2018-2019佳木斯市中考必备数学考前押题密卷模拟试卷15-16(共2套)附详细试题答案
黑龙江省佳木斯市中考数学暨初中学业水平考试模拟卷

黑龙江省佳木斯市中考数学暨初中学业水平考试模拟卷姓名:________ 班级:________ 成绩:________一、选择题。
本大题共12小题,每小题3分,共36分,在每小题给出 (共12题;共35分)1. (3分)已知a,b所表示的数如图所示,下列结论错误的是()A . a>0B . b<0C . <D . b< a2. (3分) (2019七上·宝应期末) 如下左图的几何体是由一个圆柱体和一个长方体组成的,则这个几何体的俯视图是().A .B .C .D .3. (3分)(2019·江川模拟) 下列说法正确的是()A . 一个游戏的中奖概率是则做10次这样的游戏一定会中奖B . 为了解全国中学生的心理健康情况,应该采用普查的方式C . 一组数据 8 ,8 ,7 ,10 ,6 ,8 ,9 的众数和中位数都是 8D . 若甲组数据的方差 S =" 0.01" ,乙组数据的方差 s = 0 .1 ,则乙组数据比甲组数据稳定4. (3分) (2018九上·郴州月考) 方程的解是()B . 3,-1C . -1D . -3,15. (3分) (2019七下·南海期中) 若a、b、c是正数,下列各式,从左到右的变形不能用如图验证的是()A . (b+c)2=b2+2bc+c2B . a(b+c)=ab+acC . (a+b+c)2=a2+b2+c2+2ab+2bc+2acD . a2+2ab=a(a+2b)6. (3分) (2016九上·海南期中) 点M(﹣5,2)关于x轴对称的坐标是()A . (﹣5,﹣2)B . (5,﹣2)C . (5,2)D . (﹣5,2)7. (3分)设a,b是方程x2+x﹣2017=0的两个实数根,则a2+2a+b的值为()A . 2014B . 2015C . 2016D . 20178. (3分) (2020九上·郑州期末) 若方程的一个根为,则及另一个根的值为()A . 7,3B . -7,3C . - ,6D . ,69. (3分) (2017九上·越城期中) 过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM长为()A . 3 cmC . 8cmD . 9 cm10. (3分)(2012·河池) 如图,在矩形ABCD中,AD>AB,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连接CN.若△CDN的面积与△CMN的面积比为1:4,则的值为()A . 2B . 4C .D .11. (3分)如图,直线与双曲线(k>0,x>0)交于点A,将直线向上平移4个单位长度后,与y轴交于点C,与双曲线(k>0,x>0)交于点B,若OA=3BC,则k的值为()A . 3B . 6C .D .12. (2分) (2019七下·江苏月考) 如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个结论,你发现的结论是()A . 2∠A=∠1-∠2B . 3∠A=2(∠1-∠2)C . 3∠A=2∠1-∠2D . ∠A=∠1-∠2二、填空题(本大题共6小题,每小题3分,共18分) (共6题;共17分)13. (3分) (2017八下·潮阳期中) 若二次根式化简后的结果等于3,则m的值是________.14. (2分) (2017七上·武汉期中) A、B两地相距7980000m,用科学记数法表示为________m;近似数2.300精确到________位.15. (3分) (2015七下·瑞昌期中) 如图,a∥b,∠1=76°,∠3=72°,则∠2的度数是________.16. (3分)(2017·盐城) 如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是________.17. (3分) (2019九上·天台月考) 在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=8m.拴住小狗的8m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).如图1,若BC=2m,则S=________m2.如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其它条件不变.则在BC的变化过程中,当S取得最小值时,边BC的长为________m.18. (3分) (2020九上·海曙期末) 如图抛物线y=-x2-2x+3与x轴交于A,B,与y轴交于点C,点P为顶点,线段PA上有一动点D,以CD为底边向下作等腰三角形△CDE,且∠DEC=90°,则AE的最小值为________ 。
佳木斯市中考数学一模考试试卷

佳木斯市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共42分)1. (3分) (2019七下·太原期末) 计算的结果为()A .B .C .D .2. (3分)(2017·广安) 据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是()A . 204×103B . 20.4×104C . 2.04×105D . 2.04×1063. (3分)如图,是一个正方体的平面展开图,原正方体中“祝”的对面是()A . 考B . 试C . 顺D . 利4. (3分)如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD.若∠BAC=55°,则∠COD的大小为()A . 70°B . 60°D . 35°5. (3分) (2019七下·昭平期中) 不等式组的整数解的和为()A . 1B . 0C . ﹣1D . ﹣26. (3分)下列各式是最简分式的是()A .B .C .D .7. (3分) (2018九上·灵石期末) 如图,已知顶点为(-3,-6)的抛物线y=ax2+bx+c经过点(-1,-4),则下列结论中错误的是()A . b2>4acB . ax2+bx+c≥-6C . 若点(-2,m),(-5,n)在抛物线上,则m>nD . 关于x的一元二次方程ax2+bx+c=-4的两根为-5和-18. (3分)若x2+2(m﹣3)x+16是完全平方式,则m的值等于()A . 3B . -5C . 7D . 7或﹣19. (3分)(2020·余姚模拟) 在函数y= 中,自变量x的取值范围是()B . x≥-3且x≠0C . x≠0D . x>-310. (3分)如果要判断小明的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A . 