圆形磁场的最小面积

合集下载

专题:圆形磁场问题

专题:圆形磁场问题

B v0
长,偏转角度越大。而弧小于半
aα r
O
b
个圆周时,弦越长则弧越长。
R
sin = r/R = 37º,
α
最大偏转角为 2 = 74º。
例题:如图所示,在真空中半径r=3.0×10-2 m的圆 形区域内,有磁感应强度B=0.2 T,方向如图的匀强 磁场,一批带正电的粒子以初速度v0=1.0×106 m/s, 从磁场边界上直径ab的一端a沿着各个方向射入磁场, 且初速度方向与磁场方向都垂直,该粒子的比荷为q/m
r
O
所以磁场区域的下边界也是半径为r,圆心为(0,r)的
圆弧应是磁场区域的下边界。
两边界之间图形的面积即为所求。图中的阴影区域面 积,即为磁场区域面积:
S
2( 1 4
r2
r2 2
)
(
2
1)
m2v02 e2B2
例题:(2009年浙江卷)如图,在xOy平面内与y轴平行的匀
强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。
T=2qπBm, 运动时间 tm=22πα×T=2qαB·m,
又 sinα=Rr =35,∴tm=6.4×10-8 s.
一点发散成平行
R r
R r
平行会聚于一点
结论4:如果在圆形匀强磁场区域的 边界上某点向磁场发射速率相同的 带电粒子,且粒子在磁场中运动的 轨道半径与磁场区域半径相同,那 么粒子射出磁场时运动方向一定相 同.反之,粒子以相同速度平行射 人这样的磁场,粒子就能会聚于磁 场边界上的某点。
为多大?(不考虑电子间的相互作用)
y
v0
O
O1
x
O2 O3
O5O4 On
解2: 磁场上边界如图线所示。

圆形磁场中的几个典型问题的相关规律练习

圆形磁场中的几个典型问题的相关规律练习

圆形磁场中的几个典型问题的相关规律练习一、当圆形磁场的半径与圆轨迹半径相等时,即“磁聚焦”存在两条特殊规律规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。

规律二:平行射入圆形有界磁场的相同带电粒子,如果圆形磁场的半径与圆轨迹半径相等,则所有粒子都从磁场边界上的同一点射出,并且出射点的切线与入射速度方向平行,如乙图所示。

【典型题目练习】1.如图所示,在半径为R 的圆形区域内充满磁感应强度为B 的匀强磁场,MN 是一竖直放置的感光板.从圆形磁场最高点P 垂直磁场射入大量的带正电,电荷量为q ,质量为m ,速度为v 的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的是( )A .只要对着圆心入射,出射后均可垂直打在MN 上B .对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心C .对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长D .只要速度满足qBR v m,沿不同方向入射的粒子出射后均可垂直打在MN 上 2.如图所示,长方形abed 的长ad =0.6m ,宽ab =0.3m ,O 、e 分别是ad 、bc 的中点,以e 为圆心eb 为半径的四分之一圆弧和以O 为圆心Od 为半径的四分之一圆弧组成的区域内有垂直纸面向里的匀强磁场(边界上无磁场)磁感应强度B=0.25T 。

一群不计重力、质量m=3×10-7kg 、电荷量q=+2×10-3C 的带正电粒子以速度v =5×102m/s 沿垂直ad 方向且垂直于磁场射人磁场区域,则下列判断正确的是( )A .从Od 边射入的粒子,出射点全部分布在Oa 边B .从aO 边射入的粒子,出射点全部分布在ab 边C .从Od 边射入的粒子,出射点分布在ab 边D .从ad 边射人的粒子,出射点全部通过b 点3.如图所示,在坐标系xOy 内有一半径为a 的圆形区域,圆心坐标为O 1(a ,0),圆内分布有垂直纸面向里的匀强磁场,在直线y =a 的上方和直线x =2a 的左侧区域内,有一沿x 轴负方向的匀强电场,场强大小为E ,一质量为m 、电荷量为+q (q >0)的粒子以速度v 从O 点垂直于磁场方向射入,当入射速度方向沿x 轴方向时,粒子恰好从O 1点正上方的A 点射出磁场,不计粒子重力,求:(1)磁感应强度B 的大小;(2)粒子离开第一象限时速度方向与y 轴正方向的夹角;(3)若将电场方向变为沿y 轴负方向,电场强度大小不变,粒子以速度v 从O 点垂直于磁场方向、并与x轴正方向夹角θ=300射入第一象限,求粒子从射入磁场到最终离开磁场的总时间t。

