三种插值方法比较

合集下载

几种常用的插值方法

几种常用的插值方法

几种常用的插值方法数学系 信息与计算科学1班 李平指导老师:唐振先摘要:插值在诸如机械加工等工程技术和数据处理等科学研究中有许多直接的应用,在很多领域都要用插值的办法找出表格和中间值,插值还是数值积分微分方程数值解等数值计算的基础。

本文归纳了几种常用的插值方法,并简单分析了其各自的优缺点。

关键词:任意阶多项式插值,分段多项式插值。

引言:所谓插值,通俗地说就是在若干以知的函数值之间插入一些未知函数值,而插值函数的类型最简单的选取是代数多项式。

用多项式建立插值函数的方法主要用两种:一种是任意阶的插值多项式,它主要有三种基本的插值公式:单项式,拉格朗日和牛顿插值;另一种是分段多项式插值,它有Hermite 和spine 插值和分段线性插值。

一.任意阶多项式插值:1.用单项式基本插值公式进行多项式插值:多项式插值是求通过几个已知数据点的那个n-1阶多项式,即P n-1(X)=A 1+A 2X+…A n X n-1,它是一个单项式基本函数X 0,X 1…X n-1的集合来定义多项式,由已知n 个点(X,Y )构成的集合,可以使多项式通过没数据点,并为n 个未知系数Ai 写出n 个方程,这n 个方程组成的方程组的系数矩阵为Vandermonde 矩阵。

虽然这个过程直观易懂,但它都不是建立插值多项式最好的办法,因为Vandermonde 方程组有可能是病态的,这样会导致单项式系数不确定。

另外,单项式中的各项可能在大小上有很大的差异,这就导致了多项式计算中的舍入误差。

2.拉格朗日基本插值公式进行插值: 先构造一组插值函数L i (x )=011011()()()()()()()()i i n i i i i i i n x x x x x x x x x x x x x x x x -+-+--------L L L L ,其中i=0,…n.容易看出n 次多项式L i (x )满足L i (x )=1,(i=j );L i (x )=0,(i ≠j ),其中i=0,1…n ,令L i (x )=0()ni i i y l x =∑这就是拉格朗日插值多项式。

三种点雨量插值方法的比较研究

三种点雨量插值方法的比较研究

三种点雨量插值方法的比较研究1戚晓明,陆桂华,吴志勇,金君良(河海大学水问题研究所,江苏 南京 210098)摘 要:对距离反比、普通Kriging 和PRISM 三种常用点雨量插值算法进行了原理、适用范围和优缺点的对比分析。

根据雨量站点的平面三角几何关系,提出了参证插值站点的选择方法,使得参证插值站点的选择更合理。

通过具体实例,指出没有最优的点雨量插值方法,应该根据站点布设、雨量资料、地理位置和服务对象等特点,选择适当的插值算法或算法组合以及参证站选取算法,才会得到较好的插值精度。

关键词:插值, 距离反比, 普通Kriging ,PRISM点雨量插值主要用于雨量缺值估计、内插等值线、数据格网化[1],对流域内雨量站稀少且站点分布不合理的地区,对分析雨量二维分布变化特征、计算面雨量、解决水文尺度中分辨率和雨量站网规划等研究具有重要现实意义[2,3]。

点雨量时空间插值通常有两种:一种是简化,这种方法简化了时空插值问题,变为单纯的空间插值问题。

另一种是扩展,这种方法同时考虑时间维与空间维,将时空插值问题拓展为高维空间插值问题[4],目前常用的点雨量插值通常属于第一种,主要的插值方法有距离反比加权平均法、修正距离平方反比法、梯度距离平方反比法、降雨高程线性回归法、地理统计法、普通Kriging 和DEM 修正Kriging 法,PRISM 插值方法等[6]。

