高二文科数学下学期末考试卷

合集下载

高二下学期期末考试数学文科试题答案试题

高二下学期期末考试数学文科试题答案试题

2021—2021学年下期期末统一检测高二数学试题(文科)参考答案及评分意见一、选择题〔50分〕CBCDD BDABB二、填空题〔25分〕11.二 12. (2,3) 13. -2 14. 4x -y -4=0. 15. ①②④三、解答题〔75分〕16. 〔12分〕解:(1)M ={x |2x -3>0}=⎩⎨⎧⎭⎬⎫x |x >32…………………………………………………..3分 N =⎩⎨⎧⎭⎬⎫x |1-2x -1≥0={x |x ≥3或者x <1};………………………………………..6分 (2)M ∩N ={x |x ≥3}…………………………………………………………………..9分 M ∪N ={x |x <1或者x >32}.………………………………………………………………….12分17. 〔12分〕解:∵函数y =c x 在R 上单调递减,∴0<c <1. ……………………………………2分即p :0<c <1,∵c >0且c ≠1,∴非p :c >1. ……………………………………3分又∵f (x )=x 2-2cx +1在⎝ ⎛⎭⎪⎫12,+∞上为增函数,∴c ≤12. 即q :0<c ≤12,∵c >0且c ≠1,∴非q :c >12且c ≠1. …………………………5分 又∵“p 或者q 〞为真,“p 且q 〞为假,∴p 真q 假或者p 假q 真.[6分]①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12且c ≠1=⎩⎨⎧⎭⎬⎫c |12<c <1.………………………………………8分 ②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∅. ……………………………10分 综上所述,实数c 的取值范围是⎩⎨⎧⎭⎬⎫c |12<c <1.………………………………………12分18.〔12分〕解: ∵y ′=2ax +b ,…………………………………………………………………2分∴抛物线在点Q (2,-1)处的切线斜率为k =y ′|x =2=4a +b .∴4a +b =1.①…………………………………………………………………………4分 又∵点P (1,1)、Q (2,-1)在抛物线上,∴a +b +c =1,②4a +2b +c =-1.③…………………………………………………..………………8分联立①②③解方程组,得⎩⎪⎨⎪⎧ a =3,b =-11,c =9.∴实数a 、b 、c 的值分别为3、-11、9. …………………………………………………12分19.〔12分〕解: (1)由图象知A =3,以M ⎝ ⎛⎭⎪⎫π3,0为第一个零点,N ⎝ ⎛⎭⎪⎫5π6,0为第二个零点.……………………………2分 列方程组⎩⎪⎨⎪⎧ ω·π3+φ=0,ω·5π6+φ=π, 解之得⎩⎪⎨⎪⎧ ω=2,φ=-2π3.…………………4分∴所求解析式为y =3sin ⎝⎛⎭⎪⎫2x -2π3.………………………………………………6分(2)f (x )=3sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π6-2π3 =3sin ⎝⎛⎭⎪⎫2x -π3,…………………………………………………………………8分 令2x -π3=π2+k π(k ∈Z ),那么x =512π+k π2(k ∈Z ),………………………10分 ∴f (x )的对称轴方程为x =512π+k π2(k ∈Z ).……………………………………12分20.〔13分〕解: (1)由,得f ′(x )=3x 2-a . …………………………………………………2分因为f (x )在(-∞,+∞)上是单调增函数,所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立,即a ≤3x 2对x ∈(-∞,+∞)恒成立.因为3x 2≥0,所以只需a ≤0. ………………………………………………………6分 又a =0时,f ′(x )=3x 2≥0,f (x )在实数集R 上单调递增,所以a ≤0. …………7分(2)假设f ′(x )=3x 2-a ≤0在(-1,1)上恒成立,那么a ≥3x 2在x ∈(-1,1)时恒成立.…………………………………………………9分 因为-1<x <1,所以3x 2<3,所以只需a ≥3. ………………………………………11分 当a =3时,在x ∈(-1,1)上,f ′(x )=3(x 2-1)<0,……………………………12分 即f (x )在(-1,1)上为减函数,所以a ≥3.故存在实数a ≥3,使f (x )在(-1,1)上单调递减………………………………………13分21.〔14分〕解:(1)令x =y =0,得f (0+0)=f (0)+f (0),即f (0)=0. …………………………………………………………………………3分(2)令y =-x ,得f (x -x )=f (x )+f (-x ),又f (0)=0,那么有0=f (x )+f (-x ),即f (-x )=-f (x )对任意x ∈R 成立,所以f (x )是奇函数.…………………………………………………………………8分(3)解〔方法一〕因为f (x )在R 上是增函数,又由(2)知f (x )是奇函数.f (k ·3x )<-f (3x -9x -2)=f (-3x +9x +2),所以k ·3x <-3x +9x+2………………………………………………………………10分由k ·3x <-3x +9x +2,得k <3x +23x -1. u =3x +23x -1≥22-1,3x =2时,取“=〞,即u 的最小值为22-1,要使对x ∈R ,不等式k <3x +23x -1恒成立, 只要使k <22-1. …………………………………………………………………………14分〔方法二〕因为f (x )在R 上是增函数,又由(2)知f (x )是奇函数.f (k ·3x )<-f (3x -9x -2)=f (-3x +9x +2),所以k ·3x <-3x +9x +2,……………………………………………………………10分32x -(1+k )·3x+2>0对任意x ∈R 成立.令t =3x >0,问题等价于t 2-(1+k )t +2>0对任意t >0恒成立.令f (t )=t 2-(1+k )t +2,其对称轴为x =1+k 2,………………………12分 当1+k 2<0即k <-1时,f (0)=2>0,符合题意;当1+k2≥0即k≥-1时,对任意t>0,f(t)>0恒成立⇔⎩⎪⎨⎪⎧1+k2≥0,Δ=1+k2-4×2<0,解得-1≤k<-1+2 2.综上所述,当k<-1+22时,f(k·3x)+f(3x-9x-2)<0对任意x∈R恒成立.…14分励志赠言经典语录精选句;挥动**,放飞梦想。

