力系、平衡方程

合集下载

理论力学第3章 力系的平衡条件与平衡方程

理论力学第3章 力系的平衡条件与平衡方程

10
例题二的解答
解:选取研究对象:杆CE(带有销 钉D)以及滑轮、绳索、重物组成 的系统(小系统)受力分析如图, 列平衡方程:
M D (F ) 0 M C (F ) 0 M B (F ) 0
( F C cos ) CD F ( DE R ) PR 0 F Dx DC F ( CE R ) PR 0 F BD F ( DE R ) P ( DB R ) 0 Dy
2012年11月3日星期六
北京邮电大学自动化学院
29
滚动摩擦力偶的性质
滚动摩擦力偶M 具有如下性质(与滑动摩擦力性质类似): ◆ 其大小由平衡条件确定; ◆ 转向与滚动趋势相反; ◆ 当滚子处于将滚未滚的平衡临界状态时, M = M max =δFN
式中:δ —滚动摩擦系数,它的量纲为长度; FN —法向反力(一般由平衡条件确定)。
q (2a b) 2a
2
YA q (2a b)
16
2012年11月3日星期六
北京邮电大学自动化学院
课堂练习3
多跨静定梁由AB梁和BC梁用中间铰B连接而成,支撑和荷 载情况如图所示,已知P = 20kN,q=5kN⋅m,α = 45°。求 支座A、C的反力和中间铰B处的反力。
2012年11月3日星期六
x
xC
x
2012年11月3日星期六
北京邮电大学自动化学院
5
平行分布线载荷的简化
Q
q
1、均布荷载 Q=ql
l 2
l 2
Q
q
2、三角形荷载 Q=ql /2
2l 3
l 3
Q
3、梯形荷载 Q=(q1+q2)l /2 (自己求合力的位置)

第四章:力系的平衡条件与平衡方程

第四章:力系的平衡条件与平衡方程

未知量个数 <= 独立平衡方程数 静定
(全部未知量可以由平衡方程完全求解)
未知量个数 > 独立平衡方程数 静不定或超静定
(未知量不能全部由平衡方程求解)
物体系的平衡·静定和超静定问题
未知量个数 <= 独立平衡方程数 静定
(全部未知量可以由平衡方程完全求解)
未知量个数 > 独立平衡方程数 静不定或超静定
∑ M B = 0 −8FAy + 5*8 +10*6 +10* 4 +10* 2 = 0
得 FAy = 20kN ∑ Fiy = 0 FAy + FBy − 40 = 0
得 FBy = 20kN
求各杆内力
取节点A
⎧⎪∑ ⎨⎪⎩∑
Fiy Fix
= =
0 0
→ →
FAD FAC
取节点C
⎧⎪∑ ⎨⎪⎩∑
解得 P3max=350kN
22mm 22mm
所以,平衡载重P3取值范围为:
75kN ≤ P3 ≤ 350kN
(2)P3=180kN时:
∑ M A = 0 4P3 − 2P2 −14P1 + 4FB = 0
解得 FB=870kN
∑ Fy = 0 FA + FB − P1 − P2 − P3 = 0
∑M =0
FA'
⋅r
sinθ
− M2
=
0
解得 M 2 = 8kN ⋅m
FB = FA = 8kN

已知:OA=R,AB=
l,
r F
,
不计物体自重与摩擦,系统在图示位置平衡;
求: 力偶矩M 的大小,轴承O处的约 束力,连杆AB受力,滑块给导 轨的侧压力.

