随机过程复习题

合集下载

随机过程复习题

随机过程复习题

第一章 1. 填空若X 1,X 2,…,X n 是相互独立的随机变量,且g i (t)是X i 的特征函数,i=1,2,…,n)则X=X 1+X 2+…X n 的特征函数g(t)= _g 1(t) g 2(t)…g n (t) 2.设P(S)是X 的母函数,试证: (1)若E(X)存在,则()1EX P '=(2)若D(X)存在,则 DX = P"(1)+ P ′(1)-[ P ′(1)]2证明:(1)因为()0kkk P s p s∞==∑,则()11k kk P s kp s∞-='=∑,令1s →,得()11kk E X P kp ∞='==∑ 。

(2)()11k kk P s kp s∞-='=∑,()()221k k k P s k k p s∞-=''=-∑()2222=k k k k k k p s kp s ∞--=-∑令1s →,得()()()222112P 1=1k k k kp kp EX p EX p EX p ∞='''-=--+=-∑()()2=P 1+1EX p '''∴()()()()222P 1+11DX EX EX p p ''''∴=-=-⎡⎤⎣⎦ 证毕3. 设X 服从B(n,p),求X 的特征函数g(t)及EX,EX 2,DX. 解:X 的分布列为P(X=k)=1k k n nC p q -,q=1-p ,k=0,1,2,...n,()00k n n n itk k k n k k it n k it g t e C p q C pe q pe q n n k k ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭--===+∑∑== 由性质得 ()(),0n t ditEX i inp dtp q ge ==-=-=+()()()22"22220n t iti npq d i p q g pne EX dt===-=+-+()22DX =EX EX =npq -4.设()0,1XN ,求X 的特征函数()g t解 dx xt g eitx ⎰∞+∞--=2221)(π由于e exx xixitx 2222=-,且〈+∞⎰∞+∞--dx xeitx 2221π,故由积分号下求导公式有⎥⎥⎦⎤⎢⎢⎣⎡-==-∞+∞-∞+∞--⎰⎰de e ixeg x i dx xt ixt itx 22'22221)(ππdx xt xieeitx itx ⎰⎰∞+∞--∞+∞-∞+∞---=222222ππ)(t tg -=于是得微分方程g ’(t)+tg(t)=0 解得方程的通解为eCtt g +-=22)(由于g(0)=1,所以C=0, 于是得X 的特征函数为e tt g 22)(-=5. 设随机变量()2,YN μσ,求Y 的特征函数是()Y g t .解:设()0,1XN ,则由例1.3知X 的特征函数 ett g 22)(-=令Y X σμ=+,则()2,YN μσ,由前面的命题知Y 的特征函数是()()eg e g tt t t i Xxi Y222σσμμ-==,6.()12,,,n X X X p ii 设是相互独立的随机变量,且X b n ,i=1,2,,n, ,b n p ⎛⎫ ⎪⎝⎭∑∑nn ii i=1i=1证明Y=X()()()()()()()111,,ini ii n it n n n n it it i i p t pe q t t pe q pe q b n p ====+∑=∏=∏+=+⎛⎫⎪⎝⎭∑∑∑ii i i X n i Y X i=1n n i i i=1i=1证因为X b n ,所以其特征函数为g i=1,2,,n,由特征函数的性质知,Y=X 的特征函数为g g 再由特征函数的唯一性定理知Y=X7. 设X 1,X 2…X n 是相互独立的随机变量,且(),,...2,1,~n i iiX=λπ证明⎪⎭⎫⎝⎛=∑∑==n i i ni i X Y 11~λπ证 因为(),~λπiiX所以其特征函数为()n i e t Xe g itii,...2,1,1==⎪⎭⎫⎝⎛-λ有特征函数的性质知,∑==ni iXY 1的特征函数为()()e eg g ni iti iti ie e t X t ni n i Y∑====⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=∏∏11111λλ 再由唯一性定理知⎪⎭⎫⎝⎛=∑∑==n i i ni i X Y 11~λπ。