高二下学期文科数学期末考试试卷

高二下学期文科数学期末考试试卷

高二下学期文科数学期末考试试卷一、单选题(共12题;共24分)1.函数的定义域是()A. B. C. D.2.若复数z满足zi=1﹣i,则z等于()A. ﹣1﹣IB. 1﹣IC. ﹣1+ID. 1+i3.据我国西部各省(区、市)2013年人均地区生产总值(单位:千元)绘制的频率分布直方图如图所示,则人均地区生产总值在区间[28,38)上的频率是()A. 0.3B. 0.4C. 0,5D. 0.74.公差不为0的等差数列{a n}中,3a2005﹣a20072+3a2009=0,数列{b n}是等比数列,且b2007=a2007,则b2006b2008=()A. 4B. 8C. 16D. 365.已知点(2,1)在双曲线C:﹣=1(a>b>0)的渐近线上,则C的离心率为()A. B. 2 C. D.6.阅读右面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为()A. 0B. 1C. 2D. 37.已知函数.若方程有两个不相等的实根,则实数的取值范围是( )A. B. C. D.8.已知a>b,则下列不等式成立的是()A. ln(a﹣b)>0B.C. 3a﹣b<1D. log a2<log b29.若函数在内单调递增,则的取值范围为()A. B. C. D.10.已知一个扇形的周长是4cm,面积为1cm2,则扇形的圆心角的弧度数是()A. 2B. 3C. 4D. 511.给出四个命题:①函数是其定义域到值域的映射;② 是函数;③函数的图象是一条直线;④ 与是同一个函数.其中正确的有()A. 1个B. 2个C. 3个D. 4个12.给出下列三个类比结论:①类比a x·a y=a x+y,则有a x÷a y=a x-y;②类比log a(xy)=log a x+log a y,则有sin(α+β)=sinαsinβ;③类比(a+b)2=a2+2ab+b2,则有(a+b)2=a2+2a·b+b2.其中结论正确的个数是( )A. 0B. 1C. 2D. 3二、填空题(共4题;共4分)13.已知向量,满足||=2,||=3,|2+|=,则与的夹角为________14.设实数x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为10,则a2+b2的最小值为明________.15.设椭圆的两个焦点分别为,过作椭圆长轴的垂线交椭圆于A,B两点,若为等边三角形,则该椭圆的离心率为________16.一个几何体的三视如图所示,其中正视图和俯视图均为腰长为2的等腰直角三角形,则用________个这样的几何体可以拼成一个棱长为2的正方体.三、解答题(共7题;共65分)17.在△ABC中,角A,B,C所对的边分别是a,b,c,且.(1)证明:sinAsinB=sinC;(2)若,求tanB.18.为了了解我市特色学校的发展状况,某调查机构得到如下统计数据:年份特色学校(百个) 0.30(Ⅰ)根据上表数据,计算与的相关系数,并说明与的线性相关性强弱(已知:,则认为与线性相关性很强;,则认为与线性相关性一般;,则认为与线性相关性较弱);(Ⅱ)求关于的线性回归方程,并预测我市2019年特色学校的个数(精确到个).参考公式:,,,,,.19.如图,在直角梯形ABCD中AD∥BC.∠ABC=90°,AB=BC=2,DE=4,CE⊥AD于E,把△DEC沿CE折到D′EC的位置,使D′A=2 .(Ⅰ)求证:BE⊥平面AD′C;(Ⅱ)求平面D′AB与平面D′CE的所夹的锐二面角的大小.20.已知椭圆,其左、右焦点分别为F1,F2,离心率为,点R的坐标为,又点F2在线段RF1的中垂线上.(1)求椭圆C的方程;(2)设椭圆C的左、右顶点分别为A1,A2,点P在直线上(点P不在x轴上),直线PA1,PA2与椭圆C分别交于不同的两点M,N,线段MN的中点为Q,若|MN|=λ|A1Q|,求λ.21.已知函数f(x)=ln(x+1)+ax2,a>0.(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(﹣1,0)有唯一零点x0,证明:.22.已知直线l的参数方程为:(t为参数),曲线C的极坐标方程为:ρ2cos2θ=1.(1)以极点为原点,极轴为x轴正半轴,建立直角坐标系,求曲线C的直角坐标方程;(2)若求直线,被曲线C截得的弦长为,求m的值.23.选修4-5:不等式选讲已知函数.(1)求不等式的解集;(2)若正数,满足,求证:.答案一、单选题1. D2. A3. A4.D5. D6. C7.B8. C9. A 10. A 11. A 12. C二、填空题13.60°14.15. 16.3三、解答题17. (1)证明:在△ABC中,∵,∴由正弦定理得:,∴= =1,∵sin(A+B)=sinC.∴整理可得:sinAsinB=sinC(2)解:,由余弦定理可得cosA= .sinA= ,= + = =1,= ,tanB=418. 解:(Ⅰ),,,∴与线性相关性很强.(Ⅱ),,∴关于的线性回归方程是.当时,(百个),即地区2019年足球特色学校的个数为208个.19.证明:(Ⅰ)∵EC⊥AE,EC⊥D′E,AE∩D′E=E,∴EC⊥平面D′AE,又D′A⊂平面D′AE,∴EC⊥D′A,在△AD′E中,∵AD′=2 ,D′E=4,AE=2,∴AD'2+AE2=D′E2,∴D′A⊥AE,又AE∩EC=E,∴D′A⊥平面ABCE,又BE⊂平面ABCE,∴D′A⊥BE,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2,CE⊥AD,∴ABCE为正方形,∴BE⊥AC,AC∩D′A=A,∴BE⊥平面AD′C.解:(Ⅱ)取AB,AE,AD′分别x,y,z轴,建立如图所示的空间直角坐标系,由题意知面D′AB的法向量=(0,2,0),设平面D′CE的法向量=(x,y,z),=(0,2,﹣2 ),=(2,0,0),则,取y=3,得=(0,3,),cos<>= = ,∴<>= ,∴平面D′AB与平面D′CE的所夹的锐二面角的大小为.20. (1)解:∵e= ,∴,∵F2(c,0)在PF1的中垂线上,∴|F1F2|=|RF2|,(2c)2= 2+(2 ﹣c)2,解得c=2,∴a2=3,b2=1.∴椭圆C的方程为+y2=1.(2)解:证明:由(Ⅰ)知A1(﹣,0),A2(,0),设PA1的方程为y=k(x+ )(k≠0),则P坐标(﹣2 ,﹣k),∴k = ,∴PA 2方程为y= (x﹣),联立方程组,消元得(3+k2)x2﹣2 k2x+3k2﹣9=0,解得N(,﹣),∴k =﹣,∴A 1M⊥A1N,∴三角形MNA1为直角三角形,又Q为斜边中点,∴|MN|=2|A1Q|,即λ=2.21. (1)解:,x>﹣1,令g(x)=2ax2+2ax+1,△=4a2﹣8a=4a(a﹣2),若△<0,即0<a<2,则g(x)>0,当x∈(﹣1,+∞)时,f'(x)>0,f(x)单调递增,若△=0,即a=2,则g(x)≥0,仅当时,等号成立,当x∈(﹣1,+∞)时,f'(x)≥0,f(x)单调递增.若△>0,即a>2,则g(x)有两个零点,,由g(﹣1)=g(0)=1>0,得,当x∈(﹣1,x1)时,g(x)>0,f'(x)>0,f(x)单调递增;当x∈(x1,x2)时,g(x)<0,f'(x)<0,f(x)单调递减;当x∈(x2,+∞)时,g(x)>0,f'(x)>0,f(x)单调递增.综上所述,当0<a≤2时,f(x)在(﹣1,+∞)上单调递增;当a>2时,f(x)在和上单调递增,在上单调递减.(2)解:由(1)及f(0)=0可知:仅当极大值等于零,即f(x1)=0时,符合要求.此时,x1就是函数f(x)在区间(﹣1,0)的唯一零点x0.所以,从而有,又因为,所以,令x0+1=t,则,设,则,再由(1)知:,h'(t)<0,h(t)单调递减,又因为,,所以e﹣2<t<e﹣1,即.22. (1)解:曲线C的极坐标方程为:ρ2cos2θ=1,即:ρ2(cos2θ﹣sin2θ)=1.∴x2﹣y2=1.(2)解:直线l的参数方程为:(t为参数),代入双曲线方程:3t2﹣4mt+4﹣4m2=0,△=16m2﹣12(4﹣4m2)>0,解得:m2.t1+t2= ,t1t2= .∴=|t1﹣t2|= = ,解得m= .23. (1)解:此不等式等价于或或解得或或.故答案为:不等式的解集为.(2)解:∵,,,,即,当且仅当即时取等号.∴,当且仅当,即时,取等号.∴.。

高二文科数学第二学期期末考试试题及答案

高二文科数学第二学期期末考试试题及答案

答案一、选择题1-5 DABCB 6-10 DADDC 11-12 BC二、填空题13.丁 14.充分15.(n +1)(n +2) …(n +n)=2n ×1×3×…×(2n -1) 16.2ΔABC ΔBOC ΔBDC S =S S ⋅ 三、解答题17.证明:由(1tan )(1tan )2A B ++= 可得tan tan 21tan 4tan 1tan()1tan 1tan 41tan tan 4A A B A A A A π--π=-===-π+++…………………5分()4B A k k π=-+π∈Z 即()4A B k k π+=+π∈Z因为A,B 都是钝角,即2A B π<+<π, 所以54A B π+=.…………………………10分 18………………6分 (Ⅱ)222()80(4241636)9.6()()()()40402060n ad bc K a b c d a c b d -⨯⨯-⨯===++++⨯⨯⨯由2(7.879)0.005P K ≥≈,所以有99.5%的把握认为“成绩与班级有关系”. …………………12分19.解:(Ⅰ)…………………2分(Ⅱ)()12456855x =++++=,()13040605070505y =++++=,…………4分213805550 6.514555b -⨯⨯==-⨯,50 6.5517.5a y bx =-=-⨯=,…………………8分 ∴回归直线方程为 6.517.5y x =+.…………………10分(Ⅲ)当10x =时,预报y 的值为10 6.517.582.5y =⨯+=.…………………12分20.(1)几何证明选讲解析:(Ⅰ)证明:连接BE ,则△ABE 为直角三角形,因为∠ABE =∠ADC =90,∠AEB =∠ACB ,所以△ABE ∽△ADC ,则=,即ABAC =ADAE.又AB =BC ,所以ACBC =ADAE. …………………6分(Ⅱ)因为FC 是⊙O 的切线,所以FC 2=AFBF.又AF =4,CF =6,则BF =9,AB =BF -AF =5.因为∠ACF =∠CBF ,又∠CFB =∠AFC ,所以△AFC ∽△CFB ,则=,即AC ==.…………………12分20.(2)坐标系与参数方程解析:(Ⅰ)直线参数方程可以化为根据直线参数方程的意义,这是一条经过点,倾斜角为60的直线.…………………6分 (Ⅱ)直线l 的直角坐标方程为y =x +,即x -y +=0,极坐标方程ρ=2cos 的直角坐标方程为2+2=1,所以圆心到直线l 的距离d ==,所以|AB |=2=.…………………12分20.(3)不等式选讲解:(Ⅰ)由()3f x ≤得,||3x a ≤-,解得33a x a ≤≤-+.又已知不等式()3f x ≤的解集为{|15}x x ≤≤-,所以31,35,a a -=-⎧⎨+=⎩解得2a =.…………………6分(Ⅱ)当2a =时,()|2|f x x =-,设()()(5)g x f x f x =++,于是()21,3,|2||3|5,32,21,2,x x g x x x x x x --<-⎧⎪-≤≤⎨⎪+>⎩=-++=所以当3x <-时,()5g x >;当32x ≤≤-时,()5g x =;当2x >时,()5g x >.综上可得,()g x 的最小值为5.从而若()(5)f x f x m ≥++,即()g x m ≥对一切实数x 恒成立,则m 的取值范围为(-∞,5].…………………12分21.(1)几何证明选讲解析:(Ⅰ)证明:由已知条件,可得∠BAE =∠CAD.因为∠AEB 与∠ACB 是同弧上的圆周角,所以∠AEB =∠ACD.故△ABE ∽△ADC. …………………6分(Ⅱ)因为△ABE ∽△ADC ,所以=,即ABAC =ADAE.又S =ABACsin ∠BAC ,且S =ADAE ,故ABACsin ∠BAC =ADAE.则sin ∠BAC =1,又∠BAC 为三角形内角,所以∠BAC =90. …………………12分21.(2)坐标系与参数方程(Ⅰ)2sin ρθ=可得22sin ρρθ=,即222x y y += 所以曲线C 的直角坐标方程为222x y y +=.…………………6分 (Ⅱ)直线l 的普通方程为4(2)3y x =--,令0y =可得2x =,即(2,0)M ,又曲线C 为圆,圆C 的圆心坐标为(0,1),半径1r =,则MC =1MN MC r ∴≤+=+.…………………12分21.(3)不等式选讲解 (Ⅰ)由|21|1x <-得1211x <<--,解得01x <<. 所以{}M |01x x <<=.…………………6分(Ⅱ)由(Ⅰ)和M a b ∈,可知01a <<,01b <<.所以(1)()(1)(1)0ab a b a b >+-+=--. 故1ab a b >++.…………………12分22.(1)几何证明选讲解析:(Ⅰ)延长BE 交圆E 于点M ,连接CM ,则∠BCM =90,又BM =2BE =4,∠EBC =30,∴ BC =2,又∵ AB =AC ,∴ AB =BC =.由切割线定理知AF 2=ABAC =3=9.∴ AF =3. …………………6分(Ⅱ)证明:过点E 作EH ⊥BC 于点H ,则△EDH 与△ADF 相似,从而有==,因此AD =3ED . …………………12分22.(2)坐标系与参数方程(I )由2cos 2sin x y ϕϕ=⎧⎨=⎩可得224x y +=,由4sin()3πρθ=+得24(sin cos cos sin )33ππρρθθ=+,即222x y y +=+,整理得22((1)4x y +-=.…………………6分 (II )圆1C 表示圆心在原点,半径为2的圆,圆2C表示圆心为,半径为2的圆, 又圆2C的圆心在圆1C 上,由几何性质可知,两圆相交.…………………12分22.(3)不等式选讲解:(I )当2a =时,|2||4|4x x -+-≥,当2x ≤时,得264x -+≥,解得1x ≤;当24x <<时,得24≥,无解;当4x ≥时,得264x -≥,解得5x ≥;故不等式的解集为{| 15}x x x ≤≥或.…………………6分(II )2||x a a -≤可解得22{|}x a a x a a -≤≤+, 因为22{|}{|26}x a a x a a x x -≤≤+⊆-≤≤, 所以2226a a a a ⎧-≤-⎪⎨+≤⎪⎩解得1232a a -≤≤⎧⎨-≤≤⎩即12a -≤≤,又因为1a >,所以12a <≤.…………………12分。