2020年高三物理专题 带电粒子在磁场中的运动压轴大题几个增分策略(原卷版)

2020年高三物理专题 带电粒子在磁场中的运动压轴大题几个增分策略(原卷版)

电磁学压轴大题增分策略(一)——解决带电粒子在磁场中运动的三种思想方法带电粒子在匀强磁场中的运动常常命制压轴大题,涉及的题型通常有磁场区域最小面积的求解,“数学圆”模型在电磁学中的应用,“磁发散”和“磁聚焦”等问题。

三种题型分装在三节课时中,本节课则通过对近年高考及各地模拟题的研究,阐述应用对称法、临界极值法、递推法解决带电粒子在磁场中运动的问题。

利用对称性解决物理问题能大大简化解题步骤。

物理解题中的对称法,就是从对称性的角度去分析物理过程,利用对称性解决物理问题的方法一般来讲,当研究对象在结构或相互作用上、物理过程在时间和空间上以及物理量在分布上具有对称的特征时,宜采用对称法进行解决。

[例1] (2015·山东高考)如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径。

两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅰ区)均存在垂直圆面向里的匀强磁场。

间距为d 的两平行金属板间有一匀强电场,上极板开有一小孔。

一质量为m 、电量为+q 的粒子由小孔下方d 2处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场。

不计粒子的重力。

(1)求极板间电场强度的大小; (2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小;(3)若Ⅰ区、Ⅰ区磁感应强度的大小分别为2mv qD 、4mv qD,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程。

电磁学中的临界、极值问题是高考命题的热点,难度往往较大,尤其是在分析带电粒子在磁场中做匀速圆周运动的这类问题时,通常以题目中的“恰好”“最高”“最长”“至少”等为突破口,将不确定的物理量推向极端(如极大、极小;最上、最下;最左、最右等),结合相应的物理规律分析出临界条件,列出相应方程求解。

[例2] 如图所示,一平行板电容器两极板水平相对放置,在两极板的正中心上各开一孔,孔相对极板很小,因此不会影响两极板间的电场分布。

圆形磁场中的几个典型问题

圆形磁场中的几个典型问题

圆形磁场中的几个典型问题许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手,一做就错.常见问题分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题”.对于这些问题,针对具体类型,抓住关键要素,问题就能迎刃而解,下面举例说明.一、最值问题的解题关键——抓弦长1.求最长时间的问题例1 真空中半径为R=3×10-2m的圆形区域内,有一磁感应强度为B=0.2T的匀强磁场,方向如图1所示一带正电的粒子以初速度v0=106m / s 从磁场边界上直径ab 一端a 点处射入磁场,已知该粒子比荷为q/m=108C / kg ,不计粒子重力,若要使粒子飞离磁场时偏转角最大,其入射时粒子初速度的方向应如何?(以v0与Oa 的夹角 表示)最长运动时间多长?小结:本题涉及的是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使粒子运动轨迹的长短和位置均发生变化,并且弦长的变化一定对应速度偏转角的变化,同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大.2 .求最小面积的问题例2 一带电质点的质量为m,电量为q,以平行于Ox 轴的速度v从y轴上的a点射人如图3 所示第一象限的区域.为了使该质点能从x轴上的b点以垂直于x轴的速度v 射出,可在适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求此圆形磁场区域的最小面积,重力忽略不计.小结:这是一个需要逆向思维的问题,而且同时考查了空间想象能力,即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的1 / 4 圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径.上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长.二、汇聚发散问题的解题关键——抓半径当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律;规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。

