希望工程义演 教案
应用一元一次方程——希望工程义演教案

应用一元一次方程——希望工程义演教案应用一元一次方程"盼望工程'义演一、教材分析本课以"盼望工程'义演为例引入课题,以老师点拨为主的方式,关心同学借助列表的方法分析问题,从而抓住等量关系"部重量之和等于总量',呈现运用方程解决实际问题的一般过程.分析数量关系和等量关系,列出方程,解方程,检验解的合理性.二、教学目标1、学问与技能:用表格分析简单问题中的数量关系和等量关系,体会直接和间接设未知数的解题思路,从而建立方程解决实际问题, 并要求同学进一步明确必需检验方程的解是否符合题意.2、过程与方法:通过对实际问题的解决,体会方程模型的作用,进展同学分析问题、解决问题、敢于提出问题的力量.3、情感态度与价值观:培育同学具有数学学问,增加同学探究、推理数学的力量;培育同学的数学爱好,帮助同学进展规律思维的力量,并能应用数学解决日常生活中的问题.三、教学过程设计环节一、复习回顾引导同学复习回顾列一元一次方程解应用题的一般步骤:1.审通过审题找出等量关系;2.设设出合理的未知数(直接或间接),留意单位名称;3.列依据找到的等量关系,列出方程;4.解求出方程的解(对间接设的未知数切记连续求解);5.检检验求出的值是否为方程的解,并检验是否符合实际问题;6.答留意单位名称.环节二、探究新课例1:某文艺团体为"盼望工程'募捐义演,成人票8元,同学票5元.(1) 成人票卖出600张,同学票卖出300张,共得票款多少元?(2) 成人票款共得6400元,同学票款共得2500元,成人票和同学票共卖出多少张?(3) 假如本次义演共售出1000张票,筹得票款6950元,成人票与同学票各售出多少张?(1)分析:总票款=成人票款成人票价+同学票款同学票价.解:8600+5300=4800+1500=6300(元).答:共得票款6300元.(2)分析:票数=总票款票价.解: (元).答:成人票和同学票共卖出1300元.(3)分析:本题中存在2个等量关系:总票数=成人总票数+同学总票数; 总票款=成人总票款+同学总票款.方法1分析:列表同学成人票数(张) x 1000-x票款(元) 5x 8(1000-x)解(方法1):设同学票为x张,据题意得 5x+8(1000-x) =6950.解,得 x=350,此时,1000-x=1000-350=650(张).答:售出成人票650张,同学票350张.方法2分析:列表同学成人票数(张)票款(元) y 6950-y解(方法2):设同学票款为y张,据题意得 .解,得 y=1750.此时, (张), 1000-350=650(张).答:售出成人票650张,同学票350张.变式:假如票价不变,那么售出1000张票所得的票款可能是6930元吗?同学成人票数(张) x 1000-x票款(元) 5x 8(1000-x)分析:列表解题过程:解:设售出同学票为x张,据题意得 5x+8(1000-x) =6930.解,得 x= .答:由于x= 不符合题意,所以假如票价不变,售出1000张票所得票款不行能是6930元.环节三、归纳小结1. 两个未知量,两个等量关系,如何列方程;2. 学会用表格分析数量间的关系.四、教学反思关心同学借助表格去表达问题的信息,使同学真正感受到表格对分析问题所起的重要性.引导同学一题多解,用不同的方式设未知数,用不同的等量关系列方程,对提高同学的分析问题和解决问题的力量有很大关心,还应留意检验方程解的合理性.应用一元一次方程——盼望工程义演教案这篇文章到此就结束了,欢迎大家下载使用并分享给更多有需要的人,感谢阅读!。
“希望工程”义演教学设计2

课题课型新授6.“希望工程”义演课标与教材一、课标与教材:1.能够根据具体问题的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数学模型。
2.会接一元一次方程,可化为一元一次方程的分式方程(方程中的分式不超过两个)。
学情通过前几节知识的学习,学生已经学会通过分析简单问题中已知量与未知量的关系列出方程解应用题,初步掌握了运用方程解决实际问题的一般过程,但学生在列方程解应用题时常常会遇到一下困难,就是从题设条件中找不到所依据的等量关系,或虽能找到等量关系但不能列出方程。
教学目标(一)知识与技能:1、借助表格学会分析复杂问题中的数量关系和等量关系,体会间接设未知数的解题思路,从而建立方程解决实际问题。
