晶圆封装可靠性实验项目

合集下载

电子封装中的可靠性问题

电子封装中的可靠性问题

电子封装中的可靠性问题电子器件是一个较复杂的系统,其封装过程的缺陷和失效也是比较复杂的。

因此,研究封装缺陷和失效需要对封装过程有一个系统性的了解,这样才能从多个角度去分析缺陷产生的原因。

封装的失效机理可以分为两类:过应力和磨损。

过应力失效往往是瞬时的、灾难性的;磨损失效是长期的累积损坏,往往首先表示为性能退化,接着才是器件失效。

失效的负载类型又可以分为机械、热、电气、辐射和化学负载等。

影响封装缺陷和失效的因素是多种多样的,材料成分和属性、封装设计、环境条件和工艺参数等都会有所影响。

确定影响因素和预防封装缺陷和失效的基本前提。

影响因素可以通过试验或者模拟仿真的方法来确定,一般多采用物理模型法和数值参数法。

对于较复杂的缺陷和失效机理,常常采用试差法确定关键的影响因素,但是这个方法需要较长的试验时间和设备修正,效率低、花费高。

在分析失效机理的过程中,采用鱼骨图(因果图)展示影响因素是行业通用的方法。

鱼骨图可以说明复杂的原因及影响因素和封装缺陷之间的关系,也可以区分多种原因并将其分门别类。

生产应用中,有一类鱼骨图被称为6Ms:从机器、方法、材料、量度、人力和自然力等六个维度分析影响因素。

这一张图所示的是展示塑封芯片分层原因的鱼骨图,从设计、工艺、环境和材料四个方面进行了分析。

通过鱼骨图,清晰地展现了所有的影响因素,为失效分析奠定了良好基础。

引发失效的负载类型01机械载荷包括物理冲击、振动、填充颗粒在硅芯片上施加的应力(如收缩应力)和惯性力(如宇宙飞船的巨大加速度)等。

材料对这些载荷的响应可能表现为弹性形变、塑性形变、翘曲、脆性或柔性断裂、界面分层、疲劳裂缝产生和扩展、蠕变以及蠕变开裂等等。

02热载荷包括芯片黏结剂固化时的高温、引线键合前的预加热、成型工艺、后固化、邻近元器件的再加工、浸焊、气相焊接和回流焊接等等。

外部热载荷会使材料因热膨胀而发生尺寸变化,同时也会改变蠕变速率等物理属性。

如发生热膨胀系数失配(CTE失配)进而引发局部应力,并最终导致封装结构失效。

半导体可靠性实验项目

半导体可靠性实验项目

半导体可靠性实验项目概述半导体可靠性实验项目是一个重要的研究领域,旨在评估和验证半导体器件在长时间运行和不同环境条件下的可靠性。

通过该实验项目,我们可以获取半导体器件的寿命、故障率以及在各种应力条件下的性能指标。

这些数据对于半导体产品的生产和使用具有重要意义,可以帮助制造商改进产品设计和制造工艺,提高产品的质量和可靠性。

实验目的该实验项目的主要目的是通过测试和分析来评估半导体器件的可靠性,具体目标包括:1. 了解半导体器件的寿命特性;2. 评估半导体器件在不同环境条件下的可靠性;3. 分析半导体器件的故障率以及故障模式。