本文对距离反比、普通Kriging 、PRISM 插值算法在点雨量插值中的应用情况做了对比研究。

1 三种方法插值原理1.1 距离反比插值(IDM)1972年,美国国家天气局开发了距离反比插值算法,是最常用的雨量插值方法之一。

它认为与未采样点距离最近的若干个参证站对待估点值的贡献最大,其贡献与距离成反比。

可用下式表示:))(1/())(1(11*∑∑===n i p i n i i p i D Z D Z (1) 式中, Z *是估计值, Z i 是第i(i=1,..,n)个样本,D i 是距离,p 是距离的幂,它显著影响内插的结果,它的选择标准是最小平均绝对误差。

arcgis插值方法

arcgis插值方法

arcgis插值方法ArcGIS插值方法是一种利用已知的离散点数据来推算未知地点的值的技术。

在地理信息系统中,插值方法被广泛应用于地形分析、环境模拟、资源评估等领域。

本文将介绍几种常用的ArcGIS插值方法,包括反距离加权插值(IDW)、克里金插值(Kriging)、样条插值(Spline)等。

我们来了解一下反距离加权插值(IDW)方法。

IDW方法假设距离越近的点对结果的影响越大,离待插值点越远的点对结果的影响越小。

IDW方法计算待插值点的值时,根据离待插值点的距离和邻域内点的值进行加权平均,得到待插值点的值。

IDW方法的优点是简单易懂,计算速度较快,适用于点密度较大且趋势较明显的情况。

但是IDW方法对异常值敏感,对点密度不均匀的数据拟合效果较差。

克里金插值(Kriging)是一种基于地统计学原理的插值方法。

克里金插值方法假设未知点的值是其周围点值的线性组合,并尽量使残差(即预测值与实际值之差)的方差最小。

根据克里金插值方法的预测模型,可以得到未知点的值。

克里金插值方法考虑了空间相关性,适用于点密度较低、数据不均匀分布的情况。

克里金插值方法的不足之处在于计算复杂度较高,对数据变异性的要求较高,需要根据实际情况选择合适的克里金模型。

除了IDW和克里金插值方法,ArcGIS还提供了样条插值(Spline)方法。

样条插值方法通过拟合一个平滑的曲面来估计未知点的值。

样条插值方法在计算过程中考虑了各个点的权重,能够较好地反映数据的变化趋势。

样条插值方法的优点是对数据分布没有要求,适用于各种数据类型。

但是样条插值方法需要较大的计算量,对数据噪声敏感。

除了上述三种常用的插值方法,ArcGIS还提供了其他一些插值方法,如最近邻插值、自然邻近插值等。

这些方法各有特点,可以根据实际需求选择合适的插值方法。

在使用ArcGIS进行插值分析时,除了选择合适的插值方法,还需要注意数据的质量和分布情况。

数据质量好、点密度均匀的情况下,插值结果会更加准确可靠。

1070900082_李含伦_三种插值方法的比较

1070900082_李含伦_三种插值方法的比较

1070900082 李含伦三种插值方法的比较-----在气温分布预测中的应用在阅读了大量论文的基础上(玉米生育期空间插值比较、克里金插值方法在煤层分布中的应用、山区县域尺度降水量空间插值方法比较、基于台站降水资料对不同空间插值方法的比较、空间插值技术在冬小麦单产预测中的应用),对空间插值有了新的认识。

认识如下:反距离权重插值:原理是假定距离越近的物体性质越接近,以距离为权重对预测点周围的已知点进行加权平均,从而估计出预测点的值,并遵循距离越近权重值越大的原则,距离权重属于精确插值,其预测结果的最大值和最小值只会出现在测量点,并且测量点的预测值和测量值相等。

这种插值方法隐含着在空间插值范围内,各点之间有着某种相同的潜在趋势,只是根据离测量点的远近赋予不同的权重罢了。

一般可以用这种公式表示:远离已知点趋于平稳,距离倒数插值方法的计算公式为这种方法有明显的优点,一是可以进行确切的或者圆滑的方式插值,图形圆滑美观。

二是,算法比较简单,易于实现。

但也有明显的缺点。

1.对权重函数的选择十分敏感。

2.受数据点分布均匀程度影响。

3.一般仅适用于数据点数目充足的研究。

样条插值:样条函数是使用函数逼近曲面的一种方法。

样条内插的本质是利用数学方法产生一组已知采样点的平滑曲线,并依据这条曲线来估计每个定点的属性数据值,在计算过程中要求通过已知样本点的曲面的曲率最小。

样条函数易操作,计算量不大,它与空间统计方法相比有一下特点,不需要对空间方差的结构做预先估计,不需要统计假设,而这些统计假设是难以估计和验证的;同时,当表面和光滑时,也不降低精度。