高二文科数学第二学期期末考试试题及答案

高二文科数学第二学期期末考试试题及答案

复习试卷答案一、选择题1-5 6-10 11-12二、填空题13.丁 14.充分15.(n +1)(n +2) …(n +n)=2n ×1×3×…×(2n -1)16.2ΔABC ΔBOC ΔBDC S =S S ⋅三、解答题17.证明:由(1tan )(1tan )2A B ++= 可得tantan 21tan 4tan 1tan()1tan 1tan 41tan tan 4A A B A A A A π--π=-===-π+++…………………5分 ()4B A k k π=-+π∈Z 即()4A B k k π+=+π∈Z因为都是钝角,即2A B π<+<π, 所以54A B π+=.…………………………10分 18.解:(Ⅰ)22列联表如下:………………6分(Ⅱ)222()80(4241636)9.6()()()()40402060n ad bc K a b c d a c b d -⨯⨯-⨯===++++⨯⨯⨯ 由2(7.879)0.005P K ≥≈,所以有99.5%的把握认为“成绩与班级有关系”. …………………12分19.解:(Ⅰ)…………………2分(Ⅱ)()12456855x =++++=,()13040605070505y =++++=,…………4分213805550 6.514555b -⨯⨯==-⨯,50 6.5517.5a y bx =-=-⨯=,…………………8分 ∴回归直线方程为 6.517.5y x =+.…………………10分(Ⅲ)当10x =时,预报y 的值为10 6.517.582.5y =⨯+=.…………………12分20.(1)几何证明选讲解析:(Ⅰ)证明:连接,则△为直角三角形,因为∠=∠=90,∠=∠,所以△∽△,则=,即=.又=,所以=. …………………6分(Ⅱ)因为是⊙O 的切线,所以2=.又=4,=6,则=9,=-=5.因为∠=∠,又∠=∠,所以△∽△,则=,即==.…………………12分20.(2)坐标系与参数方程解析:(Ⅰ)直线参数方程可以化为根据直线参数方程的意义,这是一条经过点,倾斜角为60的直线.…………………6分(Ⅱ)直线l 的直角坐标方程为y =x +,即x -y +=0,极坐标方程ρ=2的直角坐标方程为2+2=1,所以圆心到直线l 的距离d ==,所以=2=.…………………12分20.(3)不等式选讲解:(Ⅰ)由()3f x ≤得,||3x a ≤-,解得33a x a ≤≤-+.又已知不等式()3f x ≤的解集为{|15}x x ≤≤-,所以31,35,a a -=-⎧⎨+=⎩解得2a =.…………………6分(Ⅱ)当2a =时,()|2|f x x =-,设()()(5)g x f x f x =++,于是()21,3,|2||3|5,32,21,2,x x g x x x x x x --<-⎧⎪-≤≤⎨⎪+>⎩=-++=所以当3x <-时,()5g x >;当32x ≤≤-时,()5g x =;当2x >时,()5g x >. 综上可得,()g x 的最小值为5.从而若()(5)f x f x m ≥++,即()g x m ≥对一切实数x 恒成立,则m 的取值范围为(-∞,5].…………………12分21.(1)几何证明选讲解析:(Ⅰ)证明:由已知条件,可得∠=∠.因为∠与∠是同弧上的圆周角,所以∠=∠.故△∽△. …………………6分(Ⅱ)因为△∽△,所以=,即=.又S = ∠,且S =,故 ∠=.则 ∠=1,又∠为三角形内角,所以∠=90. …………………12分21.(2)坐标系与参数方程(Ⅰ)2sin ρθ=可得22sin ρρθ=,即222x y y +=所以曲线C 的直角坐标方程为222x y y +=.…………………6分 (Ⅱ)直线l 的普通方程为4(2)3y x =--, 令0y =可得2x =,即(2,0)M ,又曲线C 为圆,圆C 的圆心坐标为(0,1), 半径1r =,则5MC =.51MN MC r ∴≤+=+.…………………12分21.(3)不等式选讲解 (Ⅰ)由|21|1x <-得1211x <<--,解得01x <<. 所以{}M |01x x <<=.…………………6分 (Ⅱ)由(Ⅰ)和M a b ∈,可知01a <<,01b <<. 所以(1)()(1)(1)0ab a b a b >+-+=--.故1ab a b >++.…………………12分22.(1)几何证明选讲解析:(Ⅰ)延长交圆E 于点M ,连接,则∠=90,又=2=4,∠=30,∴ =2,又∵ =,∴ ==.由切割线定理知2==3=9.∴ =3. …………………6分(Ⅱ)证明:过点E 作⊥于点H ,则△与△相似, 从而有==,因此=3. …………………12分22.(2)坐标系与参数方程(I )由2cos 2sin x y ϕϕ=⎧⎨=⎩可得224x y +=, 由4sin()3πρθ=+得24(sin cos cos sin )33ππρρθθ=+, 即22223x y y x +=+,整理得22(3)(1)4x y -+-=.…………………6分 ()圆1C 表示圆心在原点,半径为2的圆,圆2C 表示圆心为(3,1),半径为2的圆, 又圆2C 的圆心(3,1)在圆1C 上,由几何性质可知,两圆相交.…………………12分22.(3)不等式选讲解:(I )当2a =时,|2||4|4x x -+-≥,当2x ≤时,得264x -+≥,解得1x ≤;高二文科数学第二学期期末考试试题与答案11 / 11 当24x <<时,得24≥,无解;当4x ≥时,得264x -≥,解得5x ≥;故不等式的解集为{| 15}x x x ≤≥或.…………………6分()2||x a a -≤可解得22{|}x a a x a a -≤≤+, 因为22{|}{|26}x a a x a a x x -≤≤+⊆-≤≤, 所以2226a a a a ⎧-≤-⎪⎨+≤⎪⎩解得1232a a -≤≤⎧⎨-≤≤⎩即12a -≤≤,又因为1a >,所以12a <≤.…………………12分。

高二下学期数学期末试卷及答案(文科)

高二下学期数学期末试卷及答案(文科)

下期高中二年级教学质量监测数学试卷(文科)(考试时间120分 满分150分)第Ⅰ卷 选择题(满分60分)一、选择题:本大题共12小题;每小题5分;满分60分;每小题只有一个选项符合题目要求;请将正确答案填在答题栏内。

1. 设集合M ={长方体};N ={正方体};则M ∩N =:A .MB .NC .∅D .以上都不是 2. “sinx =siny ”是“x =y ”的:A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 3. 下列函数是偶函数的是:A .)0()(2≥=x x x fB . )2cos()(π-=x x f C . x e x f =)(D . ||lg )(x x f =4. 从单词“equation ”中选取5个不同的字母排成一排;含有“qu ”(其中“qu ”相连且顺序不变)的不同排法共有()个: A .480 B . 840 C . 120 D . 7205. 72)12(xx +的展开式中倒数第三项的系数是:A .267CB . 6672CC . 2572CD . 5572C 6. 直线a ⊥平面α;直线b ∥平面α;则直线a 、b 的关系是:A .可能平行B . 一定垂直C . 一定异面D . 相交时才垂直7. 已知54cos ),0,2(=-∈x x π;则=x 2tan : A .274B . 274-C .724 D . 724-8. 抛物线的顶点在原点;焦点与椭圆14822=+x y 的一个焦点重合;则抛物线方程是:A .y x 82±=B . x y 82±=C . y x 42±=D . x y 42±=9. 公差不为0的等差数列}{n a 中;632,,a a a 成等比数列;则该等比数列的公比q 等于: A . 4 B . 3 C . 2 D . 110. 正四面体的内切球(与正四面体的四个面都相切的球)与外接球(过正四面体四个顶点的球)的体积比为: A .1:3 B . 1:9 C . 1:27 D . 与正四面体的棱长无关11. 从1;2;3;…;9这九个数中;随机抽取3个不同的数;这3个数的和为偶数的概率是:A .95 B . 94 C . 2111 D . 2110 12. 如图:四边形BECF 、AFED 都是矩形;且平面AFED ⊥平面BCDEF ;∠ACF =α;∠ABF =β;∠BAC =θ;则下列式子中正确的是: A .θβαcos cos cos •= B .θβαcos sin sin •=C .θαβcos cos cos •=D .θαβcos sin sin •=。

高二下学期期末(文科)数学试卷 (解析版)

高二下学期期末(文科)数学试卷 (解析版)