方差B . 中位数C . 平均数D . 众数11. (2分) (2017九上·南山月考) 如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为()A . 5B .C .D .12. (2分)(2017·枝江模拟) 某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A . =B . =C . =D . =13. (2分)(2017·河北模拟) 如图的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG 分别交DE、BC于M、N两点.若∠B=90°,AB=4,BC=3,EF=1,则BN的长度为何?()A .B .C .D .14. (2分)如图,AB是⊙O的直径,弦CD⊥AB于点E,连结OC,若OC=5,CD=8,则tan∠COD=()A .B .C .D .15. (2分)(2019九上·新密期末) 身份证号码告诉了我们很多信息,某同学的身份证号码是320104************,从中我们可以知道该同学的生日是()A . 4月20日B . 6月5日C . 5月12日D . 8月21日16. (2分)抛物线y=ax2+bx+c的图象如图,则下列结论:①abc>0;②a+b+c=2;③a>;④b<1.其中正确的结论是()A . ①②C . ②④D . ③④二、填空题 (共3题;共10分)17. (3分) (2016七上·揭阳期末) 若︱x-3︱+︱y+2︱=0,则︱x︱+︱y︱=________.18. (3分)(2019·上饶模拟) 已知矩形OABC中,O为坐标原点,点A在x轴上,点C在y轴上,B的坐标为(10,5),点P在边BC上,点A关于OP的对称点为A',若点A'到直线BC的距离为4,则点A'的坐标可能为________.19. (4分) (2019九上·台安月考) 如图,边长为2的正三角形ABO的边OB在x轴上,将绕原点O逆时针旋转得到,则点的坐标为________.三、解答题 (共7题;共68分)20. (8分) (2018七上·泸西期中) 有20筐白菜,以每筐30千克为标准,超过或不足的分别用正、负来表示,记录如表:与标准质量的差(单位:千克)-3-2-1.501 2.5筐数14228(1)请将表格补充完整.(2) 20筐白菜中,最重的一筐比最轻的一筐要重多少千克?(3)求这20筐白菜的总重量.21. (9.0分)在现实生活中,我们经常见到一些美丽的图案.(1)请用平移、旋轴、轴对称分析各图案的形成过程?(2)哪几个图案可以经过平移得到?哪几个图案可以经过旋转得到?哪几个图案可以经过轴对称得到?答:国各地将举行有关纪念活动.为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生答题情况,将结果分为A、B、C、D四类,其中A类表示“非常了解”、B类表示“比较了解”、C类表示“基本了解”、D类表示“不太了解”,调查的数据经整理后形成下列尚未完成的条形统计图(如图①)和扇形统计图(如图②):(1)在这次抽样调查中,一共抽查了________名学生;(2)请把图①中的条形统计图补充完整;(3)图②的扇形统计图中D类部分所对应扇形的圆心角的度数为________°;(4)如果这所学校共有初中学生1500名,请你估算该校初中学生中对二战历史“非常了解”和“比较了解”的学生共有多少名?23. (9分)(2018·沾益模拟) 如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O 是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)当BD=6,AB=10时,求⊙O的半径.24. (10.0分) (2019八下·郾城期末) 某厨具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如下表:进价(元/台)售价(元/台)电饭煲200250电压锅160200(1)一季度,厨具店购进这两种电器共30台,用去了5600元,并且全部售完,问厨具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度厨具店决定采购电饭煲和电压锅共50台,且电饭煲的数量不大于电压锅的,请你通过计算判断,如何进货厨具店赚钱最多?最大利润是多少?25. (11.0分)(2016·包头) 如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A (1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x﹣h)2+k的形式;(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;(3)一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?(4)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.26. (12分)(2017·眉山) 如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于C点,已知A(3,0),且M(1,﹣)是抛物线上另一点.(1)求a、b的值;(2)连结AC,设点P是y轴上任一点,若以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标;于H点.设ON=t,△ONH的面积为S,求S与t之间的函数关系式.参考答案一、选择题 (共16题;共42分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共3题;共10分)17-1、18-1、19-1、三、解答题 (共7题;共68分)20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、22-4、23-1、23-2、24-1、24-2、25-1、25-2、25-3、25-4、26-1、26-2、26-3、。
2019年黑龙江佳木斯中考数学模拟试题卷(含答案)