实验内容半导体可靠性实验项目的内容主要包括以下几个方面: 1.试验准备:确定实验所需的半导体器件和测试设备,并准备相关的试验方案和流程。

2. 加速寿命试验:将半导体器件放置在高温、高湿、高电压等应力环境下进行长时间运行,记录器件的运行时间和性能变化。

3. 温度循环试验:将半导体器件在高温和低温之间进行循环变温,观察其在温度变化过程中的性能表现和故障情况。

4. 电压应力试验:在给定电压条件下,对半导体器件进行长时间稳定运行,记录器件的故障率和性能变化。

5. 湿度应力试验:将半导体器件置于高湿度环境中,观察其性能变化和故障情况。

6. 试验数据分析:对实验过程中获得的数据进行统计和分析,绘制可靠性曲线、寿命曲线等,评估半导体器件的可靠性指标。

实验步骤1.确定要测试的半导体器件的型号和数量,并选取适当的测试设备。

2.按照实验方案和流程进行试验准备工作,包括清洁和校准设备,搭建测试电路,设置参数等。

3.进行加速寿命试验,将半导体器件置于高温、高湿、高电压等应力环境下运行,记录器件的运行时间和性能变化。

4.进行温度循环试验,将半导体器件在高温和低温之间进行循环变温,观察其性能表现和故障情况。

5.进行电压应力试验,对半导体器件进行长时间稳定运行,记录器件的故障率和性能变化。

6.进行湿度应力试验,将半导体器件置于高湿度环境中,观察其性能变化和故障情况。

晶圆级封装: 热机械失效模式和挑战及整改建议

晶圆级封装: 热机械失效模式和挑战及整改建议

晶圆级封装: 热机械失效模式和挑战及整改建议2022/4/23WLCSP(Wafer Level Chip Scale Packaging,晶圆级封装)的设计意图是降低芯片制造成本,实现引脚数量少且性能出色的芯片。

晶圆级封装方案是直接将裸片直接焊接在主板上。

本文旨在于介绍这种新封装技术的特异性,探讨最常见的热机械失效问题,并提出相应的控制方案和改进方法。

晶圆级封装技术虽然有优势,但是存在特殊的热机械失效问题。

很多实验研究发现,钝化层或底层破裂、湿气渗透和/或裸片边缘离层是晶圆级封装常见的热机械失效模式。

此外,裸片边缘是一个特别敏感的区域,我们必须给予更多的关注。

事实上,扇入型封装裸片是暴露于空气中的(裸片周围没有模压复合物覆盖),容易被化学物质污染或发生破裂现象。

所涉及的原因很多,例如晶圆切割工序未经优化,密封环结构缺陷(密封环是指裸片四周的金属花纹,起到机械和化学防护作用)。

此外,由于焊球非常靠近钝化层,焊球工序与线路后端栈可能会相互影响。

本文采用FEM(Finite Element Method,有限元法)方法分析应力,重点放在扇入型封装上。

我们给出了典型的应力区域。

为降低机械失效的风险,我们还简要介绍了晶圆级封装的特异性。

在描述完机械失效后,我们还对裸片和钝化边缘进行了全面的分析。

分析结果显示,钝化边缘产生最大应力,这对沉积策略(直接或锥体沉积方法)和边缘位置提出了要求。

此外,研究结果还显示,必须降低残余应力,并提高BEoL(线路后端)的钝化层厚度。

1. 前言和背景晶圆级封装的设计意图是降低芯片制造成本,实现引脚数量少且性能出色的芯片。

晶圆级封装方案是直接将裸片直接焊接在主板上。

双层电介质、RDL(ReDistribution Layer, 重新布线层)、UBM (可焊接薄层,用于焊球底部金属化)和焊球都位于标准BEoL栈之上。

因此,这些层级扩展了传统晶片制程(多层沉积薄膜配合光刻工艺)范围。

MEMS封装可靠性测试规范

MEMS封装可靠性测试规范

MEMS封装可靠性测试规范MEMS 封装可靠性测试规范华中科技大学微系统中心MEMS 封装可靠性测试规范1. 引言1.1 MEMS 概念微光机电系统(Micro ElectroMechanical Systems—MEMS),以下简称 MEMS。

MEMS 是融合了硅微加工、LIGA(光刻、电铸和塑铸)和精密机械加工等多种微加工技术,并应用现代信息技术构成的微型系统。

它在微电子技术的基础上发展起来的,但又区别于微电子技术。

它包括感知外界信息 (力、热、光、磁、电、声等)的传感器和控制对象的执行器,以及进行信号处理和控制的电路。

MEMS 器件和传统的机器相比,具有体积小、重量轻、耗能低、温升小、工作速度快、成本低、功能强、性能好等特点。

MEMS 封装可靠性测试规范所含范围 1.2本可靠性测试规范涉及到在 MEMS 封装工艺中的贴片(包括倒装焊、载带自动焊)、引线键合、封盖等几个重要工艺的可靠性测试。