高二第二学期期末数学试卷(文科)一、选择题(共12小题).1.已知复数z满足iz=1﹣i(i是虚数单位),则z=()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i2.根据如下样本数据,得到回归方程=bx+a,则()x345678y 4.0 2.5﹣0.50.5﹣2.0﹣3.0 A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0 3.已知复数z=(i是虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限4.已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.45.执行如图所示的程序框图,若输出S的值为0.99,则判断框内可填入的条件是()A.i<100B.i≤100C.i<99D.i≤986.甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是()A.甲是工人,乙是知识分子,丙是农民B.甲是知识分子,乙是农民,丙是工人C.甲是知识分子,乙是工人,丙是农民D.甲是知识分子,乙是农民,丙是工人7.为了判定两个分类变量X和Y是否有关系,应用k2独立性检验法算得k2的观测值为5,又已知P(k2≥3.841)=0.05,P(k2≥6.635)=0.01,则下列说法正确的是()A.有99%以上的把握认为“X和Y有关系”B.有99%以上的把握认为“X和Y没有关系”C.有95%以上的把握认为“X和Y有关系”D.有95%以上的把握认为“X和Y没有关系”8.某工厂某产品产量x(千件)与单位成本y(元)满足回归直线方程=77.36﹣1.82x,则以下说法中正确的是()A.产量每增加1000件,单位成本约下降1.82元B.产量每减少1000件,单位成本约下降1.82元C.当产量为1千件时,单位成本为75.54元D.当产量为2千件时,单位成本为73.72元9.已知i为虚数单位,复数z=,则以下命题为真命题的是()A.z的共轭复数为B.z的虚部为C.|z|=3D.z在复平面内对应的点在第一象限10.为了规定工时定额,需要确定加工某种零件所需的时间,为此进行了5次试验,得到5组数据:(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),由最小二乘法求得回归直线方程为.若已知x1+x2+x3+x4+x5=250,则y1+y2+y3+y4+y5=()A.75B.155.4C.375D.44211.幻方,是中国古代一种填数游戏.n(n∈N*,n≥3)阶幻方是指将连续n2个正整数排成的正方形数阵,使之同一行、同一列和同一对角线上的n个数的和都相等.中国古籍《周易本义》中的《洛书》记载了一个三阶幻方(如图1),即现在的图2.若某3阶幻方正中间的数是2018,则该幻方中的最小数为()A.2013B.2014C.2015D.201612.对任意复数z=x+yi(x,y∈R),i为虚数单位,则下列结论正确的是()A.|z|≤|x|+|y|B.|z ﹣|≥2x C.z2=x2+y2D.|z ﹣|=2y二、填空题:本大题共5个小题,每小题5分,共25分.13.已知,若(a,b均为实数),请推测a =,b=.14.某次国际会议为了搞好对外宣传工作,会务组选聘了50名记者担任对外翻译工作,在如表“性别与会外语”的2×2列联表中,a+b+d=.会外语不会外语总计男a b20女6d总计185015.已知复数z满足(1+i)z=|+i|,i为虚数单位,则z等于.16.某设备的使用年数x与所支出的维修总费用y的统计数据如下表:使用年数x(单位:米)23456维修总费用y(单位:万1.5 4.5 5.5 6.57.5元)根据上表可得回归直线方程为=1.3x+.若该设备维修总费用超过12万元就报废,据此模型预测该设备最多可使用年.17.给出下列关于回归分析的说法:①残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高;②回归直线一定过样本中心点(,);③两个模型中残差平方和越小的模型拟合的效果越好;④甲、乙两个模型的相关指数R2分别约为0.88和0.80,则模型乙的拟合效果更好.其中错误的序号是.三、解答题:本大题共5小题,共65分,解答题应根据要求写出必要的文字说明,证明过程或演算步骤.18.已知复数(i是虚数单位)(1)复数z是实数,求实数m的值;(2)复数z是虚数,求实数m的取值范围;(3)复数z是纯虚数,求实数m的值.19.某医院治疗白血病有甲、乙两套方案,现就70名患者治疗后复发的情况进行了统计,得到其等高条形图如图所示(其中采用甲、乙两种治疗方案的患者人数之比为5:2)(1)补充完整2×2列联表中的数据,(2)判断是否有95%的把握认为甲、乙两套治疗方案对患者白血病复发有影响.复发未复发总计甲方案乙方案总计附:.P(K2≥k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.82820.某企业坚持以市场需求为导向,合理配置生产资源,不断改革、探索销售模式.下表是该企业每月生产的一种核心产品的产量x(件)与相应的生产总成本y(万元)的五组对照数据:产量x(件)12345生产总成本y(万元)3781012(1)试求y与x的相关系数r,并利用相关系数r说明y与x是否具有较强的线性相关关系(若|r|>0.75,则线性相关程度很高,可用线性回归模型拟合);(2)建立y关于x的回归方程,并预测:当x为6时,生产总成本的估计值.参考公式:r=,=,=﹣.参考数据:.21.2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为研究学生网上学习的情况,某校社团对男女各10名学生进行了网上在线学习的问卷调查,每名学生给出评分(满分100分),得到如图所示的茎叶图.(1)根据茎叶图判断男生组和女生组哪个组对网课的评价更高?并说明理由;(2)求该20名学生评分的中位数m,并将评分超过m和不超过m的学生数填入下面的列联表中,并根据列联表,判断能否有90%的把握认为男生和女生的评分有差异?超过m不超过m总计男生女生总计附:.P(K2≥k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.82822.当前,短视频行业异军突起,抖音、快手、秒拍等短视频平台吸引了大量流量和网络博主的加入.红人榜的数据推出是体现各平台KOL网络博主商业价值的榜单,每周一期,红人榜能反应最近一周KOL网络的综合价值,以粉丝数、集均评论、集均赞,以及集均分享来进行综合衡量,红人榜单在统计时发现某平台一网络博主的累计粉丝数y(百万)与入驻平台周次x(周)之间的关系如图所示:设ω=lnx,数据经过初步处理得:=258,=160,=9.(其中x i,y i分别为观测数据中的周次和累计粉丝数)(1)求出y关于x的线性回归模型=x+的相关指数R12,若用非线性回归模型求得的相关指数R22=0.9998,试用相关指数R2判断哪种模型的拟合效果较好(相关指数越接近于1,拟合效果越好)(2)根据(1)中拟合效果较好的模型求出y关于x的回归方程,并由此预测入驻平台8周后,对应的累计粉丝数y为多少?附参考公式:相关指数R2=1﹣,=,=﹣.参考数据:ln2≈0.70.参考答案一、选择题(共12小题).1.已知复数z满足iz=1﹣i(i是虚数单位),则z=()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i解:由iz=1﹣i,得z=.故选:A.2.根据如下样本数据,得到回归方程=bx+a,则()x345678y 4.0 2.5﹣0.50.5﹣2.0﹣3.0 A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0解:由题意可知:回归方程经过的样本数据对应的点附近,是减函数,所以b<0,且回归方程经过(3,4)与(4,2.5)附近,所以a>0.故选:B.3.已知复数z=(i是虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解:∵z==,∴z在复平面内对应的点的坐标为(﹣1,﹣1),位于第三象限.故选:C.4.已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.4解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.5.执行如图所示的程序框图,若输出S的值为0.99,则判断框内可填入的条件是()A.i<100B.i≤100C.i<99D.i≤98解:由程序框图知:算法的功能是求S=++…+=1﹣的值,∵输出的结果为0.99,即S=1﹣=0.99,∴跳出循环的i=100,∴判断框内应填i≤99或i<100.故选:A.6.甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是()A.甲是工人,乙是知识分子,丙是农民B.甲是知识分子,乙是农民,丙是工人C.甲是知识分子,乙是工人,丙是农民D.甲是知识分子,乙是农民,丙是工人解:“甲的年龄和农民不同”和“农民的年龄比乙小”可以推得丙是农民,所以丙的年龄比乙小;再由“丙的年龄比知识分子大”,可知甲是知识分子,故乙是工人.故选:C.7.为了判定两个分类变量X和Y是否有关系,应用k2独立性检验法算得k2的观测值为5,又已知P(k2≥3.841)=0.05,P(k2≥6.635)=0.01,则下列说法正确的是()A.有99%以上的把握认为“X和Y有关系”B.有99%以上的把握认为“X和Y没有关系”C.有95%以上的把握认为“X和Y有关系”D.有95%以上的把握认为“X和Y没有关系”解:∵3.481<K2=5<6.635,而在观测值表中对应于3.841的是0.05,对应于6.635的是0.01,∴有1﹣0.05=95%以上的把握认为“X和Y有关系”.故选:C.8.