浅谈有机化学反应中的活性中间体

合集下载

有机反应活性中间体

有机反应活性中间体

HOAc OBs
-OBs
OAc
+
+
+
2.碳负离子
碳负离子通常带有负电荷,也是有机化学中一类重 要的活性中间体,一般为共价键异裂后中心碳原子带 有负电荷的离子,实际常常是失去质子后所形成的共 轭碱。
C
H
:B
C:- + BH+
(1)碳负离子的结构
..
C
sp3杂化 棱锥型
109°28′
C
90°
sp2杂化 平面三角型
R
R
2R
均裂的难易主要取决于共价键的强度,即键的离解能。 自由基反应中常以过氧化物或偶氮化合物作为引发剂: 过氧化苯甲酰(BPO)、偶氮二异丁腈(AIBN),主要由 于其分子中含有较弱的键,容易均裂而产生自由基。
O C O O
O C
80-100oC
O C O.
. + O
CH3 CH3 C CN N N CH3 C CH3 CN
H3C H3C
C
CH3
sp2 - sp3 σbond
特点: 碳正离子带正电荷的碳是sp2杂化,与其它原
子结合构成三个σ 键在同一平面上,同时还 有一个空的p轨道,垂直于这个平面。
(CH3)3C F + SbF5 + (CH3)3C SbF6
1962年,Olah 把叔丁基氟溶于过量的超强酸介质SbF5中, 用1H-NMR检测到叔丁基正离子的存在。
CH2 C O h 或170 C CH2 + CO
CH2
N2
h 或 CH2 + N2
三卤代乙酸盐加热也可以制得卤代卡宾:
CCl3COOAg
CCl2 + CO2 + AgCl

有机化学常见活性中间体详解

有机化学常见活性中间体详解

有机化学常见活性中间体详解
高中化学常见官能团有:羟基(-oh)、羧基(-cooh)、醚键(-c-o-c-)、醛基(-coh)、羰基(c=o)等。

官能团,是决定有机化合物的化学性质的原子或原子团。

1、羟基(oxhydryl)是一种常见的极性基团,化学式为-oh。

羟基与水有某些相似的性质,羟基是典型的极性基团,与水可形成氢键,在无机化合物水溶液中以带负电荷的离子形式存在(oh-),称为氢氧根。

羟基主要分为醇羟基,酚羟基等。

2、羧基(carboxy),就是有机化学中的基本官能团,由一个碳原子、两个氧原子和一个氢原子共同组成,化学式为-cooh。

分子中具备羧基的化合物称作羧酸。

3、醚是醇或酚的羟基中的氢被烃基取代的产物,通式为r-o-r',r和r’可以相同,也可以不同。

相同者称为简单醚或者叫对称醚;不同者称为混合醚。

如果r、r'分别是一个有机基团两端的碳原子则称为环醚,如环氧乙烷等。

多数醚在常温下为无色液体,有香味,沸点低,比水轻,性质稳定。

醚类一般具有麻醉作用,如乙醚是临床常用的吸入麻醉剂。

4、羰基中的一个共价键跟氢原子相连而共同组成的一价原子团,叫作醛基,醛基结构简式就是-cho,醛基就是亲水基团,因此存有醛基的有机物(例如乙醛等)存有一定的水溶性。

