简述齿轮常见的失效形式及特点
10-02 齿轮传动的失效形式及设计准则

增强轮齿抗点蚀能力的措施: ●在啮合轮齿间加注润滑油可以减小摩擦,减缓点蚀; ●在合理限度内,提高润滑油的粘度,也可减缓点蚀的出现。
(4)齿面胶合
高速重载:压力大,瞬时温升,润滑差,温度过高时,两齿面 就会发生粘连,又滑动将相粘结的部位即被撒破,称为胶合。 低速重载:油膜遭到破坏,也会产生胶合。此时称为冷胶合。
但应采取相应的措施,以增强轮齿抗这些失效的能力。
闭式齿轮传动设计准则
闭式齿轮传动:
在闭式齿轮传动中,通常以保证齿面接触疲劳强度为主。
对于齿面硬度很高,齿芯强度又低的齿轮或材质较脆的齿
轮,通常则以保证齿根弯曲疲劳强度为主。
对于功率较大的齿轮传动: 例如输入功率超过75kW的闭式 齿轮传动,发热量大,易于导致润滑不良及轮齿胶合损伤等, 为了控制温升,还应作散热能力计算。
开式齿轮传动设计准则
开式(半开式)齿轮传动:
按理应按保证齿面抗磨损和齿根抗折断能力两准则进行计
算,由于抗磨损能力的计算方法迄今尚不够完善,所以对于开 式(半开式)齿轮传动,目前仅以保证齿根弯曲疲劳强度作为 设计准则。 为了延长开式(半开式)齿轮传动的寿命,可视具体需要
而将所求得的模数适当增大。
对于齿轮的轮圈、轮幅、轮毂等部位的尺寸,通常仅作结 构设计,不进行强度计算。
(2)齿面磨损
齿面磨损可能出现的形式有多种,但主要是当啮合齿面间 落入磨料性物质时,齿面即被逐渐磨损而致报废。这是开式齿 轮传动的主要失效形式之一。
改善润滑、密封条件,在润滑油中加入减摩添加剂,保持 润滑油的清洁,提高齿面硬度等,均能提高齿面的抗磨料磨损。
(3)齿面点蚀
在润滑良好的闭式齿轮传动中,常见的齿面失效形式多 为点蚀。开式齿轮传动,由于齿面磨损较快,很少出现点蚀。
齿轮传动的失效分析)

一般来说,齿轮传动的失效主要发生在轮齿上。
轮齿部分的失效形式分为两大类:轮齿折断,齿面失效。
1. 轮齿折断折断失效通常有轮齿的弯曲疲劳折断、过载折断和随机折断。
•疲劳折断:工作时轮齿反复受载,使得齿根处产生疲劳裂纹,并逐步扩展以至轮齿折断的失效。
疲劳裂纹多起源于齿根受拉的一侧。
•过载折断:齿轮受到突然过载,或经严重磨损后齿厚减薄时,轮齿会发生过载折断。
•随机折断:通常是指由于轮齿缺陷、点蚀或其它应力集中源在轮齿某部位形成过高应力集中而引起轮齿折断。
断裂部位随缺陷或过高有害残余应力的位置而定,与齿根圆角半径无关。
•轮齿折断的形式有整体折断和局部折断。
整体折断多发生于直齿轮,局部折断多发生于斜齿和人字齿轮,齿宽较大的直齿轮和由于安装、制造因素使得局部受载过大的直齿轮,也可能发生局部折断。
疲劳折断的断口较光滑,过载折断的断口则较粗糙。
•增大齿根过渡圆角半径,减小齿面粗糙度,对齿根进行喷丸或碾压强化处理消除该处的加工刀痕,选用韧性较好的材料,采用合理的变位等,均有助于提高轮齿的抗折断能力。
•通常,轮齿疲劳折断是闭式硬齿面齿轮传动的主要失效形式。
2. 齿面失效齿面失效常见的失效形式有:点蚀、胶合、齿面磨损和齿面塑性变形。
(1) 点蚀齿轮在啮合过程中,相互接触的齿面受到周期性变化的接触应力的作用。