每步工艺的测试项目可根据具体器件要求选用。

2. 贴片工艺测试2.1 贴片工艺测试要求贴片工艺是将芯片用胶接或焊接的方式连接到基座上的工艺过程。

胶接或焊接的质量要受到加工环境与工作环境的影响,因此要对胶接或焊接的质量与可靠性进行测试。

胶接或焊接处表面应均匀连接,无气孔,不起皮,无裂纹,内部无空洞,并能承受一定的疲劳强度。

在热循环、热冲击、机械冲击、振动、恒定加速度等环境工作时,芯片与基座应连接牢固,不能产生过大的热应力。

芯片与基座无裂纹。

2.2 贴片工艺测试项目测试项目测试说明失效判据外部目检外观缺陷 50 倍放大镜检查芯片剪切强度大于最小剪切强度加力方向应与衬底表面方向平行芯片与基座的附拉力方向应与衬底表面方向垂直大于最小抗拉力着强度芯片与基座连接沿横截面贴光栅,用云纹干涉仪来测应变大于 0.1, 其应力应变场处的应力应变检测焊点或胶接处内部的空隙 X 射线照相空隙长度和宽度小于接触面积的 10, 芯片脱离、有裂纹高温高湿 85?、85,RH、1000h芯片脱离、有裂纹恒定加速度一般 30000g一般 1500g、0.5ms 芯片脱离、有裂纹机械冲击一般-65?,150?、10 次温度循环芯片脱离、有裂纹一般-40?,100?、5min/10sec 热冲击芯片脱离、有裂纹一般 20,2000Hz,20g 芯片脱离、有裂纹扫频振动沿芯片表面法线方向无冲击地拉芯片小于最小外加应力倒装片拉脱试验3.1 引线键合工艺测试要求引线键合工艺是用金或铝线将芯片上的信号引出到封装外壳的管脚上的工艺过程。

晶圆级封装(WLP)方案(一)

晶圆级封装(WLP)方案(一)

晶圆级封装(WLP)方案一、实施背景随着微电子产业的快速发展,封装技术正面临着严峻的挑战。

传统的封装技术由于尺寸大、电性能和热性能较差等问题,已经难以满足高性能集成电路的封装需求。

而晶圆级封装(WLP)技术的出现,为产业结构的改革提供了新的解决方案。

二、工作原理晶圆级封装(WLP)是一种将集成电路直接封装在晶圆片上的技术。

它通过在晶圆片上制造出多个集成电路,然后通过切割和封装,将这些集成电路分别封装在独立的封装体中。

具体来说,WLP技术首先在晶圆片上制造出多个集成电路,这些集成电路可以是数字电路、模拟电路、混合信号电路等。

然后,使用切割机将晶圆片切割成单个集成电路,再将这些集成电路分别封装在独立的封装体中。

三、实施计划步骤1.设备采购:需要采购制造集成电路所需的设备,如光刻机、刻蚀机、薄膜沉积设备等。

2.工艺研发:需要研发适合WLP技术的制造工艺,包括光刻工艺、刻蚀工艺、薄膜沉积工艺等。

3.样品制作:在研发阶段,需要制作样品以验证工艺的可行性。

4.测试与验证:对制作的样品进行测试和验证,确保其性能符合要求。

5.批量生产:当样品测试通过后,可以开始批量生产。

四、适用范围WLP技术适用于各种高性能集成电路的封装,如CPU、GPU、FPGA等。

它具有以下优点:1.体积小:由于WLP技术将集成电路直接封装在晶圆片上,因此可以大大减小封装体积。

2.电性能和热性能优异:WLP技术可以提供更好的电性能和热性能,从而提高集成电路的性能和可靠性。

3.制造成本低:由于WLP技术可以在晶圆片上制造多个集成电路,因此可以分摊制造成本,降低单个集成电路的制造成本。

4.可扩展性强:WLP技术可以轻松扩展到更大的晶圆尺寸和更高的产量。

五、创新要点1.制造工艺的创新:WLP技术需要研发适合其特点的制造工艺,包括光刻工艺、刻蚀工艺、薄膜沉积工艺等。

2.封装技术的创新:WLP技术需要开发新的封装技术,以实现集成电路的高性能、小型化和可靠性。

晶圆测试全流程详解

晶圆测试全流程详解

晶圆测试全流程详解In the semiconductor industry, wafer testing, also known as wafer probing or crystal wafer testing, is a critical step in the production process. 在半导体行业,晶圆测试,也称为晶圆探针测试或晶圆测试,是生产过程中至关重要的一步。