2、通过解决实际问题,使学生进一步明确必须检验方程的解是否符合题意。
(二)过程与方法:通过对实际问题的解决,体会方程模型的作用,发展学生分析问题、解决问题、敢于提出问题的能力。
(三)情感态度与价值观:通过对希望工程义演中的数学问题的探讨,进一步体会方程模型的作用,同时,从情感上认识希望工程,懂得珍惜今天的良好的学习生活环境。
教学方法与媒体多媒体课件,木圆规教具准备多媒体课件,木圆规师生活动过程复备修改及设计意图第一环节情景引入内容:设计适当的情境引入“献爱心”活动。
介绍教材上的情境。
目的:让学生在一个比较熟悉的氛围中接触学习主题,有利于他们启动思维。
第二环节:活动探究内容:教材中的问题情境。
请两位同学就自己对教材中问题的理解,把这个场景表演一下。
并分析题目中的每一句话所包含的含义、数量关系、等量关系,以及在这个问题中,售出1000张票的意义是什么?怎样理解票款6950元?根据题目中所给的条件,你能求出哪些量?目的:题目以短剧的形式出现,使学生更进一步理解了题意。
让学生将应用题中的场景,模拟到现实生活中来,培养学生解决实际问题的能力.感悟数学与生活的紧密联系,了解用数学知识解决生活中的实际问题的必要性.活动注意事项:本节内容通过一幅问题情境图展示题目中的一些数量关系,需要学生把书中的文字叙述与卡通图结合起来,才能组成一道应用题,在这里应引导学生学会读图、审题,学生在表演时,教师要关注学生是否真正理解了题意,题目中的已知条件的含义和数量关系等是否交待的清楚、明了,不要只流于热闹的形式。
5.5希望工程义演五案

5.5《应用一元一次方程——希望工程义演》负责人:孙娅审核人:七年级数学备课组一、预习案1、解一元一次方程的步骤:2、总价、单价、数量的关系:总价= ×3、阅读教材:第5节《应用一元一次方程——“希望工程”义演》二、精讲案例1 艺团体为“希望工程”募捐组织了一次义演,售出1000张票,筹得票款6950元。
学生票5元/张,成人票8元/张。
问:售出成人和学生票各多少张?分析:正确找出等量关系:成人票数+学生票数=1000张,成人票款+学生票款=6950元.解:设售出的学生票为x张,填写下表列出方程:解得:答:例2 甲、乙、丙三个粮仓共存粮食80吨,已知甲、乙两仓存粮数之比是1:2,乙、丙两仓存粮数之比是1:2.5,求甲、乙、丙三仓各存粮多少吨?分析:由题意知:甲:乙=1:2,乙:丙=1:2.5,为了研究问题方便通常把两个比例式统一起来,将1:2.5两项同乘以2,得2:5,于是又甲:乙:丙=1:2:5.本题的等量关系是:甲仓存粮+乙仓存粮+丙仓存粮+总存粮.本题适合间接设未知数的方法.解:由甲:乙=1:2,乙:丙=1:2.5=2:5得甲:乙:丙=1:2:5.设由题意,得解得答:三、精练案1、小明用172元钱买了两种书,共10本,单价分别为18元、10元。
每种书小明各买了多少本?2、一班有40位同学,新年时开晚会,班主任到超市花了115元买果冻与巧克力共40个, 若果冻每2个5元巧克力每块3元,问班主任分别买了多少果冻和巧克力?四、日练案1.某牧场放养的鸵鸟和奶牛一共70头,已知鸵鸟和奶牛的腿数之和为196条,则鸵鸟比奶牛多( )A.20头B.14头C.15头D.13头。
《应用一元一次方程-“希望工程”义演》教案 (公开课)2022年3

应用一元一次方程——“希望工程〞义演教学设计〖教学目标〗1.借助表格分析复杂问题中的数量关系,从而建立方程解决实际问题,开展分析问题、解决问题的能力。
2.让学生在自己不断的努力和对实际问题的探索研究中,体验成功的快乐,激发学生的学习兴趣和热情,培养学生勇于探索的科学精神。
3.通过对“希望工程〞义演中的数学问题的探讨,进一步体会方程模型的作用。
〖教材分析〗通过前几节知识的学习,学生已学会通过分析简单问题中量与未知量的关系列出方程解应用题。
列一元一次方程解应用题的难点在于根据题意找出等量关系,它同时又是解决这个问题的关键所在。
所以,本节课仍然以生动的联系生活的情境,继续培养学生分析等量关系,列方程解决实际问题的能力。
本节课以求解一个实际问题为切入点,让学生经历抽象、符号变换、应用等活动,展现运用方程解决实际问题的一般过程。
帮助学生认识寻找等量关系是列方程解决实际问题的核心和关键。
我们有时可以借助图示或列表的方法去表达问题的信息,寻求其中的等量关系。
〖学校及学生状况分析〗在前面的学习中,学生经历了“建立方程模型〞这一数学化的过程,理解了学习方程的意义,初步掌握了运用方程解决实际问题的一般过程。