带电粒子在磁场中的运动的最小面积问题

带电粒子在磁场中的运动的最小面积问题

带电粒子在磁场中的运动的最小面积问题带电粒子在磁场中的运动的最小面积问题在高三物理复习中,带电粒子在磁场中的运动的问题是重点内容。

其中有一类最小面积的问题,这类问题的规律性很强,本文作一归纳,供大家参考。

已知带电粒子的进、出磁场的方向,带电粒子在磁场中运动,轨迹圆的圆心在以进出磁场方向夹角的角分线上。

由已知条件求轨迹圆半径并在对角线上确定位置,画出运动轨迹,就可以确定磁场的最小面积。

下面我就以几道典型题验证这个思路。

例题1.一匀强磁场,磁场方向垂直于xoy平面,在xy平面上,磁场分布在以O为中心的一个圆形区域内。

一个质量为m、电荷量为q 的电带粒子,由原点O开始运动,初速度为v,方向沿x正方向。

后来,粒子经过y轴上的P点,此时速度方向与y轴的夹角为30°,P到O的距离为L,如图所示。

不计重力的影响。

求磁场的磁感应强度B的大小和xy平面上磁场区域的半径R。

解:粒子在磁场中受洛伦兹力作用,做匀速圆周运动,设其半径为r,qvB=m■①据此并由题意知,粒子在磁场中的轨迹的圆心C必在y轴上,且P点在磁场区之外。

过P沿速度方向作延长线,它与x轴相交于Q点。

作角PQO 的对角线,与y轴的交点就是C点。

这样也求得圆弧轨迹的圆心C,如图所示。

由图中几何关系得L=3r②由①、②求得B=■③图中OA的长度即圆形磁场区的半径R,由图中几何关系可得R=■L④例题2.如图所示,第四象限内有互相正交的匀强电场E与匀强磁场B ■,E的大小为0.5×10■V/m,B■大小为0.5T;第一象限的某个矩形区域内,有方向垂直纸面向里的匀强磁场B■,磁场的下边界与x 轴重合。

一质量m=1×10■kg、电荷量q=1×10■C的带正电微粒以某一速度v沿与y轴正方向60°角从M点沿直线运动,经P点即进入处于第一象限内的磁场B■区域。

一段时间后,小球经过y轴上的N点并与y轴正方向成60°角的方向飞出。

圆形边界磁场知识点总结

圆形边界磁场知识点总结

圆形边界磁场知识点总结磁场是指在空间中出现的一种物理现象,是由电荷运动所产生的基本物理场。

在工程和科学应用中,圆形边界磁场是一种常见的磁场形式,它在许多领域中都有广泛的应用。

本文将对圆形边界磁场的相关知识进行总结,包括其定义、性质、计算方法等方面,以便对圆形边界磁场有更深入的了解。

一、圆形边界磁场的定义圆形边界磁场是指由一个或多个电流元在圆形环路内产生的磁场。

在平面上,若电流I在半径为r的圆形环路上均匀分布,则在圆心的磁场大小可以用以下公式表示:\[ B = \frac{\mu_0 I}{2r} \]其中,B代表磁场强度,μ0代表真空磁导率, I代表磁场环路上的电流,r代表圆形环路的半径。