5、羰基(carbonyl group)是由碳和氧两种原子通过双键连接而成的有机官能团
(c=o),是醛、酮、羧酸、羧酸衍生物等官能团的组成部分。

在有机反应中,羰基可以发生亲核加成反应,还原反应等,醛或者酮的羰基还可以发生氧化反应。

活性中间体及在有机合成中的应用

活性中间体及在有机合成中的应用

碳负离子
总结词
具有负电荷的碳原子,是亲核试剂,稳定性受电子效应影响。
详细描述
碳负离子是亲核反应中的关键活性中间体,通常由富电子的碳原子与带负电荷的基团结合形成。由于 负电荷的集中,碳负离子具有稳定性,其稳定性同样受电子效应影响。在有机合成中,碳负离子可以 作为中间体,参与多种反应,如取代、加成和消除等。
活性中间体的稳定性问题
总结词
稳定性问题是活性中间体面临的主要挑战之一,因为它们通常具有较高的反应活性,容 易发生副反应或自分解。
详细描述
在有机合成中,活性中间体的稳定性对其应用至关重要。由于活性中间体的高反应性, 它们在合成过程中往往容易发生副反应或自分解,导致产物的纯度和收率降低。为了解 决这一问题,研究者们通常采取一系列策略,如优化反应条件、使用稳定剂或保护基等,
多步骤合成
活性中间体在多步骤合成中起到关键作用,通过 一系列的反应步骤实现复杂有机分子的合成。
串联反应
利用活性中间体的性质,将多个反应串联起来, 一步完成多个化学键的生成,简化合成过程。
组合化学
利用活性中间体在组合化学中的反应,实现大量 不同有机分子的快速合成和筛选。
04
活性中间体在有机合成中的 挑战与解决方案
05
未来展望
新型活性中间体的开发
探索新型的活性中间体
随着科学技术的不断发展,将会有更多新型的活性中间体 被发现和开发出来,这些新型的活性中间体将会在有机合 成中发挥更加重要的作用。
深入研究活性中间体的性质
为了更好地利用活性中间体,需要对其性质进行更加深入 的研究,包括其稳定性、反应性、选择性等方面的研究。
以增加活性中间体的稳定性。
活性中间体的选择性控制
要点一

有机化学中的反应中间体和活化能

有机化学中的反应中间体和活化能

有机化学中的反应中间体和活化能有机化学是研究碳及其化合物的科学,其中反应机理和反应中间体的研究对于理解有机化学反应的本质和发展有重要意义。

在有机化学反应中,中间体是指在化学反应中形成和消失的反应物和产物之间的中间物质。

活化能则是指化学反应发生所需的最小能量。

一、反应中间体反应中间体是在化学反应中暂时形成的物质,它具有较长的寿命,存在于反应物转化为产物的过程中。

反应中间体的形成和消失通常是化学反应的一个关键步骤,它们对于反应速率和产物选择性起着决定性的影响。

1.1 离子中间体离子中间体是指在有机化学反应中形成的带电离子物种。

常见的离子中间体包括碳正离子(碳正离子是在电子亲合力强的试剂作用下形成的,比如亲电取代反应)、碳负离子(碳负离子是在电子捐赠试剂作用下形成的,比如酸催化的亲核取代反应)和自由基离子(自由基离子是在自由基反应中形成的,比如自由基加成和自由基取代反应)。

1.2 中心化学键中间体中心化学键中间体是指在有机化学反应中两个化学键断裂和/或形成的过程中形成的共价中间体。

常见的中心化学键中间体包括碳-碳单键中间体(比如亲电加成反应,碳-碳双键断裂形成碳-碳单键中间体)、碳-碳双键中间体(比如亲电取代反应,碳-碳单键断裂形成碳-碳双键中间体)和碳-氢键中间体(比如氧化反应,氧化剂作用下碳-氢键断裂形成碳-氢键中间体)。