二ʻ一九年升学模拟大考卷(四)数学试卷考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分题号一二三2122232425262728总 分得分得分评卷人一㊁填空题(每题3分,满分30分)1.2019年央视春晚创下了跨媒体收视传播新纪录.据统计,除夕当晚,海内外收视的观众总规模达11.73亿人.数据11.73亿人用科学记数法表示为 人.2.在函数y =x -23x -1中,自变量x 的取值范围是 .3.如图,әA B C 中,øA B C =90ʎ,O 为A C 的中点,连接B O 并延长到D ,连接A D ,C D .添加一个条件 ,使四边形A B C D 是矩形(填一个即可).4.在一个不透明的袋子中装有除颜色外其他均相同的6个红球,3个黑球,要使从中随机摸取1个球是黑球的概率为12,则要往袋中添加黑球 个.5.若关于x 的一元一次不等式组2x +1ȡ0,3x -2m ɤ0{有三个整数解,则m 的取值范围是 .6.如图,A B 是半圆的直径,O 为圆心,C 是半圆上的点,A B =10,B C =5,D 是A C ︵上的点,则øD 的度数为 .7.如图,圆锥的母线长为5c m ,高为3c m ,则该圆锥的侧面积为 c m 2.8.如图,A C 是矩形A B C D 的对角线,P ,E 分别是A C ,B C 上的动点,A B =3,B C =4,则B P +P E 的最小值为 .9.在әA B C 中,A C =5,A B 与B C 所在直线成45ʎ角,A C 与B C 所在直线形成的夹角的余弦值为45,则B C 的长是 .10.如图所示,正方形MNO K 和正六边形A B C D E F 边长均为1,把正方形放在正六边形中,使O K 边与A B 边重合,按下列步骤操作:将正方形在正六边形中绕点B 顺时针旋转,使KM 边与B C 边重合,完成第1次旋转;再绕点C 顺时针旋转,使MN 边与C D 边重合,完成第2次旋转 在这样连续2019次旋转的过程中,点O 经过的路径长的总和是第题图第题图第题图第题图第题图得分评卷人二㊁选择题(每题3分,满分30分)11.下列运算中,计算正确的是()A.2x+3x2=5x3B.a3㊃a4=a12C.2x3ːx-1=2x2D.(x+2)(x-3)=x2-x-612.下列图形中,既是轴对称图形,又是中心对称图形的是()13.如图是由一些完全相同的小正方体构成的几何体的主视图和俯视图,则构成这个小正方体的个数可能有() A.2种B.3种C.4种D.5种14.甲㊁乙两位运动员在相同条件下各射击10次,成绩如下:甲:9,10,8,5,7,8,10,8,8,7;乙:5,7,8,7,8,9,7,9,10,10.根据上述信息,下列结论错误的是() A.甲㊁乙的众数分别是8,7B.甲㊁乙的中位数分别是8,8C.乙的成绩比较稳定D.甲㊁乙的平均数分别是8,815.我市郊区大力发展全域旅游产业,打造了大来岗风景区㊁敖其湾赫哲族风景区等精品旅游项目,郊区全年旅游人数逐年增加,据统计,2016年为30万人次,2018年为43.2万人次.设旅游人次的年平均增长率为x,则可列方程为() A.30(1+x)=43.2B.30(1-x)=10.8C.30(1+x)2=43.2D.30[(1+x)+(1+x)2]=43.216.已知关于x的分式方程1x-2+3-m x2-x=2有解,则m应满足的条件是()A.mʂ1且mʂ2B.mʂ2C.m=1或m=2D.mʂ1或mʂ217.如图,A,B是双曲线y=k x上两点,且A,B两点的横坐标分别是-1和-5,әA B O的面积为12,则k的值为()A.-3B.-4C.-5D.-618.如图,正方形A B C D的边长为6,点E在边A B上,连接E D,过点D作F DʅD E与B C的延长线相交于点F,连接E F,与边C D相交于点G,与对角线B D相交于点H.若B D=B F,则B E的长为() A.2B.6-2262 D.62第题图第题图第题图19.小李去买套装6色水笔和笔记本,若购买4袋笔和6本笔记本,他身上的钱还差22元,若改成购买1袋笔和2本笔记本,他身上的钱会剩下34元.若他把身上的钱都花掉,购买这两种物品(两种都买)的方案有( )A.3种B .4种C .5种种第题图20.如图,E 是正方形A B C D 外一点,连接A E ,B E ,D E ,A F ʅA E 交D E 于点F ,若A E =A F =2,B F =25.下列结论:①әA F D ɸәA E B ;②B E ʅD E ;③四边形A E B F 的面积是1+6;④点B 到直线A E 的距离为3;⑤A B 2=16+46.其中结论正确的个数是( )A.1个B .2个C .3个 D.4个三㊁解答题(满分60分)得分评卷人21.(本题满分5分)先化简,再求值:x 2-4x -1ːx -2x -1æèçöø÷,其中x =3c o s 30ʎ-t a n45ʎ.得分评卷人22.(本题满分6分)如图,在平面直角坐标系中,әA B C的顶点A(-4,3),B(-2,4),C(-1,1)均在正方形网格的格点上.先将әA B C沿网格线平移,得到әA1B1C1,点B的对应点B1的坐标是(3,0),再将әA1B1C1绕原点顺时针旋转90ʎ,得到әA2B2C2,点B1的对应点为点B2.(1)画出әA1B1C1;(2)画出әA2B2C2;(3)在әA1B1C1旋转的过程中,求点B1旋转到点B2所经过的路径长.第题图得分评卷人23.(本题满分6分)如图,抛物线y=a x2+b x-3经过点A(2,-3),与x轴交于点B,D,与y轴交于点C,且O C=3O B.(1)求抛物线的解析式;(2)直线A E交x轴于点E,将әA B D的面积分为1ʒ3的两部分,请直接写出点E的坐标.第题图得分评卷人24.(本题满分7分)某校设有体育选修课,每位同学必须从羽毛球㊁篮球㊁乒乓球㊁排球㊁足球五项球类运动中选择一项且只能选择一项球类运动,在该校学生中随机抽取10%的学生进行调查,根据调查结果绘制成如图所示的尚不完整的频数分布表和扇形统计图第24题图请根据以上图㊁表信息解答下列问题:(1)频数分布表中的a=,b=;(2)补全扇形统计图;(3) 排球 所在的扇形的圆心角为度;(4)全校有多少名学生选择参加乒乓球运动?得分评卷人25.(本题满分8分)已知甲㊁乙两地相距400k m,A车和B车分别从甲地和乙地同时出发,相向而行,沿同一条公路驶往乙地和甲地,2h后,A车因临时需要,返回到这条公路上的丙地取物,然后又立即赶往乙地,结果比B车晚1h到达目的地.两车的速度始终保持不变,如图是A,B两车距各自出发地的路程y1(单位:k m),y2(单位:k m)与A车出发时间x(单位:h)的函数图象,请结合图象信息解答下列问题:(1)A车的速度为k m/h,B车的速度为k m/h;(2)求甲㊁丙两地的距离;(3)求A车出发多长时间,两车相距40k m?第题图已知菱形A B C D的对角线交于点O,øD A B=60ʎ,P是直线B D上任意一点(异于点B, O,D),过点P作平行于A C的直线交直线C D于点F,交直线B C于点E.