某工厂某产品产量x(千件)与单位成本y(元)满足回归直线方程=77.36﹣1.82x,则以下说法中正确的是()A.产量每增加1000件,单位成本约下降1.82元B.产量每减少1000件,单位成本约下降1.82元C.当产量为1千件时,单位成本为75.54元D.当产量为2千件时,单位成本为73.72元解:由题意,该方程在R上为单调递减,函数模型是一个递减的函数模型,产量每增加1000件,单位成本下降1.82元.故选:A.9.已知i为虚数单位,复数z=,则以下命题为真命题的是()A.z的共轭复数为B.z的虚部为C.|z|=3D.z在复平面内对应的点在第一象限解:z==,z的共轭复数为,故A错误;z的虚部为,故B错误;,故C错误;z在复平面内对应的点的坐标为(),在第一象限,故D正确.故选:D.10.为了规定工时定额,需要确定加工某种零件所需的时间,为此进行了5次试验,得到5组数据:(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),由最小二乘法求得回归直线方程为.若已知x1+x2+x3+x4+x5=250,则y1+y2+y3+y4+y5=()A.75B.155.4C.375D.442解:由x1+x2+x3+x4+x5=250,得,又,∴,∴y1+y2+y3+y4+y5=.故选:D.11.幻方,是中国古代一种填数游戏.n(n∈N*,n≥3)阶幻方是指将连续n2个正整数排成的正方形数阵,使之同一行、同一列和同一对角线上的n个数的和都相等.中国古籍《周易本义》中的《洛书》记载了一个三阶幻方(如图1),即现在的图2.若某3阶幻方正中间的数是2018,则该幻方中的最小数为()A.2013B.2014C.2015D.2016解:根据题意,3阶幻方是将9个连续的正整数排成的正方形数阵,则这9个数成等差数列,设这个数列为{a n},且其公差为1,其同一行、同一列和同一对角线上的3个数的和都相等,则幻方中最中间的数是这9个数中的最中间的1个,若3阶幻方正中间的数是2018,即a5=2018,则其最小的数a1=a5﹣4d=2014;故选:B.12.对任意复数z=x+yi(x,y∈R),i为虚数单位,则下列结论正确的是()A.|z|≤|x|+|y|B.|z﹣|≥2x C.z2=x2+y2D.|z﹣|=2y解:∵z=x+yi(x,y∈R),∴|z|2=x2+y2≤x2+y2+2|x||y|=(|x|+|y|)2,∴|z|≤|x|+|y|,即A正确,C错误;又|z﹣|=2|y|,可排除B与D,故选:A.二、填空题:本大题共5个小题,每小题5分,共25分.13.已知,若(a,b均为实数),请推测a=6,b=35.解:观察各个等式可得,各个等式左边的分数的分子与前面的整数相同、分母是分子平方减1,等式右边的分数与左边的分数相同,前面的整数与左边的整数相同,∴等式中的a=6、b=36﹣1=35,故答案为:6;35.14.某次国际会议为了搞好对外宣传工作,会务组选聘了50名记者担任对外翻译工作,在如表“性别与会外语”的2×2列联表中,a+b+d=44.会外语不会外语总计男a b20女6d总计1850解:由题意填写列联表如下,会外语不会外语总计男12820女62430总计183250所以a=12,b=8,d=24,a+b+d=12+8+24=44.故答案为:44.15.已知复数z满足(1+i)z=|+i|,i为虚数单位,则z 等于1﹣i.解:∵(1+i)z=|+i|=,∴z =.故答案为:1﹣i.16.某设备的使用年数x与所支出的维修总费用y 的统计数据如下表:使用年数x(单位:米)23456维修总费用y(单位:万1.5 4.5 5.5 6.57.5元)根据上表可得回归直线方程为=1.3x+.若该设备维修总费用超过12万元就报废,据此模型预测该设备最多可使用10年.解:根据表中数据,计算=×(2+3+4+5+6)=4,=×(1.5+4.5+5.5+6.5+7.5)=5.1,且回归直线方程=1.3x+过样本中心点(,),∴5.1=1.3×4+,解得=﹣0.1;∴回归直线方程为=1.3x﹣0.1;令=1.3x﹣0.1≥12,解得x≥9.308,据此模型预测该设备最多可使用10年,其维修总费用超过12万元,就应报废.故答案为:10.17.给出下列关于回归分析的说法:①残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高;②回归直线一定过样本中心点(,);③两个模型中残差平方和越小的模型拟合的效果越好;④甲、乙两个模型的相关指数R2分别约为0.88和0.80,则模型乙的拟合效果更好.其中错误的序号是①④.解:①残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高,不正确.②线性回归直线必过样本数据的中心点(,),正确;③如果两个变量的相关性越强,则相关性系数r就越接近于1,正确,应为相关性系数r的绝对值就越接近于1;④甲、乙两个模型的R2分别约为0.88和0.80,则模型乙的拟合效果更好,不正确,应为模型甲的拟合效果更好.故答案为:①④.三、解答题:本大题共5小题,共65分,解答题应根据要求写出必要的文字说明,证明过程或演算步骤.18.已知复数(i是虚数单位)(1)复数z是实数,求实数m的值;(2)复数z是虚数,求实数m的取值范围;(3)复数z是纯虚数,求实数m的值.解:(1)若复数z是实数,则,得,即m=5;(2)复数z是虚数,则,即,即m≠5且m≠﹣3;(3)复数z是纯虚数,则,得,即m=3,或﹣219.某医院治疗白血病有甲、乙两套方案,现就70名患者治疗后复发的情况进行了统计,得到其等高条形图如图所示(其中采用甲、乙两种治疗方案的患者人数之比为5:2)(1)补充完整2×2列联表中的数据,(2)判断是否有95%的把握认为甲、乙两套治疗方案对患者白血病复发有影响.复发未复发总计甲方案乙方案总计附:.P(K2≥k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.828解:(1)根据题意知,70名患者中采用甲种治疗方案的患者为50人,采用乙种治疗方案的患者有20人,填写2×2列联表如下;复发未复发总计甲方案203050乙方案21820总计224870(2)由列联表中数据,计算K2=≈5.966>3.841,所以有95%的把握认为甲、乙两套治疗方案对患者白血病复发有影响.20.某企业坚持以市场需求为导向,合理配置生产资源,不断改革、探索销售模式.下表是该企业每月生产的一种核心产品的产量x(件)与相应的生产总成本y(万元)的五组对照数据:产量x(件)12345生产总成本y(万元)3781012(1)试求y与x的相关系数r,并利用相关系数r说明y与x是否具有较强的线性相关关系(若|r|>0.75,则线性相关程度很高,可用线性回归模型拟合);(2)建立y关于x的回归方程,并预测:当x为6时,生产总成本的估计值.参考公式:r=,=,=﹣.参考数据:.解:(1),,,,.∴相关系数r=≈0.98.∵|r|>0.75,∴y与x具有较强的线性相关关系,可用线性回归方程拟合y与x的关系;(2),.∴y关于x的线性回归方程为.取x=6,求得.∴预测当x为6时,生产总成本的估计值为14.3万元.21.2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为研究学生网上学习的情况,某校社团对男女各10名学生进行了网上在线学习的问卷调查,每名学生给出评分(满分100分),得到如图所示的茎叶图.(1)根据茎叶图判断男生组和女生组哪个组对网课的评价更高?并说明理由;(2)求该20名学生评分的中位数m,并将评分超过m和不超过m的学生数填入下面的列联表中,并根据列联表,判断能否有90%的把握认为男生和女生的评分有差异?超过m不超过m总计男生女生总计附:.P(K2≥k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.828解:(1)男生对问题的评价更高,理由如下:①由茎叶图知,评价分数不低于70分的男生比女生多2人(33.3%),因此男生对网课的评价更高;②由茎叶图知,男生评分的中位数是77,女生评分的中位数是72,因此男生对网课的评价更高;③由茎叶图知,男生评分的平均数为×(68+69+70+74+77+78+79+83+86+96)=78,女生评分的平均数为×(55+58+63+64+71+73+75+76+81+86)=70.2,因此男生对网课的评价更高;(以上三条理由给出一条理由,即可得到满分)(2)由茎叶图知,该20名学生评分的中位数是m==74.5,由此填写列联表如下;超过m不超过m总计男生6410女生4610总计101020计算K2==0.8<2.706,所以没有90%的把握认为男生和女生的评分有差异.22.当前,短视频行业异军突起,抖音、快手、秒拍等短视频平台吸引了大量流量和网络博主的加入.红人榜的数据推出是体现各平台KOL网络博主商业价值的榜单,每周一期,红人榜能反应最近一周KOL网络的综合价值,以粉丝数、集均评论、集均赞,以及集均分享来进行综合衡量,红人榜单在统计时发现某平台一网络博主的累计粉丝数y(百万)与入驻平台周次x(周)之间的关系如图所示:设ω=lnx,数据经过初步处理得:=258,=160,=9.(其中x i,y i分别为观测数据中的周次和累计粉丝数)(1)求出y关于x的线性回归模型=x+的相关指数R12,若用非线性回归模型求得的相关指数R22=0.9998,试用相关指数R2判断哪种模型的拟合效果较好(相关指数越接近于1,拟合效果越好)(2)根据(1)中拟合效果较好的模型求出y关于x的回归方程,并由此预测入驻平台8周后,对应的累计粉丝数y为多少?附参考公式:相关指数R2=1﹣,=,=﹣.参考数据:ln2≈0.70.解:(1)由已知可得R12=1﹣,R22=0.9998,∵R12<R22,∴的拟合效果较好;(2)由题意,=1,.=,.∴回归方程为y=10lnx+4.6.当x=8时,y=10ln8+4.6=30ln2+4.6≈25.6.∴预测入驻平台8周后,对应的累计粉丝数y为25.6百万=2560万.。