若齿面接触应力超出材料的接触疲劳极限时,在载荷的多次重复作用下,齿面会产生细微的疲劳裂纹;封闭在裂纹中的润滑油的挤压作用使裂纹扩大,最后导致表层小片状剥落而形成麻点,这种疲劳磨损现象,齿轮传动中称为点蚀(图9.3-13)。
节线靠近齿根的部位最先产生点蚀。
润滑油的粘度对点蚀的扩展影响很大,点蚀将影响传动的平稳性并产生冲击、振动和噪音,引起传动失效。
•点蚀又分为收敛性点蚀和扩展性点蚀。
收敛性点蚀指新齿轮在短期工作后出现点蚀痕迹,继续工作后不再发展或反而消失的点蚀现象。
收敛性点蚀只发生在软齿面上,一般对齿轮工作影响不大。
齿轮的失效形式

对轮齿进行喷丸、碾压等强化处理,提高齿面硬度, 保持芯部的韧性等。
二、齿面点蚀
1.原因及现象 齿面点蚀轮齿工作时,由于在齿面啮合处脉动循环变 接触应力长期作用下,当应力峰值超过材料的接触疲 劳极限,经过一定应力循环次数后,先在节线附近的 齿廓表面产生细微的疲劳裂纹。随着裂纹的扩展,将 导致小块金属剥落,产生齿面点蚀。点蚀影响轮齿正 常啮合,引起冲击和噪声,造成传动的不平稳。
2.避免措施 提高材料的硬度;加强润滑,提高油的粘度。
三、齿面磨损
1.原因
齿面磨损主要是由于灰砂、硬屑粒等进入齿面间而引起的磨粒性磨损;其次 是因齿面互相摩擦而产生的跑合性磨损。磨损后齿廓失去正确形状,使运转 中产生冲击和噪声。 2.现象及避免措施 齿面磨损是不可避免的,特别是对于润滑不好的开式齿轮,磨损成为主 要的失效形式。齿面磨损使齿厚减薄,使齿根的抗弯曲疲劳强度降低, 并使齿轮最终表现为齿根减薄后的弯曲疲劳折断。 采用闭式传动,提高齿面光洁度和保持良好的润滑可以防止或减轻这种 磨损。
3. 局部折断
齿轮宽度过大时,制造安装的误差会使其局部受载过大,造成 局部折断。在斜齿圆柱齿传动中,齿轮工作面上的接触线为一 斜线,齿轮受载后如有载荷集中,就会发生局部折断。若轴的 弯曲变形过大而引起齿轮局部受载过大,也会发生局部折断。
4. 避免措施
增大齿根圆角半径,降低齿根的应力集中。
降低齿面的表面结构值。 增大轴及支承物的厚度。
四、齿面胶合
1.原因
高速重载传动时,啮合区载荷集中,温升快,因而易引起润滑失效;低 速重载时,油膜不易形成,均可致使两齿面金属直接接触而熔粘到一起, 随着运动的继续而使软齿面上的金属被撕下,在轮齿工作表面上形成与 滑动方向一致的沟纹,这种现象称为齿面胶合。
齿轮传动的失效形式

齿轮传动过程中,若齿轮发生折断、齿面损坏 等现象,使齿轮失去了正常的工作能力,称为失 效。 齿轮传动的失效主要轮齿失效。其主要形式有: 轮齿折断 齿面磨损 齿面点蚀 齿轮的失效形式 齿面胶合 齿面塑性变形
失效形式之一:齿轮折断
折断的现象:产生裂 纹→扩展→断齿 折断的原因: (1)疲劳折断:根部 应力集中;齿轮受 多次重复弯曲应力 作用。 (2)突然过载或冲击 折断。
靠近节线的齿根部位
齿面点蚀的后果:
振动、噪音增大 ,传动不平稳,承载 能力下降
改善措施:
1、提高齿面硬度和接触强度 2、采用合适的润滑油(提高润滑油粘 度) 3、减小齿面粗糙度
失效形式之四:齿面胶合 胶合现象:齿面沿相 对滑动方向粘焊、 撕脱,形成伤痕。 形成原因: (1)高速重载使油膜 破坏,两齿面金属 直接接触并粘接 (2)低速重载不易形 成油膜,使齿面冷 胶合 (3)齿面间相对滑动