(1)当点P在线段B D上时,如图①,易证:3B D=P E+P F(不用证明);(2)当点P在线段D B的延长线上时,如图②;当点P在线段B D的延长线上时,如图③,线段B D,P E,P F之间又有怎样的数量关系?请写出你的猜想,并选择其中一种情况加以证明.第26题图某文化用品商店准备购进甲㊁乙两种书包进行销售,经调查,乙书包的单价比甲书包贵35元,用280元购进乙书包的个数与用140元购进甲书包的个数相等.(1)求甲㊁乙两种书包的进价分别为多少元?(2)商户购进甲㊁乙两种书包共100个进行试销,其中甲书包的个数不少于20个,且甲书包的个数的3倍不大于乙书包的个数,已知甲书包的售价为65元/个,乙书包的售价为110元/个,且全部售出,设购进甲书包m个,求该商店销售这批书包的利润W与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,该店将100个书包全部售出后,使用所获的利润又购进40个书包捐赠给贫困地区儿童,这样该商店这批书包共获利2000元.请求出该店第二次进货所选用的进货方案?如图,矩形O A B C的两条边O A,O C的长是方程x2-12x+32=0的两根(O A<O C),沿直线A C将矩形折叠,点B落在第一象限的点D处,A D交y轴于点E.(1)求点B和点E的坐标;(2)将直线A C以每秒1个单位长度的速度沿y轴向下平移,求直线A C扫过的三角形A C E的面积S关于运动的时间t(0ɤtɤ5)的函数关系式;(3)在(2)的条件下,在移动的直线A C上是否存在点M,使以O,E,D,M为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.第题图二ʻ一九年升学模拟大考卷(四)数学试卷参考答案及评分标准一㊁填空题(每题3分,满分30分)1.1.173ˑ1092.x ȡ23.B O =D O 等4.35.3ɤm <926.120ʎ7.20π8.96259.1或7 10.1010+50526π二㊁选择题(每题3分,满分30分)11.D 12.C 13.B 14.C 15.C 16.A 17.C 18.C 19.C (提示:水笔和笔记本单价均为整数) 20.C三㊁解答题(满分60分)21.(本题满分5分)解:原式=(x +2)(x -2)x -1ːx 2-x -2x -1(1分) =(x +2)(x -2)x -1㊃x -1(x -2)(x +1)(1分) =x +2x +1.(1分) 当x =3c o s 30ʎ-t a n45ʎ=12时,(1分) 原式=12+212+1=53.(1分) 22.(本题满分6分)解:(1)әA 1B 1C 1如图.(2分)(2)әA 2B 2C 2如图.(2分) (3)点B 1旋转到点B 2所经过的路径长为90ˑπˑ3180=32π.(2分)23.(本题满分6分)解:(1)把x =0代入y =a x 2+b x -3,得y =-3.ʑO C =3.(1分)ȵO C =3O B ,ʑO B =1.ʑB (-1,0).(1分) 把点A ,B 的坐标代入y =a x 2+b x -3,得-3=4a +2b -3,0=a -b -3.{(1分)解得a =1,b =-2.{ʑ抛物线的解析式y =x 2-2x -3.(1分)(2)点E 的坐标是(0,0)或(2,0).(2分)24.(本题满分7分)解:(1)ȵ36ː30%=120(名),ʑa =120ˑ20%=24,b =120-30-24-36-12=18.故答案为24,18.(2分)(2)补图如图.(2分)(3) 排球 15%ˑ360ʎ=54ʎ.故答案为54.(1分)(4)全校选择参加乒乓球运动的学生有36ː10%=360(名).(2分)25.(本题满分8分)解:(1)由图可知,A 车的速度为200ː2=100(k m /h),甲㊁乙两地相距400k m ,B 车用5h 到达,则B 车的速度为400ː5=80(k m /h ).故答案为分)(2)设A 车返回的那段路程为s k m ,则100ˑ6=400+2s .(1分)ʑs =100.(1分)ʑ甲㊁丙两地的距离为200-100=100(k m ).(1分)(3)设A 车出发t h ,二车相距40k m .100t +80t +40=400.解得t =2;(1分)100(t -2)+80t +40=400,解得t =289;(1分) 100(t -2)+80t -40=400,解得t =329.(1分) ʑA 车出发2h 或289h 或329h 时,两车相距40k m .26.(本题满分8分)解:(2)图②的结论为3B D =P F -P E .(1分)图③的结论为3B D =P E -P F .(1分) 图②证明:如图,延长A B 交E F 于点G .ȵ四边形A B C D 是菱形,ʑA B ʊC D .ȵE F ʊA C ,ʑ四边形A G F C 是平行四边形.ʑA C =F G .(1分) ȵ四边形A B C D 是菱形,ʑB P 平分øE B G ,øB A C =øB C A .(1分) ȵE F ʊA C ,ʑøB E G =øB G E .(1分) ȵO P ʅE G ,ʑP E =P G .(1分)ȵ四边形A B C D 是菱形,øD A B =60ʎ,ʑA C =3B D .(1分)ʑA C =F G =P F -P G =P F -P E .(1分))佳( )页5共(页3第案答学数ʑ3B D =P F P E .27.(本题满分10分)解:(1)设甲书包进价为x 元,乙书包进价为(x +35)元.根据题意,得280x +35=140x.(1分) 解得x =35.(1分)经检验x =35是方程的根,且符合题意,则x +35=70.(1分)ʑ甲书包进价为35元,乙书包进价为70元.(1分)(2)ȵ购进甲书包m 个,ʑ购进乙书包(100-m )个.根据题意,得3m ɤ100-m .(1分)解得m ɤ25.ȵm ȡ20,ʑ20ɤm ɤ25且m 为正整数.(1分)ʑW =(65-35)m +(110-70)(100-m )=-10m +4000.(1分) (3)设第二次购进甲书包a 个,则购进乙书包(40-a )个.根据题意,得35a +70(40-a )=-10m +4000-2000.(1分) 即7a =2m +160.ȵ20ɤm ɤ25且m 为正整数,ʑ当m =25时,a 有整数解,a =30,则40-a =10.(1分)ʑ第二次进货方案是购进甲书包30个,乙书包10个.(1分)ʌ点评ɔ本题是对代数实际应用的综合考查,要求能够读懂题目中数量关系,正确列出相应的关系式,要注意在实际问题中,未知数的取值要有实际意义.28.(本题满分10分)解:(1)解方程x 2-12x +32=0,得x 1=4,x 2=8.