高二期末下学期(文科)数学试卷 (解析版)

高二期末下学期(文科)数学试卷 (解析版)

高二第二学期期末数学试卷(文科)一、选择题(共10小题).1.若集合A={x|﹣2≤x≤3},B={x|x<﹣1或x>4},则集合A∩B等于()A.{x|x≤3或x>4}B.{x|﹣1<x≤3}C.{x|﹣2≤x<﹣1}D.{x|3≤x<4} 2.“(2x﹣1)x=0”是“x=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.下列命题中,真命题是()A.∃x0∈R,≤0B.∀x∈R,2x>x2C.a+b=0的充要条件是=﹣1D.a>1,b>1是ab>1的充分条件4.若复数z=,其中i为虚数单位,则=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i5.在极坐标系中,已知点,则|P1P2|等于()A.9B.10C.14D.26.直线和圆x2+y2=16交于A,B两点,则AB的中点坐标为()A.(3,﹣3)B.C.D.7.已知函数f(x)=﹣x3+ax2﹣x﹣1在(﹣∞,+∞)上是单调函数,则实数a的取值范围是()A.B.C.D.8.函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.9.已知,则f'(x)=()A.B.C.1﹣lnx D.10.数列的第10项是()A.B.C.D.二、填空题11.曲线(θ为参数)两焦点间的距离是.12.已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为.13.已知实数x,y满足方程x2+y2﹣4x+1=0,则x2+y2的最大值和最小值分别为、.14.若曲线y=ax2﹣lnx在点(1,a)处的切线平行于x轴,则a=.三、解答题[选修4-4:坐标系与参数方程]15.已知在直角坐标系xOy中,直线l的参数方程为是(t为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4sinθ.(1)判断直线l与曲线C的位置关系;(2)在曲线C上求一点P,使得它到直线l的距离最大,并求出最大距离.16.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数).(1)将直线l的参数方程化为极坐标方程;(2)设直线l与椭圆C相交于A,B两点,求线段AB的长.17.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:P(K2≥K)0.0500.0100.001K 3.841 6.63510.828K2=.18.已知函数.(Ⅰ)若f(x)在点(2,f(2))处的切线与直线x﹣2y+1=0垂直,求实数a的值;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)讨论函数f(x)在区间[1,e2]上零点的个数.参考答案一、选择题(共10小题).1.若集合A={x|﹣2≤x≤3},B={x|x<﹣1或x>4},则集合A∩B等于()A.{x|x≤3或x>4}B.{x|﹣1<x≤3}C.{x|﹣2≤x<﹣1}D.{x|3≤x<4}解:集合A={x|﹣2≤x≤3},B={x|x<﹣1或x>4},集合A∩B={x|﹣2≤x<﹣1}.故选:C.2.“(2x﹣1)x=0”是“x=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解:若(2x﹣1)x=0 则x=0或x=.即(2x﹣1)x=0推不出x=0.反之,若x=0,则(2x﹣1)x=0,即x=0推出(2x﹣1)x=0所以“(2x﹣1)x=0”是“x=0”的必要不充分条件.故选:B.3.下列命题中,真命题是()A.∃x0∈R,≤0B.∀x∈R,2x>x2C.a+b=0的充要条件是=﹣1D.a>1,b>1是ab>1的充分条件解:因为y=e x>0,x∈R恒成立,所以A不正确;因为x=﹣5时2﹣5<(﹣5)2,所以∀x∈R,2x>x2不成立.a=b=0时a+b=0,但是没有意义,所以C不正确;a>1,b>1是ab>1的充分条件,显然正确.故选:D.4.若复数z=,其中i为虚数单位,则=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i解:∵z===1+i,∴=1﹣i,故选:B.5.在极坐标系中,已知点,则|P1P2|等于()A.9B.10C.14D.2解:已知点,所以,∴△P1OP2为直角三角形,由勾股定理可得|P1P2|==10.故选:B.6.直线和圆x2+y2=16交于A,B两点,则AB的中点坐标为()A.(3,﹣3)B.C.D.解:直线即y=,代入圆x2+y2=16化简可得x2﹣6x+8=0,∴x1+x2=6,即AB的中点的横坐标为3,∴AB的中点的纵坐标为3﹣4=﹣,故AB的中点坐标为,故选:D.7.已知函数f(x)=﹣x3+ax2﹣x﹣1在(﹣∞,+∞)上是单调函数,则实数a的取值范围是()A.B.C.D.解:由f(x)=﹣x3+ax2﹣x﹣1,得到f′(x)=﹣3x2+2ax﹣1,因为函数在(﹣∞,+∞)上是单调函数,所以f′(x)=﹣3x2+2ax﹣1≤0在(﹣∞,+∞)恒成立,则△=,所以实数a的取值范围是:[﹣,].故选:B.8.函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选:D.9.已知,则f'(x)=()A.B.C.1﹣lnx D.解:,故选:D.10.数列的第10项是()A.B.C.D.解:从分子上看,2,4,6,8,对应的通项为2n,从分母上看,3,5,7,9,对应的通项为2n+1,所以该数列的通项公式,所以.故选:D.二、填空题11.曲线(θ为参数)两焦点间的距离是2.解:曲线(θ为参数),转换为普通方程是,故.故答案为:12.已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为(﹣1,﹣).解:∵函数f(x)的定义域为(﹣1,0),∴由﹣1<2x+1<0,解得:﹣1.∴函数f(2x+1)的定义域为(﹣1,﹣).故答案为:(﹣1,﹣).13.已知实数x,y满足方程x2+y2﹣4x+1=0,则x2+y2的最大值和最小值分别为7+4、7﹣4.解:根据题意,实数x,y满足方程x2+y2﹣4x+1=0,则点(x,y)是圆x2+y2﹣4x+1=0上的点,设t=x2+y2,其几何意义为圆上的一点与原点距离的平方,而圆x2+y2﹣4x+1=0,即(x﹣2)2+y2=3,其圆心为(2,0),半径r=,又圆心到原点的距离为=2,则圆x2+y2﹣4x+1=0上的点到原点距离最大值为2+,最小值为2﹣,所以x2+y2的最大值是,x2+y2的最小值是;故答案为:7+4,7﹣4.14.若曲线y=ax2﹣lnx在点(1,a)处的切线平行于x轴,则a=.解:由y=ax2﹣lnx,得:,∴y′|x=1=2a﹣1.∵曲线y=ax2﹣lnx在点(1,a)处的切线平行于x轴,∴2a﹣1=0,即a=.故答案为:.三、解答题[选修4-4:坐标系与参数方程]15.已知在直角坐标系xOy中,直线l的参数方程为是(t为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4sinθ.(1)判断直线l与曲线C的位置关系;(2)在曲线C上求一点P,使得它到直线l的距离最大,并求出最大距离.解:(1)根据题意得:直线l的方程为x﹣y﹣1=0,曲线C的方程为x2+(y﹣2)2=4,即圆心C(0,2),半径r=2,∵圆心C到直线l的距离d==>2=r,∴直线l与曲线C相离;(2)根据题意得:点P到直线l的最大距离为d+r=+2,过圆心且垂直于直线l的直线方程为y=﹣x+2,联立得:,消去y得:x2=4,解得:x=﹣(正值不合题意,舍去),则在曲线C上存在一点P(﹣,2+),使得它到直线l的距离最大为+2.16.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数).(1)将直线l的参数方程化为极坐标方程;(2)设直线l与椭圆C相交于A,B两点,求线段AB的长.解:(1)直线l的参数方程为(t为参数),可得l的普通方程为y=(x﹣1),再由x=ρcosθ,y=ρsinθ,可得极坐标方程:ρcosθ﹣ρsinθ﹣=0;(2)由椭圆C的参数方程为(θ为参数),由sin2θ+cos2θ=1,可得椭圆C的普通方程为x2+=1,将直线l的参数方程为(t为参数),代入x2+=1,得(1+t)2+=1,即7t2+16t=0,解得t1=0,t2=﹣,所以|AB|=|t1﹣t2=.17.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:P(K2≥K)0.0500.0100.001K 3.841 6.63510.828K2=.解:(1)根据题意,由旧养殖法的频率分布直方图可得:P(A)=(0.012+0.014+0.024+0.034+0.040)×5=0.62;(2)根据题意,补全列联表可得:箱产量<50kg箱产量≥50kg总计旧养殖法6238100新养殖法3466100总计96104200则有K2=≈15.705>6.635,故有99%的把握认为箱产量与养殖方法有关;(3)由频率分布直方图可得:旧养殖法100个网箱产量的平均数1=(27.5×0.012+32.5×0.014+37.5×0.024+42.5×0.034+47.5×0.040+52.5×0.032+57.5×0.02+62.5×0.012+67.5×0.012)×5=5×9.42=47.1;新养殖法100个网箱产量的平均数2=(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.054+57.5×0.046+62.5×0.010+67.5×0.008)×5=5×10.47=52.35;比较可得:1<2,故新养殖法更加优于旧养殖法.18.已知函数.(Ⅰ)若f(x)在点(2,f(2))处的切线与直线x﹣2y+1=0垂直,求实数a的值;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)讨论函数f(x)在区间[1,e2]上零点的个数.解:(Ⅰ)f(x)的定义域是(0,+∞),∵f(x)=lnx﹣ax2,∴f′(x)=﹣ax=,∵只需x﹣2y+1=0的斜率是,∴×=﹣1,∴a=;(Ⅱ)由(Ⅰ)得f′(x)=,当a≤0时,f′(x)>0,∴f(x)在(0,+∞)递增,a>0时,由f′(x)>0,得x<,由f′(x)<0,解得:x>,∴f(x)在(0,)递增,在(,+∞)等价,综上,当a≤0时,函数f(x)的递增区间是(0,+∞),a>0时,函数f(x)的递增区间是(0,),递减区间是(,+∞),(Ⅲ)法一:由f(x)=0,得a=,令g(x)=,则g′(x)=,由g′(x)>0得,1<x<,由g′(x)<0,得<x<e2,∴g(x)在区间[1,]递增,在区间[,e2]递减,又∵g(1)=0,g()=,g(e2)=,∴当0≤a<或a=时,f(x)在[1,e2]上有一个零点,当≤a<时,f(x)在[1,e2]上有2个零点,当a<0或a>时,f(x)在[1,e2]上没有零点;法二:由(Ⅱ)可知:当a<0时,f(x)在[1,e2]递增,∵f(1)=﹣a>0,∴f(x)在[1,e2]上有一个零点,当a>0时,①若≤1,即a≥1时,f(x)在[1,e2]递减,∵f(1)=﹣a<0,∴f(x)在[1,e2]上没有零点;②若1<<e2,即<a<1时,f(x)在[1,]上递增,在[,e2]递减,∵f(1)=﹣a<0,f()=﹣lna﹣,f(e2)=2﹣ae4,若﹣lna﹣<0,即a>时,f(x)在[1,e2]上没有零点,若﹣lna﹣=0,即a=时,f(x)在[1,e2]上有一个零点,若lna﹣>0,即a<时,由f(e2)=2﹣ae4>0得a<,此时f(x)在[1,e2]有一个零点,由f(e2)=2﹣ae4≤0,得a≥,此时在[1,e2]上有2个零点,③若≥e2,即0<a≤时,f(x)在[1,e2]单调递增,∵f(1)=﹣a<0,f(e2)=2﹣ae4>0,∴f(x)在[1,e2]上有1个零点,综上,当0≤a<或a=时,f(x)在[1,e2]上有1个零点;当≤a<时,f(x)在[1,e2]上有2个零点,当a<0或a>时,f(x)在[1,e2]没有零点,(法三:本题还可以转化为lnx=ax2,再转化为y=lnx与y=ax2的图象的交点个数问题,可用数形结合的方法求解).。

高二数学下学期期末考试测试试题(文科二)

高二数学下学期期末考试测试试题(文科二)