失效形式之三:齿轮点蚀
点蚀的现象:靠近节线的 齿面或齿根部位出现麻 点状小坑。 产生的原因: (1)齿面受交变应力接触 应力作用,产生接触疲 劳裂纹 (2)靠近节线附近滑动速 度小,油膜不易形成, 摩擦力大,易产生裂纹 (3)润滑油进入裂纹,形 成封闭高压油腔,润滑 油的楔挤作用使裂纹扩 展
入
齿面点蚀 发生的部位:
齿 轮 的 失 效 形 式
主要发生在高速重 齿面胶合: 载的闭式齿轮传动中 是开式齿轮传动中 齿面磨损: 的主要失效形式 主要出现在低速重载 齿面塑变: 频繁启动的场合
提高齿面硬度、降低啮合表面的滑动系数 经常更换润滑油
提高齿面硬度、 提高润滑油的粘度或采用 极压润滑油
塑性变形
齿面塑变的后果: 齿形被破坏,传动不平稳,齿夺取减 薄,抗弯能力下降,轮齿易折断 改善措施: 1、提高齿面的硬度 2、采用黏度高的润滑油
齿轮失效常见的形式及预防措施

1.5 塑性变形齿⾯塑性变形主要出现在低速重载、频繁启动和过载的场合。
当齿⾯的⼯作应⼒超过材料的屈服极限时,齿⾯产⽣塑性流动,从⽽引起主动轮齿⾯节线处产⽣凹槽,从动轮出现凸脊。
此失效多发⽣在⾮硬⾯轮齿上,齿轮的齿形严重变形,特别是左右不对称时应更换新件。
上⾯阐述的⼏种主要轮齿失效形式,在⼀般情况下,不仅可以修复,且在不能改变齿轮材料、加⼯⼯艺的条件下通过提前预防来延迟齿轮失效不利情况的发⽣,提⾼齿轮使⽤寿命。
2、预防齿轮失效措施2.1 提⾼齿轮安装精度2.2 合理选材齿轮材料的选择,要根据强度、韧性和⼯艺性能要求,综合考虑。
结合我国实际,宜选⽤低碳合⾦渗碳钢。
对于承受重载和冲击载荷的齿轮,采⽤以Ni-Cr和Ni-Cr-Mo合⾦渗碳钢为主的钢材;对于负载⽐较稳定或功率较⼩,模数较⼩的齿轮,亦可选⽤⽆Ni的Ni-Mn钢。
⽤这种钢材制造的齿轮与普通电炉钢制造的齿轮相⽐,其接触和弯曲疲劳寿命可提⾼3-5倍,齿轮极限载荷可提⾼15%-20%。
2.3 热处理通过热处理⼯艺,可以改善齿轮材质,适当提⾼硬度,消除或减轻齿⾯的局部过载,提⾼齿⾯的抗剥落能⼒。
例,对煤矿机械中的齿轮,深层渗碳淬⽕,可减⼩齿轮硬化,提⾼芯部硬度,较⼩的过渡区残余拉应⼒和充⾜的硬化层深度。
2.4 根据实际情况选择齿轮油据资料显⽰,机械故障的34.4%源于润滑不⾜,19.6%源于润滑不当,换句话说,以54%的机械故障是由于润滑问题所致。
因此,选择好的齿轮油对提⾼齿轮使⽤寿命有重要的意义。
2.5 修复为了确保齿轮的强度和硬度,决定采⽤氩弧焊合⾦焊丝堆焊修复,后⽤磨光机整形处理⽅案,这样焊后的齿轮轮齿少不经热处理达到较⾼的硬度和强度。
通过对齿轮失效形式的分析,可提⾼准确判别设备故障的能⼒,及时解除故障,提⾼经济效益。
齿轮传动的失效形式

③防止措施: 防止措施: a合理润滑 合理润滑 b提高齿面硬度 提高齿面硬度
⑷齿面胶合
①部位:齿面沿相对滑动方向 部位:
1 齿轮传动的失效形式
⑴ 轮齿折断 ⑵ 齿面磨损 ⑶ 齿面点蚀 ⑷ 齿面胶合
⑸ 轮齿塑性变形
⑴轮齿折断
①部位:一般发生在齿根部位 部位:
②原因: 原因: a 轮齿在多次重复载荷作用下,齿根处弯曲拉应力过大,再 轮齿在多次重复载荷作用下,齿根处弯曲拉应力过大, 加上齿根处易应力集中,从而发生疲劳折断。(疲劳折断) 。(疲劳折断 加上齿根处易应力集中,从而发生疲劳折断。(疲劳折断) b 短期过载或过大的冲击载荷作用时齿根静强度不足,或轮 短期过载或过大的冲击载荷作用时齿根静强度不足, 齿磨损后强度削弱正常载荷作用下折断。(过载折断) 。(过载折断 齿磨损后强度削弱正常载荷作用下折断。(过载折断)
⑵面磨损
①部位:工作面 部位:
②原因: 原因: a润滑不良 润滑不良 b磨料落入工作面 磨料落入工作面
防止措施: ③ 防止措施: a 改开式为闭式 b 改善润滑条件 c 提高齿面硬度 d 减小齿面粗糙度
⑶齿面点蚀
①部位:靠近节线的齿根面上 部位:
②原因: 原因: a 在节线处,一对齿啮合,接触应力大 在节线处,一对齿啮合, b 在节线处,相对滑动速度低、不易形成油膜 在节线处,相对滑动速度低、
③ 提高轮齿抗疲劳断裂能力的措施: 提高轮齿抗疲劳断裂能力的措施: a 适当增大齿根过度圆角半径,消除加度工刀痕,减小 适当增大齿根过度圆角半径,消除加度工刀痕, 应力集中。 应力集中。 b 合理提高齿轮制造精度和安装精度。 合理提高齿轮制造精度和安装精度。 c 正确选择材料和热处理工艺,使轮齿芯部材料具有足 正确选择材料和热处理工艺, 够的韧性。 够的韧性。 d 采取喷丸、滚压等措施强化齿根齿面。 采取喷丸、滚压等措施强化齿根齿面。 e 考虑传动整体,主要指刚度。增大轴及支承的刚度, 考虑传动整体,主要指刚度。增大轴及支承的刚度, 使轮齿接触线上受载较为均匀。 使轮齿接触线上受载较为均匀。
齿轮传动

对内凹的凸轮轮廓曲线:工作廓线的曲率半径 a 理论廓线的曲率半径 +工作半径 r
对外凸的凸轮轮廓曲线 当 r 时,工作廓线出现尖点,使尖点磨损 当 r 时,工作廓线出现交叉,会出现失真现象
由此可知,对外的凸轮轮廓曲线,应使滚子半径小于理论廓线的最小曲率半径,即出现失真时,增大基 圆半径或适当减小滚子半径
当配对的两齿轮的齿面均属于硬齿面时,分别按齿根弯曲疲劳强度和齿面接触疲劳强度进行计算。 影响齿轮弯曲疲劳强度的主要是模数,模数越大,齿轮的弯曲疲劳强度越高。 影响齿面接触疲劳强度的主要是直径,小齿轮直径越大,齿轮接触疲劳强度越高。
三、凸轮机构 1、分类 (1)按凸轮形状:盘形凸轮、圆柱凸轮 (2)按推杆形状:尖顶推杆,适用于作用力不大和速度较低的场合 滚子推杆,磨损较小,可传递较大的力 平底推杆,凸轮与平底的接触面间易形成油膜,润滑较好,用于高速传动中 (3)按推杆运动形式:直动推杆、摆动推杆 2、推杆常用的运动规律 (1)几个概念:基圆半径:凸轮的最小半径 推程:推杆由最低位置推到最高位置,推杆的运动过程 远(近)休止角:推杆处于最高(低)位置不动,凸轮转过的角度 ④推杆的行程:推杆在推程或回程在推动的距离 (2)常用运动规律的特点 一次多项式运动规律(等速运动规律):推杆在运动开始和终止的瞬时,速度有突变,凸轮机构有 刚性冲击。 二次多项式运动规律(等加速等减速运动规律):加速度有突变,有柔性冲击。 五次多项式运动规律:无刚性也无柔性冲击。 ④余弦加速度运动规律(简谐运动规律):首末两点推杆加速度有突变,有柔性冲击。 ⑤正弦加速度运动规律(摆线运动规律):都无 注:除等速运动规律外,正弦加速度运动规律加速度最大值最大。 为了消除等加速等减速运动规律中的柔性冲击,可由等减速运动规律和余弦减速度运动规律组合 而成的修正梯形运动规律。