《工程力学:第三章-力系的平衡条件和平衡方程》解析

《工程力学:第三章-力系的平衡条件和平衡方程》解析

工程力学 1. 选择研究对象。以吊车大梁 AB为研究对象,进行受力分析 (如图所示) 2.建立平衡方程
第三章 力系的平衡条件和平衡方程
FAX FTB cos 0 Fy 0
F
x
0
: (1)
M
FAy FQ FP FTB sin 0
A
(F ) 0
工程力学
第三章 力系的平衡条件和平衡方程
§3.3 考虑摩擦时的平衡问题
3.3.1 滑动摩擦定律
概念:
静摩擦力:F 最大静摩擦力:Fmax 滑动摩擦力: Fd
静摩擦因数:
水平拉力: Fp
Fmax f s FN
fs
工程力学
第三章 力系的平衡条件和平衡方程
3.3.2 考虑摩擦时构件的平衡问题
考虑摩擦力时与不考虑摩擦力时的平衡 解题方法和过程基本相同, 但是要注意摩擦力的方向与运动趋势方向相反;且在滑动之前摩擦 力不是一个定值,而是在一定范围内取值。
l l sin 0
(3)
工程力学
第三章 力系的平衡条件和平衡方程
• 联立方程(1)(2)(3)得:
FAX
FQ FP 3 l x 2
(2)由FTB结果可以看出,当x=L时,即当电动机移动到大梁右 端B点时,钢索所受的拉力最大,最大值为
非静定问题:未知数的数目多于等于独立的平衡方程的数目,不能 解出所有未知量。相应的结构为非静定结构或超静定结构。
会判断静定问题和非静定问题
工程力学
第三章 力系的平衡条件和平衡方程
工程力学
第三章 力系的平衡条件和平衡方程
3.2.2 刚体系统平衡问题的特点与解法
1.整体平衡与局部平衡的概念 系统如果整体是平衡的,则组成系统的每一个局部以及每一个 2.研究对象有多种选择 刚体也必然是平衡的。

第三章力系的平衡介绍

第三章力系的平衡介绍

工 程 力 学
§3-2
平面力系的平衡条件
F1 Fn F3
1、平面任意力系的平衡方程 F2 平面任意力系平衡的充要条件是: 力系的主矢和对任意点的主矩都等于零。
0 FR
第 三 章 力 系 的 平 衡
Mo 0
平面任意力系
FR ( Fx ) 2 ( Fy ) 2
M O M O (F )
2
0
F
x
0,
F
y
0,
F
z
0
即:汇交力系的平衡条件是力系中所有各力在各个坐
标轴中每一轴上的投影的代数和分别等于零。
工 程 力 学
三、空间平行力系的平衡方程
第 三 章 力 系 的 平 衡
F
z
0,
M (F ) 0, M (F ) 0
x
y
工 程 力 学
四、空间力偶系的平衡方程
第 三 章 力 系 的 平 衡
工 程 力 学
例:如图所示为一种起吊装置的结构简图。图中尺寸d , 载荷F, <FAD =60均为已知。若不计各杆自重,试求杆AF与杆AD在各 自的约束处所受的约束力。
第 三 章 力 系 的 平 衡
工 程 力 学
第 三 章 力 系 的 平 衡
工 程 力 学
例:滑轮支架系统如图所示。已知G,a,r,θ ,其余物体重 量不计,试求A和B的约束力。
工 程 力 学
3、平面汇交力系的平衡方程
F
x
0,
F
y
0
4、平面力偶系的平衡条件
第 三 章 力 系 的 平 衡
M 0
即:力偶系各力偶力偶矩的代数和等于零。
工 程 力 学

理论力学:第3 章 力系的平衡

理论力学:第3 章 力系的平衡
第 3 章 力系的平衡
力系平衡是静力学研究的主要内容之一,也是静力学最重要的内容。其中平面力系的平衡又
是重要之重要内容,平面物系的平衡又是重要之重要内容。
事实上我们已经得到力系的平衡条件(充要):
R

0,M O

0 。下面将其写成代数方程即
平衡方程,用其解决具体问题。
3.1 平面力系的平衡条件与平衡方程
受力图如图(c),列解方程:
Y 0, P cos G sin 0
P
使 P 最小,则

G sin cos

G sin cos( )
cos( ) 1,

arctan 3
3652'
Pmin

G sin

20

3 5

12kN
4
另解:(几何法) 画自行封闭的力三角形,如图(d),则
Q

G(b
e) 50b a

Hale Waihona Puke 350.0kN∴ 使起重机正常工作的平衡重为:333.3kN≤Q≤350.0kN 注:也可按临界平衡状态考虑,求 Pmin 和 Pmax。 静力学的应用:
学习静力学有何用处?——上面几个例题有所反映。
例 1:碾子问题——满足工作条件的载荷设计。
例 2:梁平衡问题——结构静态设计(一类重要工程问题)。
分由由由图图图析(((:acb)))汽:::车受平面平行力mmm系EBB(((,FFF))易) 列解000,,,方程。下shl面只给出方程:
例 4 平行力系典型题目,稳定性问题且求范围。 行动式起重机的稳定性极其重要,要求具有很好的稳定裕度,满载时不向右翻倒,空载时不 向左翻倒。已知自重 G = 500kN,最大载荷 Pmax = 210kN,各种尺寸为:轨距 b = 3m,e = 1.5m, l = 10m,a = 6m,试设计平衡重 Q,使起重机能正常工作,且轨道反力不小于 50kN。