二、活化能活化能是指在化学反应中,反应物由其能量较低的状态转变为能量较高的过渡态所需要的最小能量。

它是影响化学反应速率的重要因素。

活化能较低的反应通常具有较快的反应速率,而活化能较高的反应则速率较慢。

在有机化学中,活化能的大小取决于反应的步骤和反应物之间的相互作用。

活化能的降低可以通过催化剂的添加或者调节反应条件来实现。

催化剂可以通过提供合适的反应路径、降低过渡态的能量或者提供其他交互作用来降低活化能,从而加速化学反应的进行。

三、应用和意义对于有机化学研究者和实践者来说,深入理解和掌握反应中间体和活化能的概念和特点具有重要的意义。

有机催化反应的活性中间体研究

有机催化反应的活性中间体研究

有机催化反应的活性中间体研究有机催化反应是一种重要的有机合成方法,可以高效、选择性地构建有机分子的键合。

而在催化反应的过程中,活性中间体的研究是至关重要的,它们可以通过稳定的方式催化反应,加速和导向反应的进行。

本文将探讨有机催化反应中的活性中间体研究,并介绍一些典型的活性中间体。

活性中间体是指化学反应中的中间产物,其反应活性高于起始物和产物。

这些中间体可以通过稳定的方式存在于反应体系中,从而充当催化剂的角色,参与并促进反应的进行。

对活性中间体的研究可以揭示反应机理的细节,有助于理解反应的速率、选择性和底物适用范围等方面的问题。

在有机催化反应中,活性中间体的研究主要集中在两个方面:1)活性中间体的合成和表征;2)活性中间体的反应机理。

为了合成活性中间体,研究人员通常采用先进的有机合成技术,通过设计合适的前体分子和反应条件,合成出目标中间体。

在合成过程中,需要考虑合成反应的温度、溶剂选择、催化剂的选择等多个因素,以确保中间体的高产率和高纯度。

合成后,研究人员可以通过核磁共振、质谱等多种技术手段对中间体进行表征,确定其结构和性质。

在反应机理的研究中,研究人员通常通过理论计算和实验验证的方法来解析活性中间体的形成和转化。

理论计算可以通过计算化学方法(如密度泛函理论)模拟中间体的构型和能量,从而推断其形成机制。

实验验证可以通过反应体系中有机合成步骤的定位同位素标记和同位素交换等方法,确定活性中间体的反应路径和转化过程。

以活性烯烃为例,其官能团的空间构型对活性中间体的形成和反应至关重要。

研究人员可以通过合成不同官能团的烯烃前体,并进行反应选择性研究,来揭示活性中间体的种类和反应路径。

此外,环状中间体的形成机理也是一个研究热点。

通过环闭合反应的研究,研究人员可以揭示环中间体的活性和稳定性,并探索它们在催化反应中的作用。

活性中间体的研究不仅对于理解有机催化反应机理具有重要意义,也可以为合成方法的改进和新反应的开发提供指导。

有机化学中的活性中间体

有机化学中的活性中间体
O 强碱 PhCCH2CH3 -H O PhCCHCH3 C5H11Br O PhCCHCH3 C5H11
O PhC=CHCH3 C5H11Br
Br OCH3 NaNH2 Br OCH3
OC5H11 PhC=CHCH3
OCH3
NH2
OCH3
NH2
OCH3
NaNH2
NH3
5.2负碳离子
5.2.2 结构和稳定性
CH3 D
+
+
D
CH3
CH3
69%
4.5%
15.4%
5.2 负碳离子
当中心碳原子和>C=O、-CN等相连时,孤电子对和π键的
共轭,同时二者也是强吸电子基团,使负电荷得到很好的 分散,更稳定。如:
O R O R R O CN Cl3C CCl3
(2) S 成分含量的影响:
碳负离子电子对所占据的轨道含S成分越多,越稳定。
..
Li Cl Li
1, CO2 2, H2O HO2C
桥头碳卤代的卤代烷很难发生取代反应,因为SN1历程,要有 平面结构的正碳离子形成; SN2历程,亲核试剂要背后进攻。
5.2 负碳离子
已经制备出负碳离子的固体产物,其X-衍射测定结
果表明碳负离子不是平面结构,而 是接近与SP3杂化的锥形结构。
N CN CN
子的稳定性。在碱存在下:
k1 k-1
k1 k-1
C
H + B:
C
+ BH
Ka =
5.2 负碳离子
一般情况下,烃的酸性很弱,因而需要比一般滴定方 法要复杂的技术来测定。 测定方法: A、竞争方法:使用两个酸性烃和它们的金属盐之间建立 起来的平衡来测定:

第六章 有机反应活性中间体

第六章 有机反应活性中间体

RC
CR'
RX + R'2CuLi
R-R' + R'Cu + LiX
23
(3)羧基化和脱羧反应
羧化:
O O
RMgI+ O
C
O
H
OMgI
R
R
OH
O
O
CH3Li + O C O
物质量的比 1 : 1
H
OLi
H3C
R
OH
脱羧:
CH3COONa
-CO2 NaOH 400℃
CH3 + CO2 H+ CH4
当羧基的邻位 有拉电子基时, 可以在较低温 度下脱羧.
稳定的 自由基
O
( iii) 键的离解能 自由基是由共价键均裂产生的, 键 的离解能越大, 产生的自由基越不稳定,容易二聚生 成原来化合物。键的裂解能小的键如含有-O-O-, C-N=N-C 等弱键的化合物, 所产生的自由基比较 稳定。
30
常见自由基按稳定性排序:
(C6H5)3C > (C6H5)2CH > C6H5CH2 > CH2=C H CH2 > (CH3)3C > CH3 CHCH2CH3 >
- OH -
+ N2
(5)质子或其他带正电的原子团与不饱和键加成。
+ R+ (CH 3)3C=CH 2 + H+
CH 3
R (CH 3)3C+-CH 3 CH3CH-CH 2CH3
13
+ H+
6. 碳正离子的反应
1. 与带有电子的亲核体结合:取代反应(SN1) R+ + Nu- RNu

有机反应活性中间体

有机反应活性中间体
I 2-BuLi C6H13CH CH3 C6H13CH CH3 Li
1) 2)
CO2 H3O+
COOH C6H13CH CH3
此实验结果说明2-辛基锂离解出锥 构型的碳负离子(角锥体可以翻转). 在-700C末达平衡,与CO2反应尚有 20%的构型保持. 00C时一对角锥体碳负离子已达 到平衡,再与CO2作用,故生成的是外 消 旋体。
NH 2 NaNO 2 HCl
H H Ph3CSbF6 SbF6
N2+
+
+
N2
4) 在超酸中制备C正离子溶液
比100%的H2SO4的酸性更强的酸-超酸 (Super acid)
常见的超酸 与100%H2SO4的酸性比较 HSO3F (氟磺酸)无色透明的发烟液体,有 强烈的刺激性气味,1000倍 HSO3F - SbF5 (魔酸) 103倍 HF-SbF5 1016倍
σ- p超共轭效应:
轨道交盖在这里
H
空的 p 轨道
C H H
C
烯丙型碳正离子:
CH2 CH CH2 CH2 CH CH2
p-π共轭
电子离域
共轭体系的数目越多,碳正离子越稳定:
3
C+
>
2
CH+
>
CH2+
当共轭体系上连有取代基时,供电子基团使碳正离子 稳定性增加;吸电子基团使其稳定性减弱:
CH3 CH2
(二)正碳离子的生成:
1) 直接离子化
RX
Ph CH Cl Ph
H
R
通过化学键的异裂 X 而产生。
Ph2CH
Cl
R OH
ROH2
BF3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈有机化学反应中的活性中间体
王敏 2005110031 西北大学化学系化学专业
摘要:有机反应活性中间体在有机化学中占有极其重要的地位。

本文简要的介绍了基础有机化学反应中涉及到的几种反应活性中间体——碳正离子、碳负离子和自由基。

关键词:活性中间体,碳正离子,碳负离子,自由基
学习《有机化学》有一学期了,我个人觉得有机化学反应的机理非常有趣,现抽空将所学的有机化学反应机理里牵扯的一些活性中间体介绍给大家,希望能对大家以后的学习有所帮助。

研究反应机理时,需要用一组基元反应来解释反应过程。

要用几个基元反应才能描述整个反应过程的反应称为复杂反应,在这些反应中常经过一个或多个基元反应才能形成反应活性中间体,然后再经过一个或者几个基元反应达到最终产物。

在复杂反应中,沿着反应坐标常出现多个最高能垒,在每两个能垒之间有一个最低能垒,具有这种最低能垒的结构及称为反应活性中间体。

有机反应中的机理大多是分步进行的,在这些反应过程中常生成经典碳正离子、碳负离子、自由基等活性中间体。

下面就对以上几种活性中间体进行简单的描述。

1、 碳正离子
1.1、碳正离子的结构
碳正离子的中心碳原子为sp 2杂化,中心碳原子即与其相连的三个原子在同一平面内,在与平面垂直的方向,有一个空的p 轨道,如下图:
C 2
3
R 1
Nu
C 2
R R 1
Nu
SP 2平面结构
1.2、经典碳正离子是有机反应中的重要中间体。