齿轮失效常见的形式总结

齿轮失效常见的形式
1.齿面点蚀
产生原因与现象:脉动循环的接触应力,超过接触应力时产生疲劳裂纹,裂纹扩展导致金属剥落形成小坑(麻点)。
发生部位与场合:靠近节线的齿根面处,闭式传动。
2.齿面磨损
产生原因与现象:铁屑或者灰尘进入,啮合齿面的相对滑动摩擦而产生磨损,齿形变廋。
发生场合:开式传动。
3.齿面胶合
产生原因与现象:高速重载时散热不好,高速重载时,压力过大,使油膜破坏,低速重载时,不易形成油膜或者局部偏载,造成冷胶合;金属齿面金属直接接触粘接,较软齿面金属沿滑动方向撕下形成沟纹。
发生场合:低速、高速重载齿轮。
4.齿面塑形变形
产生原因与现象:较软齿面的齿轮在频繁启动和严重过载,齿面的工作应力超过材料的屈服极限时,齿轮油膜被破坏,齿面很大的压力和摩擦力的作用使齿轮金属局部塑形变形。
发生场合:较软齿面的齿轮频繁启动与严重过载。
5.轮齿折断
产生原因与现象:疲劳断裂、过载折断、随机折断;
疲劳折断:齿轮在工作过程中,齿根处产生的弯曲应力最大并且集中,当轮齿重复受载后,齿根圆角处就会产生疲劳裂纹,并逐步扩展,致使轮齿疲劳折断轮齿。
过载折断:因短时过载或冲击过载而产生的折断。
发生场合:开式齿轮传动和硬齿面闭式齿轮传动。
发生后果:不能正常转动,甚至造成重大事故。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
齿轮失效形式及特点
齿轮作为机械传动装置中常见的零件,其失效形式多种多样。
下面将介绍几种常见的齿轮失效形式及其特点。
1. 磨损失效
磨损是最常见的齿轮失效形式之一,主要是由于齿轮表面的摩擦和磨损引起的。
具体表现为齿面磨损、齿面点蚀、齿面斑点磨损等。
磨损失效主要由于润滑不良、负载过大、工作环境恶劣等原因引起。
2. 齿面断裂
齿面断裂是指齿轮齿面出现裂纹或齿面完全断裂。
齿面断裂多发生在齿根处,其特点是断口光滑,常伴有齿面疲劳痕迹。
齿面断裂主要是由于齿轮过载、材料强度不足、制造缺陷等原因引起。
3. 齿根断裂
齿根断裂是指齿轮齿根处发生断裂,断口呈现韧性断口。
齿根断裂多发生在负荷集中区域,其特点是断口不平整,常伴有齿根疲劳痕迹。
齿根断裂主要是由于齿轮过载、应力集中、材料强度不足等原因引起。
4. 腐蚀失效
腐蚀失效是指齿轮表面受到化学物质侵蚀而产生的失效。
腐蚀失效的特点是齿面出现腐蚀斑点、齿面粗糙等。
腐蚀失效主要是由于工作环境中存在腐蚀介质、润滑不良等原因引起。
以上是齿轮常见的失效形式及其特点。
在实际应用中,为了避免齿轮失效,可以采取以下措施:选择合适的润滑剂,保持良好的润滑
状态;合理设计齿轮结构,提高齿轮的强度及工作寿命;加强齿轮的维护保养,定期检查齿轮状态并及时更换磨损严重的齿轮。
通过这些措施的实施,可以有效预防齿轮的失效,延长齿轮的使用寿命。
总结:了解齿轮常见的失效形式及其特点对于提高齿轮传动的可靠性和寿命具有重要意义。