样条函数适合于比较平滑的表面,一般要求有连续的一阶导数和二阶导数;它适合于根据很密的样本点。

样条法于反距离权重法一样也是精确性插值,它和距离权重法的区别是,它可以使预测点的估计值高出或低处所有的预测点,而距离权重法却无法做到。

克里格插值法:克里格插值法是以空间自相关为基础,利用区域化的变量的原始数据和变异函数的结构特点,对未知点的区域化的变量进行线性无偏最优估计的一种插值。

深入理解插值与卷积,1维插值,2维插值

深入理解插值与卷积,1维插值,2维插值

a = 0.25 (a~c)
a = 1 (d~f)
a = 1.75 (g~i)
a = 0.5(j~l)
不同的a取值对于三次插值的效果。
•16.3.3 二维插值 •基本思想:先在某一维上进行一维插值,然后对这个中间结果的另外 一维进行一维插值。 •二维最近邻插值 •通过对x和y坐标分别取整,可以得到举例给定的连续点(x0,y0)最近的像 •素。
•16.3.2 以卷积方式描述插值 •对连续信号的重建可以描述为线性卷积运算。一般地,可以将插值表达 为给定离散函数g(u)和一连续插值内核w(x)的线性卷积。
• 可以理解为对离散函数的线性求和。 • 一维最近邻内插的插值内核为:
Байду номын сангаас
•线性插值的插值内核为:
最近邻插值(a-c)
线性插值(d-f)
•立方插值的插值内核为:
16.3 插值
•插值是估计采样函数或者信号在连续位置处的值,或者试图从一离散样 本集合重建原始连续函数的方法。 •16.3.1 一维插值方法 •为了更好地说明问题,首先处理一维情况,如下图所示。
•有一些简单的函数可以用来对离散函数在任意的连续位置处进行插值。
•最近邻插值 •将连续坐标x近似为最近的整数值u0,并且用样本值g(u0)作为估计的函 数值。下图(a)为其示例。
•线性插值 •连续坐标x的估计值为最近两个样本g(u0)和g(u0+1)的加权求和的形式。 •下图(b)是其示例。
•数值计算中的三次Hermite插值 •给定离散点处的导数值和离散点处的函数值,可以在该离散点之间进行 插值,从而得到一个分段插值函数。该函数满足c1连续。这种插值方式 称为Hermite插值。以多项式构造插值函数则该多项式最多为3次。 •将该多项式写为 • f(x) =ax3 +bx2 + cx + d •例:求离散点0和离散点1之间的插值函数值: •1:约束条件 • f(0)= d; f(1)= a + b + c + d; • f’(0)=c; f’(1)=3a + 2b + c •2:求解上述四个方程,可以得到a,b,c,d的值从而求得插值函数 •三次插值(立方插值) •三次插值(立方插值)与Hermite插值之间的差别在于离散点处的导数 •值并不是事先已知的,而是通过相邻离散点之间的差分得到,如下式所 示 •f‘(0) = α[f(1)-f(-1)],f'(1) = α[f(2)-f(0)] •在上式中α是参数, α控制边缘处的锐化程度。当α =0.5时该插值又称为 •Catmull-Rom插值。

几种常用的插值方法

几种常用的插值方法

几种常用的插值方法数学系信息与计算科学1班平指导老师:唐振先摘要:插值在诸如机械加工等工程技术和数据处理等科学研究中有许多直接的应用,在很多领域都要用插值的办法找出表格和中间值,插值还是数值积分微分方程数值解等数值计算的基础。

本文归纳了几种常用的插值方法,并简单分析了其各自的优缺点。

关键词:任意阶多项式插值,分段多项式插值。

引言:所谓插值,通俗地说就是在若干以知的函数值之间插入一些未知函数值,而插值函数的类型最简单的选取是代数多项式。

用多项式建立插值函数的方法主要用两种:一种是任意阶的插值多项式,它主要有三种基本的插值公式:单项式,拉格朗日和牛顿插值;另一种是分段多项式插值,它有Hermite和spine插值和分段线性插值。

一.任意阶多项式插值:1.用单项式基本插值公式进行多项式插值:多项式插值是求通过几个已知数据点的那个n-1阶多项式,即P n-1(X)=A1+A2X+…A n X n-1,它是一个单项式基本函数X0,X1…X n-1的集合来定义多项式,由已知n个点(X,Y)构成的集合,可以使多项式通过没数据点,并为n个未知系数Ai写出n个方程,这n个方程组成的方程组的系数矩阵为Vandermonde 矩阵。