随机过程复习资料.doc

随机过程复习资料.doc

丄20 25 1. 设{2V(r)J>0}是一更新过程,已知P {X. =1} = 1/3, P {X i =2} = 2/3,则 P {N(3) = 2}=§ 2.若Markov 链只存在一个类,则称它是不可约的,若状态同属一类,则d ① 与d(j)的大小关系d ⑴=d(j) (<,>,=)丄 423.设Markov 链的状态空间S = (1,2,3),转移矩阵P=-4..设{B(f),宀 0}是标准 Brown 运动,则 P(B(2)<0) = |.题目:X(/) = sin",U ~U[0,2刃.试判断X(/)为宽平稳还是严平稳过程.解:EX (t) = E(sin Ut) - ~ sin utdu = 01 ® 1= E(sinUtsinUs) = 一 I ——[cos+ 51) - cos u(t - s)]du2龙力 21 —,t = s =<2 0,心s故{X(t)}为宽平稳过程。

又sinU 与sin2U 的分布函数不同,故{X (t)}不是严平稳的 题目:MaMov 链的状态空间S = {1,2,3,4},—步转移概率矩阵‘%0 o '1 0 0 0 0 % % 0%0 丿试对其状态进行分类,确定哪些是常返态,并确定其周期解:1.由转移概率矩阵知:10 2,并且有3 ^2,2^3; 4 T 2,2/4; 4宀3,3“4;故状态空间可以分为:S = {1,2}U ⑶U{4}.2.由转移概率矩阵知:几〉0(心1,2),所以状态1和2都是非周期的,又10 2故状态2也是非周期的.从状态4出发不可能返回到状态4,即集合{zz:z/>l,/^>0}为空集,故状态4的周期无穷大./11=z/H ,,=/H n +/r+/1<13,+-+/r+-n=l=i + 1 +0+---+0+•••2 2=1所以状态1为常返态,又1^-2,故2是常返态. ......... 4分+8f— f(")= f ⑴ + f ⑵f ⑶+ …丿33 厶丿33 丿33 丁丿33 丁丿33 丁n-12=—+ 0 + 0 +•••3 厶13所以状态3为非常返态.+00f— N' f(")—f ⑴ + f ⑵+ …J 44 丿44 J 44 ' J 44 ~n=l= 0 + 0 —=0<1故状态3也是非常返态.题目:将两个红球4个白球分别放入甲乙两个盒子中.每次从两个盒子中各取一球交换,以X(“)记第n次交换后甲盒中的红球数.1.说明{X(n),n> 0}是一Markov链并求转移矩阵P ;2.试证(X(n), n = 0,1,2, •••}是遍历的;3.求它的极限分布.解:1.设X(“)为"次交换后甲盒中的红球数,则易见{X(“)}是马尔可夫链,状态空间为S ={0,1,2};n 1 02 2转移矩阵为p = 3 4 18 8 80 1 0丿2.山于5 = {0,1,2}有限,且S中状态互通,即不可约的,故{X(")}是正常返的,又状态1为非周期的,故1是遍历的,所以{X®)}是遍历链.题目:> 0}为标准Brow”运动,验证{X(/) = (1 -^―)}, 0 V / V1}是Brow”桥.1-t解:因为E[X(t)] = (l-t)E B(—) -01 — t皿⑴]n咕)")吩所以{X(/)}是Gauss过程,均值为零,协方差为5(1-0 ,即为Brown。

随机过程试题

随机过程试题

第一单元1. 下列常见的分布中属于离散型随机变量的分布有():(2.0分)A.二项式分布B.均匀分布C.泊松分布D.正态分布E.(0-1)分布2. 下列常见的分布中属于连续型随机变量的分布有():(2.0分)A.二项式分布B.均匀分布C.泊松分布D.正态分布E.(0-2)分布3. 下列关于随机变量分布函数性质的描述,正确的是():(2.0分)A.分布函数是一个不减函数B.分布函数能够完整地描述随机变量的统计规律性C.分布函数的最大值为无穷大D.分布函数是右连续函数E.离散型随机变量的分布函数是一系列冲激函数的线性组合4. 下列关于随机变量概率密度性质的描述,正确的是():(2.0分)A.概率密度是一个不减函数B.概率密度能够完整地描述随机变量的统计规律性C.只有连续型随机变量才存在概率密度D.概率密度是非负的函数E.随机变量的概率密度一定存在5. 随机试验有什么特点?(2.0分)6. 基本事件是随机试验中最简单的随机事件。