ȵO A <O C ,)佳( )页5共(页4第案答学数ʑO A =4,O C =8.(1分)ʑB (-4,8).(1分) 设O E =a ,则C E =8-a .由折叠可得øB A C =øC A D .ȵA B ʊO C ,ʑøB A C =øA C E .ʑøA C E =øC A E .ʑA E =C E .在R t әA O E 中,a 2+42=(8-a )2.(1分) 解得a =3.ʑO E =3,E C =5.ʑE (0,3).(1分)(2)设直线A C 平移t 秒时,交C E ,A E 于点F ,G ,则әE F G ʐәE C A ,C F =t ,E F =5-t .ʑE F E C æèçöø÷2=S әE F G S әE C A.(1分) ʑ5-t 5æèçöø÷2=S әE F G S әE C A.ʑS әE F G =12ˑ5ˑ4ˑ5-t 5æèçöø÷2=25t 2-4t +10.(1分) ʑS =S әA C E -S әE F G =12ˑ5ˑ4-25t 2+4t -10=-25t 2+4t .(2分) (3)存在.M 1-125,-95æèçöø÷,M 2125,395æèçöø÷.(2分) )佳( )页5共(页5第案答学数。
黑龙江省佳木斯市中考数学试卷

黑龙江省佳木斯市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·常州) 的相反数是()A .B .C .D .2. (2分)(2019·哈尔滨模拟) 一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是()A . 4B . 5C . 6D . 73. (2分)下列运算正确的是()A . x2·x3=x6B . (x3)2=x5C . (xy2)3=x3y6D . x6÷x3=x24. (2分)如图,EF∥BC,AC平分∠BAF,∠B=50°,则∠C的度数是()A . 50°B . 55°C . 60°D . 65°5. (2分)如果一个多边形的内角和等于360度,那么这个多边形的边数为()A . 4B . 5C . 6D . 76. (2分)若点P(x ,-3)与点Q(4,y)关于原点对称,则x+y等于()A . 1B . -1C . 7D . -77. (2分)(2018·长宁模拟) 如图,在四边形ABCD中,对角线AC与BD相交于点O,AC平分∠DAB,且∠DAC=∠DBC,那么下列结论不一定正确的是()A . △AOD∽△BOCB . △AOB∽△DOCC . CD=BCD . BC•CD=AC•OA8. (2分) (2019九下·常德期中) 下列说法中正确是()A . 一个游戏的中奖概率是10%,则做10次这样的游戏一定会中奖B . 为了解全国中学生的心理健康情况,应该采用普查的方式C . 若甲组数据的方差S甲2=0.01,乙组数据的方差S乙2=0.1,则乙组数据比甲组数据稳定D . 一组数据8,3,7,8,8,9,10的众数和中位数都是89. (2分) (2019八下·绍兴期中) 某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元,若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多少株?设每盆多植X株,则可以列出的方程是()A . (x+1)(4-0.5x)=15B . (x+3)(4+0.5x)=15C . (x+4)(3-0.5x)=15D . (3+x)(4-0.5x)=1510. (2分)(2020·武汉模拟) 将一个球竖直向上抛起,球升到最高点,垂直下落,直到地面.在此过程中,球的高度与下落时间的关系可以用下图中的哪一幅来近似地刻画()A .B .C .D .二、填空题 (共5题;共5分)11. (1分)(2018·湘西) 农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了一个,则吃到腊肉棕的概率为________.12. (1分)(2013·衢州) 不等式组的解集是________.13. (1分) (2020九上·秦淮期末) 将二次函数y=2x2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为________.14. (1分) (2017九上·东台期末) 已知圆锥的底面半径为3,侧面积为15 ,则这个圆锥的高为________.15. (1分) (2017九上·召陵期末) 矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为________.三、解答题 (共9题;共112分)16. (5分) (2016七下·潮南期末) 计算:+4× + (﹣1).17. (40分) (2018七下·长春月考) 计算:(1) (-4x2y)·(-x2y2)·( y)3;(2) (-3ab)(2a2b+ab-1) ;(3) (m- )(m+ );(4)(-x-1)(-x+1) ;(5) (- x - 5)2 ;(6);(7)先化简,再求值:(x+1)2﹣(x+2)(x﹣2),其中;(8)解方程组 .18. (10分) (2020九上·南岗期末) 如图,在中,点,分别是,的中点,连接,,,且,过点作交的延长线于点 .(1)求证:四边形是菱形;(2)在不添加任何辅助线和字母的情况下,请直接写出图中与面积相等的所有三角形(不包括).19. (5分) (2018八上·黑龙江期末) 要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天.现在甲、乙两人合作2天后,再由乙单独做,正好按期完成,问规定日期是多少天?20. (6分)(2017·溧水模拟) 小亮与小明做投骰子(质地均匀的正方体)的实验与游戏.(1)在实验中他们共做了50次试验,试验结果如下:朝上的点数123456出现的次数1096988①填空:此次实验中,“1点朝上”的频率是 ________;(2)在游戏时两人约定:每次同时掷两枚骰子,如果两枚骰子的点数之和超过6,则小亮获胜,否则小明获胜.则小亮与小明谁获胜的可能性大?试说明理由.21. (5分) (2016九下·海口开学考) 如图,某校九年级3班的一个学习小组进行测量小山高度的实践活动.部分同学在山脚点A测得山腰上一点D的仰角为30°,并测得AD的长度为180米;另一部分同学在山顶点B测得山脚点A的俯角为45°,山腰点D的俯角为60度.请你帮助他们计算出小山的高度BC.(计算过程和结果都不取近似值)22. (11分) (2017七下·临川期末) “珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时间,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(这个题有问题)(1)图中自变量是________,因变量是________;(2)小明家到学校的路程是________ 米。