第3章力系平衡方程

第3章力系平衡方程
FR
F F
2 x y
2

38.822 3.82
(kN) 33
主矢FR′的方向为
tan
F F
y

3.8 32.82
0.1158
6 .6
x
主矢FR′在第四象限内,与x轴的夹角为6.6°。
2019/1/5
(2)求主矩MO 力系对点O的主矩为 MO=∑MO(F) =-F1sin20°· b-F2cos30°· b + F2sin30°· a +m =-20×0.342×10- 30×0.866×10+30×0.5×6+100 =-138(kN· m) 顺时针方向。
图3-5
2019/1/5
【例3-2】图
【解】 (1)建立直角坐标系,计算合力在x轴和y轴 上的投影
FRx Fx F1 cos30 F2 cos60 F3 cos45 F4 cos45
=200×0.866-300×0.5-100×0.707+250×0.707 =129.25N
MO(FR)= MO(F1)+ MO(F2)+…+ MO(Fn) =∑MO(F)
(3-6)
2019/1/5
【例3-5】 如图3-9所示,每1m长挡土墙所受土压 力的合力为FR,如FR=200kN,求土压力FR使挡土墙倾覆的 力矩。 【解】土压力FR可使挡土墙绕 A点倾覆,故求土压力FR使墙倾覆 的力矩,就是求FR对A点的力矩。 由已知尺寸求力臂d比较麻烦,但 如果将FR分解为两个力F1和F2,则 两分力的力臂是已知的,故由式 (3-6)可得
图3-16
力的平移定理
2019/1/5

工程力学第三章-力系的平衡

工程力学第三章-力系的平衡

将上式两边向x、y、z 轴投影,可得平衡方程
F F F
可以求解3个未知量。
x y
z
0 0 0
• 2.平面汇交力系
力系的平衡
• 力偶系的平衡方程 • 1.空间力偶系
平衡的充要条件(几何条件) M Mi 0 将上式两边向x、y、z 轴投影,可得平衡方程
M M M
可以求解3个未知量。
ix iy iz
0 0 0
• 2.平面力偶系
力系的平衡
• 平衡的充要条件:力偶系中各力偶矩的代数和等于零.
m 0
i
• 任意力系的平衡方程 空间任意力系: • 平衡的充要条件:力系的主矢和对任一点的主矩均为零。
FR 0
MO 0
G3 a
e
G 3(a b) FNAb G1e G 2L 0 G 3(a b) G1e G 2L FNA 2 b
由(1)、(2)式 得:
G1 G2 L
G1e G 2L G3 ab
3
A FN A b
B FN B
(2)空载时
不翻倒条件:FNB≥0 (4) 由 mA 0 得:
FAB = 45 kN
600
y B TBC 15 15 30 TBD
0 0 0
x
C
D
150
B
300
TBD=G E
A
E
FAB G
解题技巧及说明:
1、一般地,对于只受三个力作用的物体,且角度特殊时用 几 何法(解力三角形)比较简便。 2、一般对于受多个力作用的物体,且角度不特殊或特殊, 都用解析法。 3、投影轴常选择与未知力垂直,最好使每个方程中只有一 个未知数。

工程力学第二章(力系的平衡)

工程力学第二章(力系的平衡)

6m
F 3m 1m
E
G
6m
MAF 0,
A
FAx
FBy 12 m G 1 m
FAy
F 9m G 11 m 0
B
FBx
FBy
得: FBy= 47.5 kN
例7 如图所示为一悬臂梁,A 为固定端,设
梁上受强度为 q 的均布载荷作用,在自由端B 受一集中力 F 和一力偶 M 作用,梁的跨度为l, 求固定端的约束力。
M
F
q
45
B
A
l
解:1、 取梁为研究对象,受力分析如图
2、 选取坐标系,列平衡方程
q
M
F
45
Fx 0, FAx F cos 45o 0
第二章 力系的平衡
本章重点:
1、力系平衡方程及其应用 2、物体系统平衡问题分析 3、桁架内力分析
§2-1 力系的平衡方程
F2
z
F1
MO
z
FR′
y o
y o
x
Fn
x
空间任意力系向任意点O简化为: 主矢 FR′=∑Fi 主矩 MO=∑MO(Fi )
平衡的充分必要条件: FR' 0 Mo 0
注意:对任意一点的主矩为零。
联立求解得 FB 750 N
例2 利用铰车绕过定
滑轮B的绳子吊起一货 物重G = 20 kN,滑轮 由两端铰接的水平刚 杆AB和斜刚杆BC支持 于点B 。不计铰车的 自重,试求杆AB和BC 所受的力。
A
30°
B
30°
C
G
a
A 30° B
30°
C
G
a
解:1、取滑轮 B 轴销为研究
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Y
(2)根据平面汇交力系平衡方程
式,列平衡方程求解。
r
O
A
θ θ
G
B
X
FNA
FNB
FX 0 FY 0
F
F
NA
NA
cos F NB cos G 0
sin F NB sin 0
解得FNA=FNB=20KN
60°
W
(2)根据平面汇交力学平衡方程式,列平衡方程求解。
∑Fx =0
∑Fy=0
F TB cos 60 F TA sin 45 0
F TB sin 60 F TA cos 45 G 0
FB=7.32N
o O
o
O
解得FA=5.18N;
3. 汽车制动装置如图,制动时用力F踩踏板,通过拉 杆使汽车制动,设F=90N,踏板和拉杆自重不计,求