(2.0分)7. 两个事件乘积的概率等于其中一个事件的概率乘以另一事件在此事件发生的条件下的条件概率。

(2.0分)8. 全概率公式用于在许多情况(B1,B2,…,Bn)下都可能发生事件A,求发生A 的全概率;贝叶斯公式则用于当A已经发生的情况下,求发生事件A的各种可能原因的条件概率。

(2.0分)9. 随机变量是样本空间上的单值实函数。

(2.0分)10. 两个随机变量如果相互独立,则它们的联合分布函数等于这两个随机变量的一维分布函数的乘积。

(2.0分)11. 如果要使两个随机变量之和的数学期望等于这两个随机变量的数学期望之和,则要求这两个随机变量是相互独立的。

(2.0分)12. 如果要使两个随机变量之和的方差等于这两个随机变量的方差之和,则要求这两个随机变量是相互独立的。

(2.0分)13. 两个随机变量如果是不相关的,则它们必定是相互独立的。

(2.0分)14. 当一个随机变量的数学期望为零时,它的方差和均方值相等。

随机过程试题及答案

随机过程试题及答案

随机过程试题及答案随机过程是概率论与数理统计的重要理论基础之一。

通过研究随机过程,可以揭示随机现象的规律性,并应用于实际问题的建模与分析。

以下是一些关于随机过程的试题及答案,帮助读者更好地理解与掌握这一概念。

1. 试题:设随机过程X(t)是一个马尔可夫过程,其状态空间为S={1,2,3},转移概率矩阵为:P =| 0.5 0.2 0.3 || 0.1 0.6 0.3 || 0.1 0.3 0.6 |(1) 计算X(t)在t=2时的转移概率矩阵。

(2) 求X(t)的平稳分布。

2. 答案:(1) 根据马尔可夫过程的性质,X(t)在t=2时的转移概率矩阵可以通过原始的转移概率矩阵P的2次幂来计算。

令Q = P^2,则X(t=2)的转移概率矩阵为:Q =| 0.37 0.26 0.37 || 0.22 0.42 0.36 || 0.19 0.36 0.45 |(2) 平稳分布是指随机过程的状态概率分布在长时间内保持不变的分布。

设平稳分布为π = (π1,π2, π3),满足πP = π(即π为右特征向量),且所有状态的概率之和为1。

根据πP = π,可以得到如下方程组:π1 = 0.5π1 + 0.1π2 + 0.1π3π2 = 0.2π1 + 0.6π2 + 0.3π3π3 = 0.3π1 + 0.3π2 + 0.6π3解以上方程组可得到平稳分布:π = (0.25, 0.3125, 0.4375)3. 试题:设随机过程X(t)是一个泊松过程,其到达率为λ=1,即单位时间内到达的事件平均次数为1。

(1) 请计算X(t)在t=2时的累计到达次数的概率P{N(2)≤3}。

(2) 计算X(t)的平均到达速率。

4. 答案:(1) 泊松过程具有独立增量和平稳增量的性质,且在单位时间内到达次数服从参数为λ的泊松分布。

所以,P{N(2)≤3} = P{N(2)=0} + P{N(2)=1} + P{N(2)=2} +P{N(2)=3},其中P{N(2)=k}表示在时间间隔[0,2]内到达的次数为k的概率。

随机过程复习题07

随机过程复习题07
随机过程复习题
1、填空题 、
(1)设随机变量 X 服从正态分布 N(0,4),则其特征函 ) , 数 f X (t ) 为 ;
n 存在, (2)若随机变量 X 的 n 阶矩 E ( X ) 存在,则 X 的特征 )
函数 g(t)可微分 n 次,且当 k ≤ n 时, 可微分 关系为
(3) ) 设 则 X 的特征函ቤተ መጻሕፍቲ ባይዱ g ( t1 , t 2 , L , t n ) =

( pijn ) 与首 (19)对一齐次马氏链,其任意 n 步转移概率 )对一齐次马氏链,
f ij(l ) 之间的关系为 达概率

是均方连续的平稳过程, (20)设 { X ( t ), −∞ < t < ∞ } 是均方连续的平稳过程,则 ) 它的均值具有各态历经性的充要条件为 ;
(21) 、 设 平 稳 随 机 过 程 { X ( t ), −∞ < t < ∞ } 的 相 关 函 数 RX (τ ) = 6cos(ω 0τ + π ) ,则 X(t)的平均功率为 的平均功率为 ;
f ij( n ) =

f ij(n ) 定义表达式为 定义表达式为
(14)对一齐次马氏链,其首达概率 )对一齐次马氏链, f ij(n ) = ;
lin X m − X n = m , n→∞
(15)设随机序列 { X n , n ≥ 1} 均方收敛于随机变量 X,则 ) , ;
为马尔可夫链, 为常返态, (16)设 { X n , n ∈ T } 为马尔可夫链,已知 i 为常返态,其 ) 平均返回时间为 a,周期为 d,则 , ,
14、已知平稳随机过程 X (t ) 的谱密度函数为 、