但学生在列方程解应用题时常常会遇到以下困难,就是从题设条件中找不到所依据的等量关系,或虽能找到一些等量关系但不能列出方程。
因此,教学中要指导学生借助图表整体把握和分析问题,引导学生多角度思考问题,寻找等量关系。
〖教学设计〗(一)创设情境多媒体显示场景“希望工程〞义演现场,两人对话如下:A:观众真多呀!B:是呀,这次演出共售出了1000张票。
A:筹了多少钱?B:共筹得票款6950元,全部捐给了“希望工程〞。
问:你知道成人票与学生票各售出多少张吗?【教学说明:以动画的形式再现生活场景,让学生感受到数学就在我们身边,有利于调动学生的积极性和参与意识。
】(二)探索研讨1.议一议(1)从动画中,你可以得到哪些信息?(2)在这个问题中包含了哪些等量关系?学生汇报:量:成人票价8元/张、学生票价5元/张、成人和学生总票数1000张、成人和学生总票款6950元。
七年级数学上册 “希望工程”义演教案 北师大版

“希望工程”义演教学设计教学设计思想本节课以“希望工程”义演为例引入课题,通过学生自主探索、协作交流,教师点拨相结合的方式,引导学生借助列表的方法分析问题,体会用图表语言分析复杂问题表达思维方法的优点,从而抓住等量关系“部分量之和等于总量”展开教学活动。
对“想一想”由学生独立完成,并通过这个问题,使学生进一步明确必须检验方程的解是否符合实际。
教学目标知识与技能1.用列表格分析实际问题中的等量关系.2.用不同的设未知数的方法列方程.过程与方法情感态度价值观(二)能力训练要求1.借助表格分析复杂问题中的数量关系,从而建立方程解决实际问题,发展分析问题、解决问题的能力,进一步体会方程模型的作用.2.体会不同的设未知数的方法,通过比较,选择最优.(三)情感与价值观要求1.通过体会方程模型的实际价值,提高学习数学的兴趣.2.提高遇到较复杂数学问题的良好心理素质以及面对复杂问题时克服困难的勇气.教学重点1.借助表格分析复杂问题的数量关系.2.选择比较恰当的设未知数的方法.教学难点面对若干个等量关系,如何恰当地应用它们设出未知数并列出方程.教学方法引导—自主探索相结合方法.学生在教师的引导下,找出若干个较直接的等量关系,然后用不同的设未知数的方法让学生通过列表格自主探索根据等量关系,列出方程,从中体会设未知数方法的不同,方程的复杂程度也不同.教具准备投影片一张:(记作§)“希望工程”义演.教学过程Ⅰ创设情境,引入新课[师]上一节课,我们讨论过了用一元一次方程解决实际问题的一般步骤谁来给大家简单的陈述一下.[生]当用一元一次方程解决实际问题时,首先要从实际问题中抽象出数学问题;然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性,合理就用以解决实际问题,不合理需重新开始讨论.[师]应用一元一次方程解决实际问题的关键步骤是什么[生]根据题意,首先寻找“等量关系”同时,解出方程后应注意检验求出的值是不是方程的解,是否符合实际.[师]接下来,我们就用一元一次方程解决生活中一个献爱心的问题——“希望工程”义演.Ⅱ讲授新课[师]在我们的生活中,还有不少贫困地区的孩子因为贫穷而上不起学,也有不少有爱心的好人为了他们而献出自己的一片“爱心”下面我们就来看投影:“希望工程”义演.出示投影片(§)分析:售出的票包括成人票和学生票,所得票款包括成人票款和学生票款由第(1)问和第(2)问可知:票款=票数×价格/张因此上述问题存在两个等量关系.成人票数学生票数=总票数,①成人票款学生票款=总票款②解:(1)填写下表:由上表可知共得票款:600×5300×8=30002400=5400(元).(2)填写下表:由上表可知共卖出学生和成人票为:2500÷56400÷8=500800=1300(张).(3)解法一:设售出的学生票为张,填写下表:根据等量关系②,可列出方程:58(1000-)=6950解,得=350.1000-350=650(张)答:售出的成人票650张,学生票350张.解法二:设所得学生票款元,填写下表根据等量关系①可得869505y y =1000解,得=17501750÷5=3501000-350=650答:售出的学生票数为350张,成人票650张.讨论:从上述(3)的两种设未知数方法,同时根据自己的亲身体验,相互交流各自的意见.[生]我认为第二种方法比第一种方法复杂.[师]在以前,我们列方程时,通常找一个等量关系即可列出方程,为什么在这个题中寻找到了两个等量关系,它们各有何用途.