二、圆形边界磁场的性质1. 磁场方向圆形边界磁场有明确的磁场方向。

根据安培定则,磁场环路内部的磁场方向为环路的法向,指向环路内部;环路外部的磁场方向为环路的法向,指向环路外部。

2. 磁场大小圆形边界磁场的大小与环路的半径成反比,与环路上的电流成正比。

当环路的半径越大,磁场强度越小;当环路上的电流越大,磁场强度越大。

3. 磁场分布圆形边界磁场的分布是均匀的,即在圆形环路的内部,磁场大小和方向是均匀分布的。

4. 磁场叠加在多个圆形环路产生的磁场可以叠加。

根据叠加原理,多个圆形环路产生的磁场可以通过矢量合成得到总的磁场。

5. 磁场方向的变化圆形边界磁场的方向与环路上的电流方向有关。

根据右手定则,当电流方向与环路的法向方向相同时,环路内部的磁场方向指向环路内部;当电流方向与环路的法向方向相反时,环路内部的磁场方向指向环路外部。

三、圆形边界磁场的计算方法1. 定义电流元在计算圆形边界磁场时,先需要定义一个电流元,然后再将电流元叠加起来以得到总的磁场。

2. 利用比奥-萨伐尔定律计算磁场比奥-萨伐尔定律是用来计算电流元产生的磁场的公式,可以用来计算圆形边界磁场。

该定律表明,一个长直导线在某一点产生的磁场与该点到导线的距离成反比,与导线上的电流成正比。

2023年江苏省扬州中学高考物理一模试卷+答案解析(附后)

2023年江苏省扬州中学高考物理一模试卷+答案解析(附后)

2023年江苏省扬州中学高考物理一模试卷1. 下列说法正确的是( )A. 物体内热运动速率大的分子数占总分子数比例与温度无关B. 液体表面张力产生的原因是液体表面受到液体内部的吸引力作用C. 知道阿伏伽德罗常数、气体的摩尔质量和密度,可以估算出该气体的分子直径D. 一定质量的理想气体,在压强不变时,单位时间内分子与器壁单位面积碰撞次数随温度降低而增加2. 一束由a、b、c三种颜色组成的光,经过三棱镜后形成的光路如图所示。

若将这三种光分别入射到同一光电管,都有光电子产生。

关于这三种光,下列判断正确的是( )A. c光所对应的遏止电压最大B. c光的光子动量最小C. 棱镜中a光的传播速度大于b光的传播速度D. 若用同一装置进行双缝干涉实验,a光的条纹间距大于b光的条纹间距3. 核电站铀核裂变的产物是多样的,一种典型的铀核裂变是生成钡和氪,同时放出3个中子,核反应方程是,铀核的质量为,钡核的质量为,氪核的质量为,中子的质量为此类核反应中放出光子,能使逸出功为的金属板放出最大初动能为的光电子,已知电子的质量为m,光速为c,普朗克常量为h,则A. 该核反应放出的核能为B. 光子是原子核外最外层电子向基态跃迁时放出的,因此能量很高C. 这些光电子的德布罗意波长不小于D. 该核反应产物的结合能之和小于反应前铀核的结合能4. 如图所示,有一质量为m的物块分别与轻绳P和轻弹簧Q相连,其中轻绳P竖直,轻弹簧Q与竖直方向的夹角为,重力加速度大小为g,则下列说法正确的是( )A. 剪断轻绳瞬间,物块的加速度大小为gB. 剪断轻绳瞬间,物块的加速度大小为C. 弹簧Q可能处于压缩状态D. 轻绳P的弹力大小一定小于mg5. “中国天眼”是目前世界上口径最大的单天线射电望远镜。

通过FAST测量水星与太阳的视角水星B、太阳S分别与地球A的连线所夹的角,如图所示。

若视角的正弦值最大为a,地球和水星绕太阳的运动均视为匀速圆周运动,则水星与地球的公转周期的比值为( )A. B. C. D.6. 如图所示为远距离输电原理图,变压器、为理想变压器,原、副线圈的匝数比为1:10,原、副线圈的匝数比为10:1,发电机的输出功率为P,输出电压为U,用电器两端的电压为,则输电线的电阻R为( )A. B. C. D.7. 如图所示,波源、以相同的频率垂直纸面振动激发出横波在纸面内沿着各个方向传播,A、B、C三点在、连线的中垂线上,时刻、同时沿相同方向开始振动,经与相距6m的A点开始振动,此后A点每分钟上过4s的时间,且当A位于波峰时,B、C两点也同时位于离A点下振动10次,最近的两个波峰,则下列说法正确的是( )A. 波源激发的横波波长为9mB. 波源激发的横波波长为18mC. 与B之间的距离为12mD. 时C点开始振动8. 如图所示,从匀速运动的水平传送带边缘,垂直弹入一底面涂有墨汁的棋子,棋子在传送带表面滑行一段时间后随传送带一起运动。