虽然这个过程直观易懂,但它都不是建立插值多项式最好的办法,因为Vandermonde方程组有可能是病态的,这样会导致单项式系数不确定。

另外,单项式中的各项可能在大小上有很大的差异,这就导致了多项式计算中的舍入误差。

2.拉格朗日基本插值公式进行插值:先构造一组插值函数L i (x )=011011()()()()()()()()i i n i i i i i i n x x x x x x x x x x x x x x x x -+-+--------,其中i=0,…n.容易看出n 次多项式L i (x )满足L i (x )=1,(i=j );L i (x )=0,(i ≠j ),其中i=0,1…n ,令L i (x )=0()ni i i y l x =∑这就是拉格朗日插值多项式。

数值分析实验报告Hermite插值法、Runge现象,比较Language插值、分段线性插值、分段三次Hermie插值

数值分析实验报告Hermite插值法、Runge现象,比较Language插值、分段线性插值、分段三次Hermie插值

山东师范大学数学科学学院实验报告x 0.1 0.5 1 1.5 2 2.5 3y 0.95 0.84 0.86 1.06 1.5 0.72 1.9y' 1 1.5 2 2.5 3 3.5 4求质点在时刻1.8时的速度,并画出插值多项式的图像。

1)运用Hermite插值法画出图像,如图4-1,并求质点在时刻1.8时的速度。

>>clear>>clc>>X=[0.1 0.5 1 1.5 2 2.5 3;0.95 0.84 0.86 1.06 1.5 0.72 1.9;1 1.5 2 2.5 3 3.5 4];>> x=0.1:0.01:3;>> H=Hermite1(X,x);>> plot(x,H)>> hold on>> plot(X(1,:),X(2,:),'r*')>> H1_8=Hermite(X,1.8);>> plot(1.8,H1_8,'go')>> legend('插值图像','原始点','目标点');图4-1二、验证高次插值的Runge现象问题分析和算法设计(一)Language插值代码function [Ln] =Lagrange(X,x)%请输入2*n+1矩阵X,X中第一行每个元素都是插值节点,X中第二行每个元素都是插值节点对应的函数值;%第二章P24例一拉格朗日插值n=size(X,2);d=0;for m=1:1:nif x==X(1,m);d=m;breakendend运行结果和总结 运行结果 例:给定函数55,11)(2≤≤-+=x xx f ; (1) 验证表2-10的误差结果(高次插值的Runge 现象);(2) 以0.1为步长分别进行Language 插值、分段线性插值、分段三次Hermite插值,画出三种插值函数以及f(x)的图像,比较三种插值结果。

三种插值法原理及其代码

三种插值法原理及其代码

最临近插值法原理:这种算法就是根据原图像和目标图像的尺寸,计算缩放的比例,然后根据缩放比例计算目标像素所依据的原像素,过程中自然会产生小数,这时就采用四舍五入,取与这个点最相近的点。

图解如下:如果(i+u, j+v)落在A区,即u<0.5, v<0.5,则将左上角象素的灰度值赋给待求象素,同理,落在B区则赋予右上角的象素灰度值,落在C区则赋予左下角象素的灰度值,落在D区则赋予右下角象素的灰度值。

具体Matlab源代码实现:clear all;A=imread('12.png'); %读取图像信息imshow(A); %显示原图title('原图128*128');Row = size(A,1); Col = size(A,2); %图像行数和列数nn=8; %放大倍数m = round(nn*Row); %求出变换后的坐标的最大值n = round(nn*Col);B = zeros(m,n,3); %定义变换后的图像for i = 1 : mfor j = 1 : nx = round(i/nn); y = round(j/nn); %最小临近法对图像进行插值if x==0 x = 1; endif y==0 y = 1; endif x>Row x = Row; endif y>Col y = Col;endB(i,j,:) = A(x,y,:);endendB = uint8(B); %将矩阵转换成8位无符号整数figure;imshow(B); %显示输出图片title('最邻近插值法放大8倍1024*1024');运行程序后,原图如图1所示:图1用最邻近插值法放大8倍后的图如图2所示:图2双线性内插值法:计算过程简单了解,如图,已知Q12,Q22,Q11,Q21,但是要插值的点为P 点,这就要用双线性插值了,首先在x轴方向上,对R1和R2两个点进行插值,这个很简单,然后根据R1和R2对P点进行插值,这就是所谓的双线性插值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17世界后牛顿,拉格朗日分别讨论了等距和非等距的一般插值公式.在近代,插值法仍然是数据处理和编制函数表的常用工具,又是数值积分、数值微分、非线性方程求根和微分方程数值解法的重要基础,许多求解计算公式都是以插值为基础导出的。