[生]我们在填表的时候就可以看出:如果设售出的学生票数为张,根据等量关系①就可设成人票数为(1000-)张这时,等量关系②元,则根据等量关系②就可设成人票款为(6950-)元,此时,等量关系①就用来列方程.[生]我认为这个问题中有两个未知量:售出的学生票和成人票,可我们现在只设一个未知数,而另一个未知数就需要题意中的等量关系用含有第一个未知数的代数式来表示.[师]同学们的分析很好现在我们遇到的这个问题比前面的问题要复杂,含有两个未知量,而只设一个未知数表示一个量,另一个量就需用题中的等量关系,用含有第一个未知数的代数式来表示,而另一个等量关系则用来列方程.[师]在这个较为复杂的实际问题中,为了搞清楚各个量之间的关系,我们采用了一个非常清楚明了的方法——列表格希望同学们慢慢地学着用它来分析较复杂的问题.想一想:如果票价不变,那么售出1000张票所得的票款可能是6930元吗我们也列表来完成(由两个学生板演)解:可设售出的学生票为元,填写下表:根据题意,可得方程:58(1000-)=6930解,得=35632显然,=35632是不符合题意的因此如果票价不变,售出1000张票所得票款不可能是6930元.[师]因此,我们用方程这样的数学模型解决实际问题时,一定要注意检验方程的解是否符合实际.Ⅲ课堂练习、1课本P171解:单价为18元的本买了本,单价为10元的本买了(10-)本,列表如下:根据题意,得1810(10-)=172解,得=9.10-9=1答:单价为18元、10元的本各买9本、1本.Ⅳ课时小结这节课我们通过列表的方式分析实际问题中的等量关系,使题中的已知条件与未知条件的关系清晰明了同时我们还尝试着用多种方法去解决问题.Ⅴ课后作业1.课本P习题1712.到网上收集有关方程史的资料.Ⅵ活动与探究小张在商店中买了14瓶汽水,又知每3个空汽水瓶可换1瓶汽水,问小张最多能够喝到多少瓶汽水过程:乍看题目觉得甚为简单,有同学就认为是18瓶汽水,原因是14瓶水喝完后可换4瓶,故可喝18瓶那么4瓶喝完后呢应该是4瓶喝完后,总共还有6个空瓶可换2瓶汽水,总共可喝20瓶其实这还不是最多,最后2个空瓶虽不能换一瓶汽水,但我可以用“先借后还”的方法多喝一瓶汽水,即先借商店一瓶汽水喝完,还三个瓶,换一瓶汽水,再将那一瓶汽水还掉.结果:通过分析,我们会发现最后的14个空瓶,通过先借后还,实际总共可换七瓶汽水即平均2个空瓶换1瓶汽水.板书设计三、课时小结:(由学生先来完成)。
北师大版七年级上册数学5.5《应用一元一次方程——希望工程义演》教案

北师大版七年级上册数学5.5《应用一元一次方程——希望工程义演》教案一. 教材分析《应用一元一次方程——希望工程义演》这一节内容,主要让学生学会运用一元一次方程解决实际问题。
通过希望工程义演的问题情境,引导学生理解并掌握一元一次方程的解法及其应用。
教材通过具体的问题,让学生体会数学与生活的紧密联系,培养学生的数学应用能力。
二. 学情分析学生在学习了《方程》这一章的内容后,对一元一次方程的概念、解法已经有了初步的了解。
但部分学生可能对实际问题转化为数学方程还有一定的困难,因此在教学过程中,需要关注学生的这一情况,引导学生正确地将实际问题转化为数学方程。
三. 教学目标1.知识与技能:让学生掌握一元一次方程的解法,并能运用一元一次方程解决实际问题。
2.过程与方法:通过解决希望工程义演的问题,培养学生将实际问题转化为数学方程的能力,提高学生的数学应用能力。
3.情感态度与价值观:让学生感受数学与生活的紧密联系,培养学生的社会责任感。
四. 教学重难点1.重点:一元一次方程的解法及其应用。
2.难点:将实际问题转化为数学方程。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置具体的问题情境,引导学生独立思考、合作交流,培养学生的解决问题的能力。
六. 教学准备1.准备希望工程义演的相关背景材料和问题情境。
2.准备一元一次方程的解法教学课件。
七. 教学过程1.导入(5分钟)–向学生介绍希望工程义演的相关背景,激发学生的学习兴趣。
–提出问题:如何合理安排演出现金收入与支出,使希望工程受益最大?引出本节课的主题。
2.呈现(10分钟)–呈现希望工程义演的具体问题情境,引导学生观察、分析问题。
–提出问题:如何用数学方程来表示这个问题?让学生独立思考,尝试列出方程。