高二数学下学期期末考试测试试题(文科二)第I 卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U R =,集合2{|20},{|1}A x xx B x x =--≥=≥,则()R C A B =( )A .{|11}x x -<<B .{|12}x x ≤≤C .{|11}x x -≤<D .{|12}x x ≤< 2.在复平面内,复数431iz i+=+对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.某年级有1000名学生,随机编号为0001,0002,,1000,现用系统抽样方法,从中抽出200人,若0122号被抽到了,则下列编号也被抽到的是 ( )A .0116B .0927C .0834D .07264.先后抛掷两颗质地均匀的骰子,则两次朝上的点数之积为奇数的概率为 ( ) A .112B .16C .14D .135.执行如图所示的程序框图,如果输出3s =,那么判断框内应填入的条件是( )A .6k ≤B .7k ≤C .8k ≤D .9k ≤6.已知等比数列{}n a 满足11352,14a a a a =++=, 则135111a a a ++= ( ) A .78 B .74 C .139 D .13187.已知()cos 12a f x b x x π⎛⎫=+ ⎪-⎝⎭,()221=-f ,则()=+21f ( ) A .0 B .2- C .4- D .6-8.若实数x ,y 满足010x y x x y +≥⎧⎪≥⎨⎪-≥⎩,则下列不等式恒成立的是 ( )A .1y ≥B .2x ≥C .220x y ++≥D .210x y -+≥ 9.某几何体的三视图如图所示,则该几何体的表面积为 A .33 B .60 C .66 D .5410.设函数)102)(36sin(2)(<<-+=x x x f ππ的图像与x 轴交于点A ,过点A 的直线l 与函数)(x f 的图像交于另外两点C B ,.则=+OA OC OB ).(( ) A .16 B .16- C .32 D .32-11.设21,F F 为双曲线1:2222=-by a x C 的左,右焦点,P ,Q 为双曲线C 右支上的两点,若Q F PF 222=,且01=⋅PQ Q F ,则该双曲线的离心率是( ) A .153B .173C .52D .7212. 函数()(sin cos ),(02016)xf x e x x x π=-≤≤的各极小值之和为( )A . 220162(1)1e e e πππ---B . 21008(1)1e e e πππ---C .210082(1)1e e eπππ--- D .220142(1)1e e e πππ--- 第II 卷(非选择题,共90分)二、填空题: 本题共4小题,每小题5分,共20分.13.在长方体1111ABCD A BC D -中,13,2,1AB BC AA===,点,,M N P 分别是棱1AB BC CC 、、的中点,则三棱锥1C MNP -的体积为 .14.若圆222:(0)C x y r r +=>的周长被直线22(1)2(1)0()t x ty t t R -+-+=∈分为1:3两部分,则r 的值是 .15.设()21,f x x =+1()(),f x f x =1()(())n n f x f f x +=,*n N ∈若()n f x 的图象经过点(,1)n a ,则n a =__ .16.锐角三角形ABC 中,三个内角为,,A B C ,对应的三边为,,a b c ,5cos 2c b A b c +=,则 tan tan tan tan A AB C+= . 三、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 的第一项11a =,且1()1nn na a n N a *+=∈+. (Ⅰ)设1n nb a =,求证:数列{}n b 是等差数列; (Ⅱ)数列{}n c 的前n 项和记为n T ,若1n n n c a a +=⋅,求n T 的取值范围.18.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1.(Ⅰ)求这些产品质量指标值落在区间[]75,85内的频率; (Ⅱ)用分层抽样的方法在区间[)45,75内抽取一个容量为6的样本,将该样本看成一个总体,从中任意质量指标值0.0120.0040.0190.030 15 25 35 45 55 65 75 85 0频率组距抽取2件产品,求这2件产品都在区间[)45,65内的概率.19.(本小题满分12分)如图,四棱锥P ABCD -中,//AD BC ,24AD BC ==,23AB =,090BAD ∠=,,M O 分别为CD 和AC 的中点,PO ⊥平面ABCD.(Ⅰ)求证:平面PBM ⊥平面PAC ;(Ⅱ)是否存在线段PM 上一点N ,使用//ON 平面PAB ,若存在,求PNPM的值;若不存在,说明理由.20.(本小题满分12分)已知21,F F 分别是椭圆)0(12222>>=+b a b y a x 的左,右焦点,B A ,分别为椭圆的上,下顶点.过椭圆的右焦点2F 的直线在y 轴右侧..交椭圆于C ,D 两点.CD F 1∆的周长为8,且直线BC AC ,的斜率之积为41-. (Ⅰ)求椭圆的方程;(Ⅱ)设四边形ABCD 的面积为S ,求S 的取值范围.21.(本小题满分12分) 已知函数321()2,()()3x f x x x ax b g x e cx d =+++=+,且函数()f x 的导函数为()f x ',若曲线()f x 和曲线()g x 都过点(0,2)A ,且在点A 处有相同的切线42y x =+.xy OABCD F 1F 2 第20题图(Ⅰ)求,,,a b c d 的值;(Ⅱ)若2x ≥-时,()()2,mg x f x '≥-求实数m 的取值范围.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分) 选修4—1:(几何证明选讲)如图,ABC ∆是直角三角形,090ABC ∠=.以AB 为直径的圆O 交AC 于点E ,点D 是BC 边的中点.连OD 交圆O 于点M .(Ⅰ)求证:O ,B ,D ,E 四点共圆; (Ⅱ)求证:22DE DM AC DM AB =⋅+⋅.23.(本小题满分10分)选修4-4:坐标系与参数方程已知圆:C 12cos 12sin x y θθ⎧=+⎪⎨=-⎪⎩ (θ为参数)和直线1cos :1sin x t l y t αα=-+⎧⎨=+⎩ (其中t 为参数,α为直线l 的倾斜角).(Ⅰ)求圆C 的极坐标方程;(Ⅱ)如果直线l 与圆C 有公共点,求α的取值范围.24. (本小题满分10分) 选修4-5不等式证明选讲已知函数)|5||1(|log )(2a x x x f --+-=. (Ⅰ)当5=a 时,求函数)(x f 的定义域;(Ⅱ)当函数)(x f 的值域为R 时,求实数a 的取值范围.ECDOBAM高二数学下学期期末考试测试试题(文科二)试题答案一、选择题:每小题5分,共60分.1.D 2.D 3.B 4.C 5.B 6.A 7.B 8.D 9.B 10.C 11.B 12.D 二、填空题:每小题5分,共20分. 13.1814.2 15.121n-- 16.12三、解答题:共6小题,共70分. 17.(本小题满分12分)解:(1)11,1n n n n na ab a a +==+,11n n b b +∴-=,11b ={}n b ∴是等差数列. (2)1,n n n b b n a ==,1n a n∴=; 111(1)1n c n n n n ==-++,111n T n ∴=-+,1,12n T ⎡⎫∈⎪⎢⎣⎭1,12n T ⎡⎫∈⎪⎢⎣⎭18.(本小题满分12分)解:(Ⅰ)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x .依题意得()0.0040.0120.0190.03010421x x x +++⨯+++=,解得0.05x =.所以区间[]75,85内的频率为0.05.(Ⅱ)由(Ⅰ)得,区间[)45,55,[)55,65,[)65,75内的频率依次为0.3,0.2,0.1. 用分层抽样的方法在区间[)45,75内抽取一个容量为6的样本,则在区间[)45,55内应抽取0.3630.30.20.1⨯=++件,记为1A ,2A ,3A . 在区间[)55,65内应抽取0.2620.30.20.1⨯=++件,记为1B ,2B . 在区间[)65,75内应抽取0.1610.30.20.1⨯=++件,记为C .设“从样本中任意抽取2件产品,这2件产品都在区间[)45,65内”为事件M ,则所有的基本事件有:{}12,A A ,{}13,A A ,{}11,A B ,{}12,A B ,{}1,A C ,{}23,A A ,{}21,A B ,{}22,A B ,{}2,A C ,{}31,A B ,{}32,A B ,{}3,A C ,{}12,B B ,{}1,B C ,{}2,B C ,共15种. 事件M 包含的基本事件有:{}12,A A ,{}13,A A ,{}11,AB ,{}12,A B ,{}23,A A ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10种.所以这2件产品都在区间[)45,65内的概率为102153=.19.(本小题满分12分)(1)如图,以A 为原点建立空间直角坐标系A xyz -,(23,0,0)B ,(23,2,0)C ,(0,4,0)D ,所以CD 中点(3,3)M ,则(3,3,0)BM =-,(23,2,0)AC =,则(3)(23)320BM AC ⋅=-⨯+⨯=,所以BM AC ⊥.又PO ⊥平面ABCD ,所以BM PO ⊥,由AC PO O =,所以BM ⊥平面PAC ,又BM ⊂平面PBM ,所以平面PBM ⊥平面PAC .(2)法一:设OP h =,则(3,1,0)O ,(3,1,)P h ,则(0,2,)PM h =-, 设平面PAB 的一个法向量为000(,,)n x y z =,(3,1,)AP h =,(2,0,0)AB =,所以00n AP n AB ⎧⋅=⎪⎨⋅=⎪⎩,则00003020x y hz x ⎧++=⎪⎨=⎪⎩,令01z =,得(0,,1)n h =-,设(0,2,)PN PM h λλλ==-(01)λ≤≤,则(0,2,)ON OP PN h h λλ=+=-,若//ON 平面PAB ,则20ON n h h h λλ⋅=-+-=,解得13λ=. 法二:(略解):连接MO 延长与AB 交于点E ,连接PE ,若存在//ON 平面PAB ,则//ON PE , 证明13OE EM =即可.20.(本小题满分12分)解:(Ⅰ)设),(),,(2211y x D y x C ,由题意得),0(),,0(b B b A -,且2,84==a a 由4122212211111-=-=-=+⨯-=⋅a b x b y x b y x b y k k BCAC , 得14122==a b ,∴椭圆的方程为1422=+y x . (Ⅱ)由(Ⅰ)知,)0,3(2F ,故设直线3:+=my x CD ,代入1422=+y x 得0132)4(22=-++my y m , 则41,432221221+-=+-=+m y y m m y y 4142221++=-m m y y , ,0,021>>x x 得302<≤m 43832)(22121+=++=+m y y m x x∴面积=++=∆∆∆OCD BOC AOD S S S S 21⨯⨯++⨯3214382m 41422++m m =4)21(3222+++m m 令)4,3[,212∈++=t m t ,则47323)2(322-+=+-=tt t tS 在)4,3[∈t 上递减 所以]233,738(∈S . 21.(本小题满分12分)(1)由已知得(0)2,(0)2,(0)4,(0)4f g f g ''==== 而2()4,()()xf x x x ag x e cx d c ''=++=++ 故2,2,4,2b d a c ====(2)令2()2(1)42x x me x x x ϕ=+---, 则()2(2)242(2)(1)x x x me x x x me ϕ'=+--=+- 因(0)0ϕ≥,则1m ≥令()0x ϕ'=得12ln ,2x m x =-=-(1)若21m e <≤,则120x -<≤,从而1(2,)x x ∈-时()0x ϕ'<;当1(,)x x ∈+∞时()0,x ϕ'>即()x ϕ在1(2,)x -单调递减,在1(,)x +∞单调递增,故()x ϕ在[2,)-+∞的最小值1()x ϕ122211111111111()2(1)4222422(2)0x x me x x x x x x x x x x ϕ=+---=+---=--=-+≥故当2x -≥时()0,x ϕ≥即()()2mg x f x '+≥恒成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二文科数学下学期考试卷时量:120分钟 满分:150分一、选择题(本大题共10小题,每小题5分,共50分.选对的得5分,错选或不答得0分.) 1.若直线a ,b ,c 满足a ∥b ,b 与c 不平行,则( ) A .a 与c 平行B .a 与c 不平行C .a 与c 是否平行不能确定D .a 与c 是异面直线2.随机事件A 的概率P(A)满足 ( ) A.P(A)=0 B.P(A)=1 C.P(A)>1D.0()1P A ≤≤3.下列命题正确的是( )A .一条直线与一个平面平行,它就和这个平面内的任意一条直线平行B .平行于同一个平面的两条直线平行C .与两个相交平面的交线平行的直线,必平行于这两个平面D .平面外的两条平行直线中的一条与一个平面平行,则另一条直线也与此平面平行 4.空间四边形ABCD 的四边相等,则它的两对角线AC 、BD 的关系是( ) A .垂直且相交B .相交但不一定垂直C .垂直但不相交D .不垂直也不相交5.空间四边形OABC 中,OA = a ,OB = b ,OC = c ,点M 是在OA 上且OM = 2MA ,N 为BC 的中点,则MN 等于( )A .12a 23-b +12cB .23-a +12b +12cC .12a +12b 23-cD .23a +23b 12-c6.若直线l 与平面α所成角为3π,直线a 在平面α内,且与直线l 异面,则直线l 与直线a 所成的角的取值范围是( ) A .2[0,]3πB .2[,)33ππC .2[,]33ππD .[,]32ππ7.长方体的一个顶点处的三条棱长之比为1:2:3,它的表面积为88,则它的对角线长为( )A .12B .24C .D .8.二项式(42x +的展开式中3x 的系数是 ( )A 、6B 、12C 、24D 、48 9. 抛物线x 2=41y 的准线方程为 ( ) A.x=-1 B.y=-1 C.x=161-D.y=161- 10.设双曲线的焦点在x 轴上,两条渐近线为y =±12x ,则该双曲线的离心率e 等于( )A .5BCD .54二、填空题(每小题5分,共25分) 11.若A (1, –1, 1),B (–2, 0, 3),则||AB =.12.过抛物线y 2 = 8x 的焦点,倾斜角为45°的直线的方程是. 13.方程221259x y m m +=-+表示焦点在y 轴上的椭圆,则m 的取值范围是.14.正四面体A —BCD 的棱长为1,则A 到底面BCD 的距离为 .15.从分别写有A,B,C,D,E 的5张卡片中,任取2张,这2张上的字母恰好按字母顺序相邻的概率为________________.高二文科数学考试答卷一、选择题(每小题5分,共50分)二、填空题(每小题5分,共25分) 11. 12. 13.14.15.三、解答题(75分)16.(12分)如图,在正方体ABCD —A 1B 1C 1D 1中,点E 是DD 1的中点.(1)求证:AC ⊥BD 1;(2)求证:BD 1∥平面CEA .17.(12分)△ABC 的两个顶点A 、B 的坐标分别是(–6, 0),(6, 0),边AC 、BC所在直线的斜率之积等于49,求顶点C 的轨迹.AB 1A 1CDE C 1D 118.(12分)在平行六面体ABCD —A 1B 1C 1D 1中,AB = AD = AA 1= 1,∠A 1AB =∠A 1AD =∠DAB = 60°.(1)求对角线AC 1的长; (2)求异面直线AC 1与B 1C 的夹角.19. (12分) 掷两枚骰子.(1)求出现的点数之和等于3的概率;(2)求出现的点数都为偶数的概率;(3)求出现的点数之和不超过4的概率。