三种插值方法的比较:
拉格朗日插值、分段线性插值与三次样条插值三种插值法在处理问题时的比较。

插值问题的提法是:已知f(x)(可能未知或非常复杂函数)在彼此不同的n+1个实点 0x ,1x ,…n x 处的函数值是f(0x ),f(1x ),…,f(n x ),这时我们简单的说f(x)有n+1个离散数据对{(i x ,i y )}i n =0.要估算f(x)在其它点x处的函数值,最常见的一种办法就是插值,即寻找一个相对简单的函数y(x),使其满足下列插值条件:y (i x )=f (i x ),i=0,1,…,n .并以y (x)作为f (x)的近似值.其中y (x)称为插值函数,f (x)称为被插函数.[1,2,3] 选用不同类型的插值函数,逼近的效果不同,下面给出拉格朗日多项式插值、 分段线性插值及三次样条插值在处理问题时的应用比较分析.
多项式插值是最常见的一种函数插值.在一般插值问题中,由插值条件可以唯一确定一个次数不超过n的插值多项式满足上述条件.从几何上看可以理解为:已知平面上n+1个不同点,要寻找一条次数不超过n的多项式曲线通过这些点.插值多项式一般有两种常见的表达形式,一个是拉格朗日(Lagrange)插值多项式,另一个是牛顿(Newton)插值多项式.且 Lagrange插值公式恒等于Newton插值公式.
分段线性插值与三次样条插值可以避免高次插值可能出现的大幅度波动现象(龙格现象),在实际应用中通常采用分段低次插值来提高近似程度,比如可用分线性插值或分段三次埃尔米特插值来逼近已知函数,但它们的总体光滑性较差.为了克服这一缺点,一种全局化的分段插值方法———三次样条插值成为比较理想的工具。

所谓分段线性插值就是利用每两个相邻插值基点作线性插值,即可得分段线性插值函数。

特点:插值函数序列具有一致收敛性,克服了高次Lagrange插值方法的缺点, 故可通过增加插值基点的方法提高其插值精度.但存在基点处不光滑、插值精度低的缺点.从几何上看所谓分段线性插值就是通过插值基点用折线段连接起来逼近原曲线,这也是计算机绘制图形的基本原理.
三次样条插值
三次样条插值的目的在于克服Lagrange插值的不收敛性和提高分段线性插值函数在节点处的光滑性.所谓三次样条插值方法就是在满足下列条件:
a.y(x)在每个子区间[xi,xi+1](i=0,1,…n)上都是次数不超过3的多项式;
b.y(x)、y'(x)、y(x)"在插值区间上都连续;的三次样条函数中寻找满足下列插值条件:
c.y(xi)=f(xi)(i=1,2,…n);
d.一般形如y"(a)=y"(b)=0等边界条件;
的插值函数y(x)的方法.
特点:
三次样条插值函数序列一致收敛于被插函数,因此可通过增加节点的方法提高插值的精度.上面介绍的分段线性插值,其总体光滑程度不够.在数学上,光滑程度的定量描述是函数(曲线)的k阶导数存在且连续,则称该曲线具有k阶光滑性.自然,阶数越高光滑程度越好.分段线性插值具有零阶光滑性,也就是不光滑;三次样条插值就是较低次数的多项式而达到较高阶光滑性的方法.
用MATLAB作插值计算。

一维插值函数:
yi=interp1(x,y,xi,’method’)
yi为xi处的插值结果;x,y为插值节点;xi为被插值的点;‘method’表示插值方法。

插值方法:‘nearest’最邻近插值;
‘linear’线性插值;
‘spline’三次样条插值;
‘cubic’立方插值;
缺省时分段线性插值。

用Matlab 实现分段线性插值不需要编制函数程序,Matlab 中有现成的一维插值函数interp1 。

y=interp1(x0,y0,x,'method')
method指定插值的方法,默认为线性插值。

其值可为:
'nearest' 最近项插值
'linear' 线性插值
'spline' 逐段3 次样条插值
'cubic' 保凹凸性3 次插值。

所有的插值方法要求x0 是单调的。

当x0为等距时可以用快速插值法,使用快速插值法的格式为'*nearest' 、'*linear'、'*spline' 、'*cubic'。

相关文档
最新文档