3.操练(10分钟)–引导学生讨论如何将实际问题转化为数学方程,展示不同的解题思路。
–分组进行练习,让学生动手解一元一次方程,体会解题过程。
4.巩固(5分钟)–对学生进行解答情况进行总结,指出解题的关键步骤。
5.4应用一元一次方程-“希望工程”义演(教案)

(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元一次方程的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对一元一次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
然而,我也观察到在小组讨论环节,有些学生较为内向,不太愿意表达自己的观点。我意识到需要进一步创造一个更加包容和鼓励的环境,让每个学生都有机会发表自己的看法。也许下次我可以尝试一些更互动的讨论形式,比如角色扮演或辩论,来激发这部分学生的积极性。
在解方程的步骤讲解中,我发现有些学生对于移项和合并同类项的运算规则掌握得不够牢固,这导致他们在解题时出现了一些错误。我打算在下一节课中,通过更多的例题和练习,来巩固这些基本技能。同时,我也计划设计一些更具挑战性的问题,以适应不同学生的学习需求,让他们在巩固基础的同时,也能得到适当的拓展。
-掌握一元一次方程在实际问题中的应用:本节课的核心是让学生学会将实际问题转化为数学问题,特别是运用一元一次方程来解决“希望工程”义演门票收入等类似问题。
-理解方程的建模过程:学生需要了解如何从现实情境中抽象出数学模型,包括如何设定未知数、如何根据问题情境建立方程。
-掌握一元一次方程的解法:学生需要熟练掌握一元一次方程的解法,包括移项、合并同类项、化简等基本技能。
3.培养学生的数据分析素养,使学生能够对实际问题进行数据整理和分析,提高数据处理能力;
4.培养学生的团队协作意识,通过小组讨论和合作,共同解决“希望工程”义演问题,提高沟通与协作能力。
本节课旨在让学生在学习一元一次方程应用的过程中,全面提升数学核心素养,为学生的终身发展奠定基础。
47希望工程义演_教案

序号:47课题:应用一元一次方程----“希望工程”义演备课人:路艳枝一、学习目标1、对同一问题设不同的未知数列出不同的方程,体会算法多样化2、归纳利用方程解决实际问题的一般步骤,进一步体会模型思想二、教学重、难点本课重点:用图表分析问题中的条件和结论,并找出等量关系,列出方程,解决实际问题。
本课难点:选择比较恰当的设未知数的方法。
三、教学方法本课以“希望工程”义演为例引入课题,通过学生自主探究,协作交流,教师点拨相结合的方式,引导学生借助列表的方法分析问题,体会用图表语言分析复杂问题表达思维方法的优点,从而抓住等量关系“部分量之和等于总量”展开教学活动,让学生经历抽象的符号变换应用等活动,展现运用方程解决实际问题的一般过程,因此,本节教材的处理策略是:展现问题情景——提出问题——分析数量关系和等量关系——列出方程,解方程——检验解的合理性。
四、教学过程本节课分4个环节:第一环节:创设情境,孕育新知。
第二环节:自主探究,获取新知。
第三环节:梳理反思,升华新知。
第四环节:回归实践,再用新知。
第一环节:创设情境,孕育新知。
引入新课:师:请同学们观看一组有关“希望工程”的图片,然后请同学们谈谈你的所见所感。
生:(说一说自己对有关“希望工程”的知识及观看图片的感想。
)师:讲解“希望工程”的作用和意义,引入课题。
希望工程是由中国青少年发展基金会于1989年10月发起并组织实施的一项社会公益事业。
它的宗旨:根据政府关于多渠道筹集教育经费的方针,从社会集资,建立希望工程基金,以民间救助方式,资助贫困地区失学儿童,继续学业,改善贫困地区的办学条件,促进贫困地区基础教育事业的发展。
希望工程的实施范围是:我国农村贫困地区,重点是国家、省级贫困县。
希望工程的目标是:改善办学条件,消除失学现象,配合政府完成普及九年制义务教育任务。
自1989年推出希望工程至今,10年来希望工程共救助失学儿童230万名,援建希望小学8000所,接受海内外捐款18亿元,影响遍及海内外,成为当今中国最著名、最具影响力的公益事业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 应用一元一次方程——“希望工程”义演【教学目标】
知识与技能
1.使学生学会列一元一次方程解有关“增长率”的应用题.