黑龙江省佳木斯市中考数学押题试卷

2021年黑龙江省佳木斯市中考数学押题试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列运算正确的是()A.(a+b)2=a2+b2B.a3+3a3=4a3C.(﹣2a2)3=6a6D.(b+a)(a﹣b)=b2﹣a22.(3分)在下列四个图案中,不是中心对称图形的是()A.B.C.D.3.(3分)桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有()A.12个B.8个C.14个D.13个4.(3分)为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7,则这组数据的众数和平均数分别是()A.8和9B.7和9C.9和7D.7和8.55.(3分)已知一元二次方程x2﹣kx+4=0有两个相等的实数根,则k的值为()A.k=4B.k=﹣4C.k=±4D.k=±26.(3分)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=kx的图象上,若菱形的边长为4,则k值为()A .4√3B .2√3C .﹣4√3D .﹣2√37.(3分)如果分式方程x x−4=2+a 4−x无解,则a 的值为( )A .﹣4B .12C .2D .﹣28.(3分)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点A 作AE ⊥BC 于点E ,连接OE .若OB =6,菱形ABCD 的面积为54,则OE 的长为( )A .4B .4.5C .8D .99.(3分)学校计划用200元钱购买A 、B 两种奖品(两种都要买),A 种每个15元,B 种每个25元,在钱全部用完的情况下,有多少种购买方案( ) A .2种B .3种C .4种D .5种10.(3分)如图,在边长为4的正方形ABCD 中,点E 、F 分别是BC 、CD 上的动点,且EF =4,G 是EF 的中点,下列结论正确的是( )A .AG ⊥EFB .AG 长度的最小值是4√2−2C .BE +DF =4D .△EFC 面积的最大值是2二.填空题(共10小题,满分27分)11.地球绕太阳公转的速度约是110000km /h ,用科学记数法可表示为 km /h .12.(3分)在函数y =√xx−3中,自变量x 的取值范围是 .13.(3分)两个锐角分别相等的直角三角形 全等.(填“一定”或“不一定”或“一定不”)14.(3分)某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是 .15.(3分)若关于x 的不等式组{2x −k >0x −2≤0有且只有五个整数解,则k 的取值范围是 .16.(3分)在Rt △ABC 中,两直角边的长分别为6和8,则这个三角形的外接圆的直径长为 .17.(3分)如图,在半径为√2的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为 ;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为 .18.(3分)如图,在正方形ABCD 中,AB =8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM =6.P 为对角线BD 上一点,则PM ﹣PN 的最大值为 .19.(3分)如图,在矩形ABCD 中,E 为CD 上一点,若△ADE 沿直线AE 翻折,使点D 落在BC 边上点D ′处.F 为AD 上一点,且DF =CD ',EF 与BD 相交于点G ,AD ′与BD 相交于点H .D ′E ∥BD ,HG =4,则BD = .20.(3分)如图,直线AM的解析式为y=x+1与x轴交于点M,与y轴交于点A,以OA 为边作正方形ABCO,点B坐标为(1,1).过B点作直线EO1⊥MA交MA于点E,交x轴于点O1,过点O1作x轴的垂线交MA于点A1.以O1A1为边作正方形O1A1B1C1,点B1的坐标为(5,3).过点B1作直线E1O2⊥MA交MA于E1,交x轴于点O2,过点O2作x轴的垂线交MA于点A2.以O2A2为边作正方形O2A2B2C2,…,则点B2020的坐标.三.解答题(共8小题,满分60分)21.(5分)先化简,再求值:x−yx+2y ÷x2−y2x2+4xy+4y2,其中x=sin45°,y=cos60°.22.(6分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向下平移4个单位、再向右平移3个单位得到△A1B1C1,然后将△A1B1C1绕点A1顺时针旋转90°得到△A1B2C2.(1)在网格中画出△A1B1C1和△A1B2C2;(2)计算线段AC在变换到A1C1的过程中扫过区域的面积.23.(6分)如图,已知:抛物线y=a(x+1)(x﹣3)与x轴相交于A、B两点,与y轴的交于点C(0,﹣3).(1)求抛物线的解析式的一般式.(2)若抛物线上有一点P,满足∠ACO=∠PCB,求P点坐标.(3)直线l:y=kx﹣k+2与抛物线交于E、F两点,当点B到直线l的距离最大时,求△BEF的面积.24.(7分)某校举行了”文明河南中小学生知识竞赛“活动,并随即抽查了部分同学的成绩,整理并制作成图表如下:分数段频数频率60≤x<70300.170≤x<8090n80≤x<90m0.490≤x≤100600.2请根据以上图表提供的信息,解答下列问题:(1)请求出:m=,n=,抽查的总人数为人;(2)请补全频数分布直方图;(3)抽查成绩的中位数应落在分数段内;(4)如果比赛成绩在80分以上(含80分)为优秀,任意抽取一位同学,则成绩优秀的概率为多少?25.(8分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?26.(8分)如图,在等腰直角△ABC中,∠ACB=90°,CA=CB,CD为斜边AB上的中线.(1)如图1,AE平分∠CAB交BC于E,交CD于F,若DF=2,求AC的长;(2)将图1中的△ADC绕点D顺时针旋转一定角度得到△ADN,如图2,P,Q分别为线段AN,BC的中点,连接AC,BN,PQ,求证:BN=√2PQ.27.