=4,AC=4
∴△ABC是等腰直角三角形,易得△BDC′也是等腰直角三角形且BC′=1
(2)∵平移的距离为x,∴BC′=4-x
五、归纳小结(学生归纳,老师点评)
本节课应掌握:1.中心对称及对称中心的概念;2.关于中心的对称点的概念及其运用.
六、布置作业
1.教材练习1.。