ABC DA 1D 1C 1B 120.(13分)抛物线212y x =-上有两点A (x 1, y 1),B (x 2, y 2),且OA OB ⋅= 0,又知点M (0, –2). (1)求证:A 、M 、B 三点共线; (2)若2MA MB =-,求AB 所在的直线方程.21.(14分)如图,在直三棱柱ABC —A 1B 1C 1中,∠ACB = 90°. AC = BC = a ,D 、E 分别为棱AB 、BC 的中点,M 为棱AA 1上的点,二面角M —DE —A 为30°. (1)证明:A 1B 1⊥C 1D ; (2)求MA 的长;(3)求点C 到平面MDE 的距离.AMA 1B 1C 1CEBD湖南省邵东一中高二数学期末考试参考答案(文)一、选择题(每小题5分,共50分) 1.B 2.D 3.D4.C5.B6.D7.C8.C9.D10.C二、填空题(每小题5分,共25分)1112.x – y – 2 = 0 13.8<m <25 14 15. 25三、解答题16.(12分)(1)证:∵棱柱ABCD —A 1B 1C 1D 1为正方体,∴D 1D ⊥面ABCD ,∴BD 是BD 1在底面ABCD 内的射影。

又∵BD ⊥AC ,∴BD 1⊥AC 。

(2)设AC ∩BD = O ,连结OE ,∵O 、E 分别为BD 、DD 1的中点,∴OE ∥BD 1. 又∵BD 1⊄平面CEA ,OE ⊂平面CEA ,∴BD 1∥平面CEA 。

17.(12分)解:设顶点C 的坐标为C (x , y ),则,66AC BC y yk k x x ==+-(x ≠±6) 而k AC ·k BC =49-,即224936y x =--,化简得223616x y +=1 (x ≠±6). 顶点C 的轨迹是焦点在x 轴长,长轴长为12,短轴长为8的椭圆,并去掉A 、B 两点. 18.(12分)解:(1)设AB = a ,AD = b ,1AA = c ,则|a | = |b | = |c | = 1,〈a ,b 〉=〈b ,c 〉=〈a ,c 〉= 60°,21AC =(a + b + c )2 = a 2 + b 2 + c 2 + 2a ·b + 2b ·c + 2a ·c = 6,∴1||6AC =. (2)∵1B C =b – c ,∴11AC B C ⋅= (a + b + c )·(b – c ) = a ·b + b 2 + b ·c –a ·c –b ·c –c 2 = 0. ∴11AC B C ⊥,∴异面直线AC 1与B 1C 的夹角为90°.19.(12分)解:(1).令点数和为3的事件为A,掷两枚骰子可能出现的情况:(1,1),(1,2),…,(1,6),(2,1),(2,2),…,(2,6),…,(6,1),(6,2),…,(6,6),基本事件总数为6×6=36。

在这些结果中,有利于事件A 的只有两种结果(1,2),(2,1)。

181362)(==∴A P .(2)14; (3)16(过程略)20.(13分)解:设22112211(,),(,)22A x x B x x --,∵0OA OB ⋅=,∴22121214x x x x += 0 (x 1x 2≠0).∴x 1x 2 = – 4.又∵21111122122AM x k x x x -==-,22222122122BM x k x x x -==-.代124x x -=代入k AM 得222221(4)21422AM BM k x k x x x-=-⋅=-=-,∴A 、M 、B 三点共线.(2)∵2MA MB =-,∴12221221122(2)22x x x x =-⎧⎪⎨-+=--+⎪⎩ ∴2222224x x -+=-,∴2x =.即21x x ⎧=⎪⎨=-⎪⎩21x x ⎧=⎪⎨=⎪⎩.∴1),(4)B A ---或(1),4)B A --,AB的方程为2y =-. 21.(14分)解:(1)连结CD . ∵三棱柱ABC —A 1B 1C 1是直三棱柱, ∴CC 1⊥平面ABC ,∴CD 为C 1D 在平面ABC 内的射影. ∵△ABC 中,AC = BC ,D 为AB 中点.∴AB ⊥CD ,∴AB ⊥C 1D ,∵A 1B 1∥AB . ∴A 1B 1⊥C 1D .(2)解:过点A 作CE 的平行线,交ED 的延长线于F ,连结MF .∵D 、E 分别为AB 、BC 的中点, ∴DE ∥AC . 又∵AF ∥CE ,CE ⊥AC , ∴AF ⊥DE . ∵MA ⊥平面ABC . ∴AF 为MF 在平面ABC 内的射影, ∴MF ⊥DE , ∴∠MFA 为二面角M —DE —A 的平面角,∠MFA = 30°.在Rt △MAF 中,122a AF BC ==,∠MFA = 30°, ∴A M a =. (3)设C 到平面MDE 的距离为h .∵M CDE C MDE V V --=, ∴1133CDE MDE S MA S h ∆∆⋅=⋅,21,28CDEa S CE DE MA ∆=⋅=, 21122c o s 312MDE AFS DE MF DE ∆=⋅=⋅=︒,∴2211383a h ⨯=⨯, ∴4a h =,即C 到平面MDE 的距离为4a .。

相关文档
最新文档