(完整)随机过程复习试题及答案,推荐文档

(完整)随机过程复习试题及答案,推荐文档

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

证明:当12n 0t t t t <<<<<L 时,1122n n P(X(t)x X(t )=x ,X(t )=x ,X(t )=x )≤L =n n 1122n n P(X(t)-X(t )x-x X(t )-X(0)=x ,X(t )-X(0)=x ,X(t )-X(0)=x )≤L =n n P(X(t)-X(t )x-x )≤,又因为n n P(X(t)x X(t )=x )=≤n n n n P(X(t)-X(t )x-x X(t )=x )≤= n n P(X(t)-X(t )x-x )≤,故1122n n P(X(t)x X(t )=x ,X(t )=x ,X(t )=x )≤L =n n P(X(t)x X(t )=x )≤3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p pl l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

证明:{}(n)ij k IP P X(n)=j X(0)=i P X(n)=j,X(l)=k X(0)=i ∈⎧⎫==⎨⎬⎩⎭U ={}k I P X(n)=j,X(l)=k X(0)=i ∈∑ ={}{}k IP X(l)=k X(0)=i P X(n)=j X(l)=k,X(0)=i ∈∑g =(l)(n-l)ik kjPP ∑,其意义为n 步转移概率可以用较低步数的转移概率来表示。

4.设{}N(t),t 0≥是强度为λ的泊松过程,{}k Y ,k=1,2,L 是一列独立同分布随机变量,且与{}N(t),t 0≥独立,令N(t)k k=1X(t)=Y ,t 0≥∑,证明:若21E(Y <)∞,则[]{}1E X(t)tE Y λ=。

应用随机过程期末复习题

应用随机过程期末复习题

1、设在底层乘电梯的人数服从均值5λ=的泊松分布,又设此楼共有N+1层。

每一个乘客在每一层楼要求停下来离开是等可能的,而且与其余乘客是否在这层停下是相互独立的。

求在所有乘客都走出电梯之前,该电梯停止次数的期望值。

2、设齐次马氏链{(),0,1,2,}X n n = 的状态空间{1,2,3}E =,状态转移矩阵1102211124412033P=(1)画出状态转移图;(2)讨论其遍历性;(3)求平稳分布;(4)计算下列概率: i ){(4)3|(1)1,(2)1};P X X X === ii ){(2)1,(3)2|(1)1}P X X X ===.3、设顾客以泊松分布抵达银行,其到达率为λ,若已知在第一小时内有两个顾客抵达银行,问:(1)此两个顾客均在最初20分钟内抵达银行的概率是多少? (2)至少有一个顾客在最初20分钟抵达银行的概率又是多少?4、设2()X t At Bt C ++,其中A , B , C 是相互独立的标准正态随机变量,讨论随机过程{(),}X t t −∞<<+∞的均方连续、均方可积和均方可导性.5、设有实随机过程{(),}X t t −∞<<+∞,加上到一短时间的时间平均器上作它的输入,如下图所示,它的输出为1(),()()d tt TY t Y t X u u T −=∫,其中t 为输出信号的观测时刻,T 为平均器采用的积分时间间隔。

若()cos X t A t =,A 是(0, 1)内均匀分布的随机变量。

(1)求输入过程的均值和相关函数,问输入过程是否平稳? (2)证明输出过程()Y t 的表示式为sin 2()cos()22T T Y t A t T=⋅−.(3)证明输出的均值为sin 12[()]cos()222T T E Y t t T =−,输出相关函数为12(,)R t t = 2sin 1232T T12cos()cos()22T Tt t −−,问输出是否为平稳过程?6、甲、乙两人进行比赛,设每局比赛甲胜的概率为p ,乙胜的概率为q ,和局的概率为R ,1p q r ++=,设每局比赛后胜者记“1”,分负者记“-1”分,和局记“0”分。