一、平面受力时的解析表示法 平面受力时的解析表示法是通过力在坐标轴上 的投影为基础建立起来的。设有一已知力F作用 于构件的点A,在力 F作用线所在平面建立直角坐 标系Oxy。
投影是标量; 力是矢量。
通常 F在x 轴上投影用Fx 表示,在 y轴上的投影用Fy 表 示。Fx、Fy 是力F沿x轴y轴分解所得到的两正交分力, 其正负号规定为:若投影的指向与坐标轴正向一致为正, 反之为负。由图可知: Fx= F・cosα;Fy= F・cosβ= F・sinα 显然利用力在直角坐标轴上的投影可以表示力在直角坐 标上分力的大小和方向。
y
x
FB
【练习】如图,储罐架在砖座上,储罐半径r=0.5m, G=24KN,砖座间距离L=0.8m。不计摩擦,试求砖座 0 对储罐的约束力。
53.13
r O A B
G
L
Y
r O A θ θ G B X
FNA
FNB
解 (1)取储罐为研究对象,画受力图。
砖座对储罐的约束为光滑面约束,分别用FNA、FNB,则G、 FNA、FNB三个力组成平面汇交力系。
第六节 力系 平衡方程
本节课学习目标 1.掌握力系的定义及分类; 2.掌握平面平衡方程式; 3.能正确应用平衡方程式解决实际问题。
我们在学习约束反力之后知道,有时虽能确 定出约束反力的方向,但大小并不能直接得出,
这时就需要在解决实际问题时,应用平衡方程。
平衡方程是在解决工程实际问题中,通过对力
的分析计算时所建立起来的力的数学解析表达式, 是工程实际中对受力情况的一种定量分析的方法。
图示位置时拉力Q及铰链支座B的约束反力。 解:以制动装置整体为研究对象, 受三个力如图所示。 可得列平衡方程 ∑Fx=0 -Fcos45º -FBcos30º +Q=0 ∑Fy=0 -Fsin45º +FBsin30º =0 代入数据得 Q-0.866FB-63.63=0 0.5FB-63.63=0 解之得FB=127.3N Q=173.9N
例题:重10KN的物体用两根钢索悬挂。设钢索重 力忽略不计,求钢索的拉力是多少。
60°
45°
W
y
FTA 45°
FTB
解(1)取重物为研究对象,画 受力图。 钢索对重物的约束为柔性约束, 故约束反力FTA、 FTB方向为沿绳 x 索背离物体,与轴线的夹角如 图。W、 FTA、 FTB三个力组成平 面汇交力系。
力的作用线任意分布在同一平面内的力系 。
三、平面汇交力系平衡方程 平面汇交力系合成是结果为一合力,若平面汇 交力系的合力为零,则该力系将不会引起物体运 动状态的改变,即该力系为平衡力系。
平面汇交力系平衡条件:当平面汇交力系平衡 时,力系在X、Y轴投影代数和为零。
F 0 X F 0 Y
二、力系 1.定义:构件上有两个以上的作用力,这些力组 成一个力系。
2.平面力系:力系中所有的作用力在同一平面内。
(1)平面汇交力系
F2
F3
各力的作用线都汇交于一点。
二、力系 1.定义:构件上有两个以上的作用力,这些力组 成一个力系。
2.平面力系:力系中所有的作用力在同一平面内。
(2)平面任意力系
相关文档
最新文档