18 磁场最小面积问题—高中物理三轮复习重点题型考前突破

18 磁场最小面积问题—高中物理三轮复习重点题型考前突破

一、磁场形状为圆状的最小面积计算1.如图,在直角坐标系xOy平面内,虚线MN平行于y轴,N点坐标(-l,0),MN与y 轴之间有沿y轴正方向的匀强电场,在第四象限的某区域有方向垂直于坐标平面的圆形有界匀强磁场(图中未画出)。

现有一质量为m、电荷量大小为e的电子,从虚线MN上的P点,以平行于x轴正方向的初速度v0射入电场,并从y轴上A点(0,0.5l)射出电场,射出时速度方向与y轴负方向成30°角,此后,电子做匀速直线运动,进入磁场并从圆形有界磁场边界上Q点(3l6,-l)射出,速度沿x轴负方向,不计电子重力。

求:(1)匀强电场的电场强度E的大小?(2)匀强磁场的磁感应强度B的大小?电子在磁场中运动的时间t是多少?(3)圆形有界匀强磁场区域的最小面积S是多大?解析(1)设电子在电场中运动的加速度为a,时间为t,离开电场时沿y轴方向的速度大小为v y,则a=eE mv y=atl=v0tv0=v y tan 30°解得E=3m v20 el。

(2)设轨迹与x轴的交点为D,OD距离为x D,则x D=0.5l tan 30°x D=3l 6所以DQ平行于y轴,电子在磁场中做匀速圆周运动的轨道的圆心在DQ上,电子运动轨迹如图所示。

设电子离开电场时速度为v ,在磁场中做匀速圆周运动的轨道半径为r , 则v 0=v sin 30° r =m v eB =2m v 0eB r +r sin 30°=l (有r =l3)t =13TT =2πm eB ⎝ ⎛⎭⎪⎫或T =2πr v =πl 3v 0解得B =6m v 0el ,t =πl9v 0。

(3)以切点F 、Q 为直径的圆形有界匀强磁场区域的半径最小,设为r 1,则 r 1=r cos 30°=3r 2=3l6S =πr 21=πl 212。

答案 (1)3m v 20el (2)6m v 0el ,πl 9v 0(3)πl 2122.如图所示,在直角坐标系xoy 中,第Ⅰ象限存在沿y 轴正方向、电场强度为E 的匀强电场,第Ⅳ象限存在一个方向垂直于纸面、磁感应强度为B 的圆形匀强磁场区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆形磁场的最小面积
圆形磁场是一种常见的磁场形态,其产生于一根直流电流通过环形导线时。

在物理学和工程学中,我们常常需要计算圆形磁场的面积,以便更好地理解和应用它。

那么,圆形磁场的最小面积是多少呢?答案是:圆形磁场的最小面积是πR,其中R为环形导线的半径。

这个结论可以通过对磁场的物理特性和数学性质进行分析得出。

首先,我们知道圆形磁场的磁感应强度在导线周围是均匀的,并且随着距离的增加而逐渐减小。

其次,我们可以利用环形导线所产生的磁场的对称性,将其分为若干个小面积,并对每个小面积进行面积积分,最终得到总面积。

通过这些分析和计算,我们可以得出结论:当环形导线的半径为R时,圆形磁场的最小面积为πR。

这个结果对于圆形磁场的研究和
应用具有重要意义,可以帮助我们更好地理解和利用圆形磁场的特性。

- 1 -。

相关文档
最新文档