S N 1亲核取代反应、双键亲电加成、芳香亲电取代反应等都能生成碳正离子中间体。

以下分几种情况对碳正离子的生成进行介绍。

1.
2.1、当取代中心为叔碳原子时,易于形成碳正离子,按S N 1机理进行反应。

例如反应:
CH 3
C Br CH 3
CH 3
NaOH H 2O
K CH 3
CH 3CH 3
C Br CH 3
C OH CH 3
CH 3NaBr
+ν=+
其反应机理为: Br
CH 3
C CH 3
CH 3Br C Br CH 3CH 3
CH 3CH 3
C CH 3CH 3OH CH 3C CH 3
CH 3
CH 3C CH 3
CH 3OH CH 3
C CH 3
CH 3OH 第一步

过渡态1
中间体
+
第二步
+快
过渡态2
δδδδ
1.2.2、在双键与卤化氢的加成反应中必须先生成碳正离子中间体,才能生成重排产物,
例如对反应
:
CH 3
C CH 3
CH 3
CH CH 2HCl
CH 3
C CH 3
CH 3CHCH 3Cl CH 3
C Cl CH 3CH CH 3CH 3
+17%
83%
CH 3
C CH 3
CH 3
CH 3
C CH 3
CH 3
CH CH 3
Cl
CH 3C CH CH 3CH CH 3Cl CH 3
C Cl CH 3CH CH 3CH 383%
CH 3
C CH 3
CH 3CHCH 3Cl 17%
重排
主要产物为后者,这是因为反应过程中生成的仲碳正离子通过甲基的迁移,重排成了更稳定的叔碳正离子。

炔烃加成的中间体为烯基碳正离子。

对此我们会在以后的文章中给与介绍。

1.2.3、在单分子消除反应中,碳正离子作为活性中间体除了与溶剂结合生成取代产物外,还能够脱去质子,生成烯烃,例如:
CH 3
C CH 3
CH 3Br 慢
δCH 3
C CH 3CH 3
Br δCH 3
C CH 3CH 3
+
Br
过渡态1
中间体
第一步
CH2C
CH3
CH3
H
CH C
CH3
3
B
CH2C
CH3
CH3

过渡态2
第二步
1.2.4、对于苯环上的亲电取代反应,卤化反应,硝化反应,烃化反应中均形成了碳正离子作为亲电试剂来参与反应,比如硝化反应中:
HONO22H2SO4NO
2
H3 O2HSO4
N
O
O
NO2
H
NO2
H
NO2
H
NO2
2、碳负离子
碳负离子是在碱性条件下形成的中间体,比如E1CB消除反应:
CH3CH2CHCH3
F
25
25
CH3CHCHCH3
F
+CH3CH2CH
F
CH2
CH3CH CHCH3CH3CH2CH CH2
(主)
Hofmann烯
芳环上的亲核取代反应,其机理为加成——消去机理:
O O
Nu慢
L Nu
N+
O O
N+
O O
Nu
L
+
L
Nu N +
O
O
L
Nu
N +
O
O
L
Nu
N +
O
O
L
Nu
N +
O
O
加成—消去机理
3、自由基
自由基是一大类反应的活性中间体,它是一些含单电子不带电荷的物质。

现在涉及到的自由基链反应最典型的就是甲烷的氯化反应。

氯原子与甲烷分子相碰撞时,从甲烷夺取一个氢原子,生成氯化氢分子,则转变成了甲基自由基:
+H C l C l
+C H 4
C H 3
甲基自由基的化学活性很高,当他与一个氯分子碰撞时又夺取一个氯原子生成一氯甲烷和另一个氯原子:
C H 3
+
C l 2C H 3C l +C l
新生成的氯原子又继续与甲烷反应,又生成了甲基自由基,如此反复,直至生成稳定的分子。

以上是目前我们所学有机反应中的几种活性中间体,最常见的为碳正离子,但是碳负离子,苯炔中间体和自由基都是有机反应中非常重要的活性中间体,因此我们在学习有机化学复杂反应的同时就必须要对这些常见活性中间体的一些基本性质有所了解。

参考文献:
[1]《有机化学》 胡宏纹主编.高等教育出版社.2006;
[2]《有机反应活性中间体》 张景龄编著.华中师范大学.2004。

相关文档
最新文档