(10分)永州市在进行“六城同创”的过程中,决定购买A,B两种树对某路段进行绿化改造,若购买A种树2棵,B种树3棵,需要2700元;购买A种树4棵,B种树5棵,需要4800元.(1)求购买A,B两种树每棵各需多少元?(2)考虑到绿化效果,购进A种树不能少于48棵,且用于购买这两种树的资金不低于52500元.若购进这两种树共100棵.问有哪几种购买方案?28.(10分)定义:我们把对角线互相垂直的四边形叫做神奇四边形.顺次连接四边形各边中点得到的四边形叫做中点四边形.(1)判断:①在平行四边形、矩形、菱形中,一定是神奇四边形的是;②命题:如图1,在四边形ABCD中,AB=AD,CB=CD,则四边形ABCD是神奇四边形.此命题是(填“真”或“假”)命题;③神奇四边形的中点四边形是;(2)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接BE,CG,GE.①求证:四边形BCGE是神奇四边形;②若AC=2,AB=√5,求GE的长;(3)如图3,四边形ABCD是神奇四边形,若AB=6,CD=√5,AD、BC分别是方程x2﹣(k+4)x+4k=0的两根,求k的值.。
黑龙江省佳木斯市中考数学一模考试试卷

黑龙江省佳木斯市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列各数,-(-2),(-2)2 ,(-2)3 , -22中,负数的个数为()A . 1个B . 2个C . 3 个D . 4个2. (2分)(2020·安阳模拟) 我们身处在自然环境中,一年接受的宇宙射线及其它天然辐射照射量约为3 1 00微西弗(1西弗等于1000毫西弗,1毫西弗等于1000微西弗),用科学记数法可表示为()A . 西弗B . 西弗C . 西弗D . 西弗3. (2分)下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是()A . 正方体B . 圆柱C . 圆锥D . 球4. (2分) (2018七下·太原期中) 下列运算正确是()A . a﹣3÷a﹣5=a2B . (3a2)3=9a5C . (x﹣1)(1﹣x)=x2﹣1D . (a+b)2=a2+b25. (2分) (2015八下·蓟县期中) 若有意义,则m能取的最小整数值是()A . ﹣1B . 0C . 1D . 26. (2分)(2019·随州) 如图,直线,直角三角板的直角顶点在直线上,一锐角顶点在直线上,若∠1=35° ,则的度数是()A .B .C .D .7. (2分)(2020·黄石模拟) 某校四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据的众数与平均数相等,则这组数据的中位数是()A . 8B . 9C . 10D . 128. (2分)如图,在平面直角坐标系系中,直线y=k1x+2与x轴交于点A,与y轴交于点C,与反比例函数y=在第一象限内的图象交于点B,连接B0.若S△OBC=1,tan∠B OC=,则k2的值是()A . ﹣3B . 1C . 2D . 39. (2分)(2019·平房模拟) 如图,CD为⊙O的直径,AB为弦,AB⊥CD,点E在圆上,若OF=DF,则∠AEB 的度数为()A . 135°B . 120°C . 150°D . 110°10. (2分)如图一把打开的雨伞可近似的看成一个圆锥,伞骨(面料下方能够把面料撑起来的支架)末端各点所在圆的直径AC长为12分米,伞骨AB长为9分米,那么制作这样的一把雨伞至少需要绸布面料为()平方分米A . 36πB . 27πC . 54πD . 128π11. (2分)等腰三角形一腰上的高与另一腰的夹角为30,则顶角的度数为().A . 60B . 120C . 60或150D . 60或12012. (2分)已知a,b为实数,则解可以为– 2 < x < 2的不等式组是()A .B .C .D .二、填空题 (共4题;共5分)13. (1分)(2020·泰兴模拟) 因式分解:xy3-x3y=________.14. (1分)(2019·云南模拟) 如果关于x的一元二次方程x2+a+2=0没有实数根,那么实数a的取值范围为________.15. (1分)(2019·咸宁模拟) 若关于x的分式方程无解,则m=________.16. (2分) (2020九下·镇平月考) 如图所示,在矩形ABCD中,动点P从点B出发,沿BC , CD , DA运动至点A停止,设点P运动的路程为,△ABP的面积为,如果关于的函数图象如图所示,那么△ABC 的面积是________.三、计算题 (共3题;共9分)17. (2分)(2019·衡阳模拟) 4cos60°+(﹣1)2019﹣|﹣3+2|18. (2分) (2019八上·武汉月考) 如图,D 是 AB 上一点,DF 交 AC 于点 E,DE=FE,∠A=∠ACF,则 AD 与 CF 有什么关系?证明你的结论.19. (5分)(2019·禅城模拟) 先化简,再求值:,其中x=﹣1.四、综合题 (共6题;共54分)20. (15分)(2019·玉田模拟) 某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一.且不能不选.将调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,一共抽取了________名学生;(2)补全条形统计图;(3)估计全校所有学生中有多少人乘坐公交车上学?(4)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的,求小明在上学路上到第二个路口时第二次遇到红灯的概率,(请用“画树状图”或“列表”的方法写出分析过程)21. (2分)(2020·福田模拟) 为了迎接“五·一”小长假的购物高峰.某服装专卖店老板小王准备购进甲、乙两种夏季服装.其中甲种服装每件的成本价比乙种服装的成本价多20元,甲种服装每件的售价为240元比乙种服装的售价多80元.小王用4000元购进甲种服装的数量与用3200元购进乙种服装的数量相同.(1)甲种服装每件的成本是多少元?(2)要使购进的甲、乙两种服装共200件的总利润(利润=售价−进价)不少于21100元,且不超过21700元,问小王有几种进货方案?22. (2分) (2018九上·北京期末) 大城市病之一——停车难,主要表现在居住停车位不足,停车资源结构性失衡,中心城区供需差距大等等.如图是王老师的车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,已知小汽车车门宽AO为1.2米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)23. (10分) (2019九上·融安期中) 已知关于x的一元二次方程x2-(2k+1)x+2k-1=0。