2.通过应用题教学使学生进一步使用代数中的方程去反映现实中的相等关系,体会方程方法的优越性.
过程与方法
1.根据具体问题的数量关系,形成方程的模型,初步培养学生利用方程的观点认识现实世界的意识和能力.
2.通过分组合作学习的活动使学生学会在活动中与他人合作,并能与他人交流思维的过程与结果.
情感、态度与价值观
通过由具体实例的分析、思考与合作学习的过程培养学生理论联系实际的辩证唯物主义思想以及善于分析问题、利用已学知识解决问题的良好学习习惯.
【教学重难点】
重点:正确分析应用题的题意,列出一元一次方程.
难点:正确列出一元一次方程.
【教学过程】
一、问题展示
师:同学们,这节课我们将学习什么呢?下面先一起来看这道题.
教师多媒体出示课件.
某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹得票款6950元.成人票与学生票各售出多少张?
二、例题讲解
师:上面的问题中包含哪些等量关系?
生1:售出的票包括成人票和学生票,因此有:成人票数+学生票数=1000张①
生2:所得的票款包括成人票款和学生票款,因此有:
成人票款+学生票款=6950元②
师:那么该怎么解决这个问题呢?
学生成人
票数/张x1000-x
票款/元5x8(1000-x)
所以有5x+8(1000-x)=6950,
解得x=350,所以售出成人票650张,学生票350张.
师:很好!同学们还有其他的方法吗?
+=1000,
解得y=1750,所以学生票数为=350,
所以成人票数为650张.
【例】某文艺团体为“希望工程”募捐义演,全价票为每张18元,学生享受半价.某
场演出共售出966张票,收入15480元,问这场演出共售出学生票多少张?
分析:题中涉及的数量有票数、票价、总价等,它们之间的相等关系有:
票数×票价=总票价;
学生的票价=×全价票的票价;
全价票张数+学生票张数=966;
全价票的总票价+学生票的总票价=15480.
解:设这场演出售出学生票x张,则售出全价票(966-x)张,根据题意,得(966-x)×
18+×18×x=15480.
解这个方程,得x=212.
检验:x=212满足方程,且符合题意.
答:这场演出共售出学生票212张.
从上面的例子我们可以看到,运用方程解决实际问题的一般步骤是:
1.审题:分析题意,找出题中的数量及其关系.
2.设元:选择一个适当的未知数用字母表示(例如x).
3.列方程:根据相等关系列出方程.
4.解方程:求出未知数的值.
5.检验:检查求得的值是否正确和符合实际情况,并写出答案.
三、巩固练习
某商店积压了100件某种商品,为使这批货物尽快脱手,该商店采取了如下销售方案,将价格提高到原来的2.5倍,再作3次降价处理:第1次降价30%,第2次又降价30%,第3次再
求:(1)第3次降价占原价的百分比是多少?
(2)该商品按新销售方法销售,相比原价全部卖完,哪一种方案更盈利?
学生独立解答,教师巡视,对有疑问的学生予以帮助.
四、课堂小结
师:同学们今天学习了什么内容?你有哪些收获?学生交流、回答,教师予以点评.。