随机过程考试试题及答案详解

随机过程考试试题及答案详解

随机过程考试试题及答案详解1、(15分)设随机过程C t R t X +⋅=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间上的均匀分布。

(1)求)(t X 的一维概率密度和一维分布函数; (2)求)(t X 的均值函数、相关函数和协方差函数。

【理论基础】 (1(2F ((3(F (4,(1)(t X 为],[t C C +上的均匀分布,因此其一维概率密度⎪⎩⎪⎨⎧+≤≤=其他,0,1)(tC x C t x f ,一维分布函数⎪⎩⎪⎨⎧+>+≤≤-<=t C x t C X C tCx C x x F ,1,,0)(;(2)根据相关定义,均值函数C tt EX t m X +==2)()(; 相关函数2)(231)]()([),(C t s Cst t X s X E t s R X +++==; 协方差函数12)]}()()][()({[),(stt m t X s m s X E t s B X X X =--=(当t s =时为方差函数) 【注】)()()(22X E X E X D -=;)()(),(),(t m s m t s R t s B X X X X -=求概率密度的通解公式|)(|/)(|)(|)()(''y x y f x y y f x f t ==2、(15分)设{}∞<<∞-t t W ),(是参数为2σ的维纳过程,)4,1(~N R 是正态分布随机变量;且对任意的∞<<∞-t ,)(t W 与R 均独立。

令R t W t X +=)()(,求随机过程{}∞<<∞-t t X ),(的均值函数、相关函数和协方差函数。

【解答】此题解法同1题。

依题意,|)|,0(~)(2t N t W σ,)4,1(~N R ,因此R t W t X +=)()(服从于正态分布。

故:均值函数1)()(==t EX t m X ;相关函数5)]()([),(==t X s X E t s R X ;协方差函数4)]}()()][()({[),(=--=t m t X s m s X E t s B X X X (当t s =时为方差函数) 3、(10分)设到达某商场的顾客人数是一个泊松过程,平均每小时有180人,即180=λ;且每个顾客的消费额是服从参数为s 的指数分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、随机过程()0,≥+=t Bt A t X ,其中A 和B 是独立随机变量,分别服从正态分布()1,0N 。

求()t X 的一维和二维分布。

答案:一维分布为 ()21,0t N +
二维分布是数学期望矢量为()
τ
0,0,协方差阵为⎥



⎣⎡++++222
1212
11111t t t t t t 的二维正态分布
2、设随机过程)(t X 只有两条样本曲线
t a w t X cos ),(1=
t a t a w t X cos )cos(),(2-=+=π, +∞<<∞-t
其中常数 0>a ,且 3
2)(1=
w P ,3
1)(2=
w P 。

试求)(t X 的一维分布函数)0(;x F ,
)
4

;x F 和二维分布函数)4
,0,(21π

x x F 。

答案:⎪
⎪⎪⎩
⎪⎪
⎪⎨⎧≥<≤-
-<=a x a x a a x x F 22,122
22,3
122
,0)4(π;
⎪⎪⎪⎩
⎪⎪⎪⎨


≥≥
<≤-<
≤-
-≥-
<-<=⎪⎭⎫ ⎝
⎛a
x a x a
x a x a a x a a x a
x a x x x F 22122,2
22
231
2
204,0;,2121212121和当和和当或当π
3、设一随机过程 X (t )=A cos(wt +Ф), t ∈R ,其中A 和w 都是常数,Ф~U [-π,π]。

试求:(1) X (t )的一维分布;(2) X (t )的数字特征。

答案:(1)一维概率密度为
R
t A
t x A t x A t x f t X ∈⎪⎩

⎨⎧
<<--=,
,
0)(,)(1))((2
2
)(其它
π
(2)R t t m X ∈=0
)(
R
t s s t w A
t s C X ∈-==
,)
(cos 2
),(2
R
t A
t t C t D X X ∈=
=2
),()(2
4、设随机过程)(t X 与)(t Y ,T t ∈不相关,试用它们的均值函数与协方差
函数来表示随机过程)()()()()()(t c t Y t b t X t a t Z ++=,T t ∈的均值函数和自协方差函数,其中)(t a 、)(t b 和)(t c 是普通的函数。