2018-2019年最新佳木斯市中考数学考前终极押题密卷【共3卷】【精准押题】

2018-2019年最新佳木斯市中考数学押题密卷 A 卷注:全面覆盖佳木斯市中考考点,通过严格的分析整理而成,对今年的考试方向进行有效预测,密卷共分为三卷。
本密卷为押题卷一。
一、选择题(每题4分,共40分)1. (4分)-2的绝对值是( )A .2B .-2C .D .-12122.(4分)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( ) A .2.1×109 B .0.21×109 C .2.1×108 D .21×107 3.(4分)下列运算正确的是( ) 235222353475.(4分)我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是( ) A .71.8 B .77 C .82 D .95.76.(4分)如图是由6个大小相同的正方体组成的几何体,它的左视图是( )A .B .C .D .7.(4分)如图,将四边形ABCD 先向左平移3个单位,再向上平移2个单位,那么点A 的对应点A ′的坐标是( ) A .(6,1) B .(0,1) C .(0,-3) D .(6,-3) 8.(4分)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,∠A=50°,∠ADE=60°,则∠C 的度数为( ) A .50° B .60° C .70° D .80°9.(4分)下列函数中,y 随x 的增大而减少的函数是( ) A .y=2x+8 B .y=-2+4x C .y=-2x+8 D .y=4x10.(4分)用半径为3cm ,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( ) A .2πcm B .1.5cm C .πcm D .1cm二、填空题(每题4分,共16分)靶子,试估计小射手依次击中靶子的概率为_____。
黑龙江省佳木斯市数学中考模拟试卷

黑龙江省佳木斯市数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) |﹣|的相反数是()A . 2B .C . -2D . -2. (2分)下列图形中,不是中心对称的是()A .B .C .D .3. (2分)(2017·长沙) 据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A . 0.826×106B . 8.26×107C . 82.6×106D . 8.26×1084. (2分)下列算式中,积为负数的是()A . 0×(-5)B . 4×(-0.5)×(-10)C . (-1.5)×(-2)D .5. (2分)(2011·玉林) 下列运算正确的是()A . 2a﹣a=1B . a+a=2a2C . a•a=a2D . (﹣a)2=﹣a26. (2分) (2018·福清模拟) 在一次数学阶段考试中,某小组7名同学的成绩(单位:分)分别是65,80,70,90,95,100,70,这组数据的众数是()A . 90B . 85C . 80D . 707. (2分) (2019七上·琼中期末) 如图,已知∠1=55°15′,则∠2的度数为()A . 124°45′B . 134°45′C . 35°45′D . 34°45′8. (2分) (2018八上·柘城期末) 某中学为了创建“最美校园图书屋”新购买了一批图书,其中科普类图书平均每本的价格是文学类图书平均每本书价格的1.2倍,已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买图书平均每本书的价格是()A . 20元B . 18元C . 15元D . 10元9. (2分)一次函数y=kx+b的图象如图所示,不等式kx+b>0的解集是()A . x>2B . x>4C . x<2D . x<410. (2分)如图所示,为的内接三角形,则的内接正方形的面积为()A . 2B . 4C . 8D . 1611. (2分)(2016·漳州) 下列方程中,没有实数根的是()A . 2x+3=0B . ﹣1=0C .D . +x+1=012. (2分) (2016九上·达州期末) 如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动连结DP,过点A作AE⊥DP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系的大致图象是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)(2016·海曙模拟) 正五边形的一个内角的度数是________14. (1分)(2019·宁夏) 在一个不透明的盒子里装有除颜色外其余均相同的2个黄色乒乓球和若干个白色乒乓球,从盒子里随机摸出一个乒乓球,摸到白色乒乓球的概率为,那么盒子内白色乒乓球的个数为________.15. (1分) (2019九上·昌图期末) 已知∽ ,AB::5,那么:________.16. (1分)如果点M(3,x)在第一象限,则x的取值范围是________.三、解答题 (共8题;共48分)17. (5分)(2017·港南模拟) 计算题(1)(π﹣2017)0+|2﹣ |﹣4cos30°+(2)先化简,再求值:﹣÷ ,其中a= .18. (5分)(2017·菏泽) 先化简,再求值:(1+ )÷ ,其中x是不等式组的整数解.19. (2分)(2016·湘西) 测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°,(可用的参考数据:sin50°≈0.8,tan50°≈1.2)(1)若已知CD=20米,求建筑物BC的高度;(2)若已知旗杆的高度AB=5米,求建筑物BC的高度.20. (15分) (2016九上·景德镇期中) 小明的手机没电了,现有一个只含A,B,C,D四个同型号插座的插线板(如图,假设每个插座都适合所有的充电插头,且被选中的可能性相同),请计算:(1)若小明随机选择一个插座插入,则插入A的概率为________;(2)现小明对手机和学习机两种电器充电,请用列表或画树状图的方法表示出两个插头插入插座的所有可能情况,并计算两个插头插在相邻插座的概率.21. (15分) (2020九上·嘉陵期末) 某果品专卖店元旦前后至春节期间主要销售薄壳核桃,采购价为15元/kg,元旦前售价是20元/kg,每天可卖出450kg。