答案:)()()()()()(t c t m t b t m t a t m y X z ++= T t ∈
),()()(),()()(),(2121212121t t C t b t b t t C t a t a t t C Y X Z += T t t ∈21,
5、)(t S 是一个周期为T 的连续函数,Φ是服从区间],0[T 上均匀分布的随机变量,定义)()(Φ+=t S t X ,R t ∈。

试讨论)(t X 的平稳性。

答案:⎰
=
T
X u
u S T
t m 0
d )(1)(;⎰
+=
+T
X
u
u S u S T
t t R
d )()(1),(ττ;是平稳过

6、设随机过程)cos()(Φ+=
wt A t X ,R t ∈,其中A 为具有Rayleigh
分布的随机变量,其概率密度为
⎪⎩
⎪⎨⎧≤>-=000)2ex p()(22
2x x x
x x p , ,σ
σ

式中Φ为服从区间]2,0[π上均匀分布的随机变量,且A 和Φ相互独立,试讨论)(t X 是否为平稳过程。

答案:+∞<<∞-=t t m X ,0)(;τστw t t R X cos ),(2=+;是平稳过程
7、已知平稳过程)(t X 的谱密度为
⎪⎩
⎪⎨⎧<-+=其它
,010),
10
1(20)(8)(w w
w w S X δ
试求自相关函数。

答案:
)5(sin 4
4
2
2
τπτ
π
+
8、设)(t X ,R t ∈为平稳过程,)(τX R 是其自相关函数,a 是常数,试问随机过程)()()(t X a t X t Y -+=是不是平稳过程?为什么?
答案:0)(=t m Y ;)()()(2),(a R a R R t t R X X X Y +---=+ττττ;是平稳过程 9、已知平稳过程)(t X 的自相关函数为
⎪⎩
⎪⎨⎧>≤-=T
T T
R X ττττ,0,
1)(
求谱密度。

答案:
2
sin
42
2
wT T
w
10、已知平稳过程)(t X 的相关函数为τττ0||cos e )(w R a X -=。

求谱密度。

答案:
2
02
2
02
)
()
(w w a a
w w a a
+++
-+
11、已知平稳过程)(t X 的谱密度为⎩⎨
⎧≤≤=其它
,
02||,
)(2a w a b w S X 。

求相关函数。

答案:
)sin 2(sin 2
ττπτ
a a b
-
12、 设R t t X ∈),(为复平稳过程,其谱密度为)(w S X ,又
R
t t w t X t y ∈Θ+=),cos()()(0,其中]2,0[~πU Θ。

试问:)(t Y 是否为平稳过程?
若为平稳过程,求)(t Y 的谱密度。

答案:,0)(=t m Y )cos()(2
1),(0τττw R t t R X Y =
+;是平稳过程。

)]()([4
1)(00w w S w w S w S X X Y ++-=
13、设随机过程R t t B t A t X ∈+=,sin cos )(,其中B A ,分别服从),0(2σN ,且相互独立,试研究)(t X 是否为平稳过程?是否各态历经?
答案:是平稳过程。

均值各态历经,相关函数不具有各态历经。

14、设马尔可夫链}0),({≥n n X 的状态空间为}3,2,1{=E ,初始概率分布为
4
1)0(1=
p ,2
1)0(2=
p ,4
1)0(3=
p ,一步转移概率矩阵为
⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢
⎢⎢⎣
⎡=434
1031313104341
P 试计算:(1)}2)2(,2)1(,1)0({===X X X P ; (2)}1)0(|2)2(,2)1({====X X X P ; (3)}1)0(|2)2({==X X P ;(4)}2)2({=X P ;(5)证明该链具有遍历性,并求其极限分布。

答案:(1)
16
1 ;(2) 4
1;(3) 16
7; (4) 39931.0;
(5) 极限分布为⎪⎭

⎝⎛=2512259254
,,π 15、在电报信号传输中,信号是由不同的电流符号C ,-C 给出,
且对任意的t ,⎥⎦

⎢⎣⎡-2121~
)(c c t X 。

而电流的发送又有一个任意的持续时间,电流变换符号的时间是随机的,设X(t)在[0,t)内的变号次数N(t)是强度为λ的Poisson 过程。

试讨论{X(t), t ≥0}的平稳性。

答案:0,0)(≥=t t m X ;无关与t C t t R X ,e ),(||22τλτ-=+
是平稳过程。

相关文档
最新文档