Wafer testing is the process of testing the integrated circuits (ICs) on a semiconductor wafer to ensure they function correctly before they are diced and packaged into individual ICs. 晶圆测试是在晶圆上测试集成电路(IC)以确保它们在被切割成单个IC 并封装之前能够正确运行的过程。

This thorough testing is essential to identify any defects or faults in the ICs before they are assembled into electronic devices. 这种彻底的测试是为了在将IC组装成电子设备之前识别出IC中的任何缺陷或故障是至关重要的。

A wafer testing process typically involves several key steps, including wafer loading, prober testing, electrical testing, and sorting. 晶圆测试过程通常包括几个关键步骤,包括晶圆装载、探针测试、电子测试和分选。

The process begins with loading the semiconductor wafers onto a prober, which is a machine designed to make physical contact with the integrated circuits on the wafer. 这个过程始于将半导体晶圆装载到一台探测机上,探测机是一种专门设计用来与晶圆上的集成电路进行物理接触的机器。

封装测试流程

封装测试流程

封装测试流程
封装测试流程,通常包括以下几个主要步骤:
1. 晶圆准备。

晶圆经过一系列处理,包括表面贴膜、背面研磨和抛光、背面贴膜、表面去膜、烘烤等。

2. 切割和检查。

晶圆被切割成小的晶片(Die),并进行检查,以去除残次品。

3. 芯片贴装。

将切割好的晶片用胶水贴装到相应的基板(引线框架)上。

4. 键合。

使用超细的金属(如金、锡、铜、铝)导线或者导电性树脂将晶片的接合焊盘(Bond Pad)连接到基板的相应引脚(Lead),构成所要求的电路。

5. 塑封。

用塑料外壳将独立的晶片加以封装保护,以防止外部物理、化学等环境因素的影响。

6. 后固化。

对塑封后的产品进行后固化处理,以增强其稳定性和可靠性。

7. 去飞边和电镀。

去除塑封后多余的边角料,并对引脚进行电镀处理,提高其导电性能和可焊接性。

8. 切片成型和检查。

对产品进行切片成型,并进行残次品检查。

9. 终测。

对封装完成后的产品进行功能和性能测试,以确保其满足设计要求。

10. 包装出货。

通过一系列包装和质量控制检查后,产品准备出货。

这个流程涵盖了从晶圆的准备到最终产品的包装和出货的整个过程,确保了半导体器件的质量和性能。

可靠性实验项目参考(车规级AEC-Q100)

可靠性实验项目参考(车规级AEC-Q100)
参考标准 JESD22-A108 AEC-Q100-008
AEC-Q100-005
参考标准 AEC-Q100-001
MIL-STD 883 Method2011
JESD22-B102 JESD22-B100 JESD22-B108
AEC-Q100-010
JESD22-B105
参考标准 / / / / /
接收判据
C1 邦线剪切(WBS) C2 邦线拉力(WBP)
最少5只器件的30个键
Cpk>1.67
合丝
Cpk>1.67或温度循环后0 缺陷(#A4)
C3 可焊性(SD)
15
1
>95%引脚覆盖
C4 物理尺寸(PD)
10
3
Cpk>1.67
C5 锡球剪切(SBS)
C6 引线完整性(LI)
组别
项目名称
D1 电迁移(EM)
30
3
/
/
/
/
/
/
1
1
10
3
3
1
all
all
F组-缺陷筛选测试分析
样品数/批 批数
/
/
/
/
G组-腔封装完整性测试
样品数/批 批数
15
1
15
1
15
1
15
1
5
1
5
1
5
1
5
1
Cpk>1.67 0 / 0 / 0 / /
接收判据 / /
接收判据 0 0 0 0 0 0 0 0
目)
参考标准 J-STD-020 JESD22-A113 JESD22-A101 JESD22-A110 JESD22-A102 JESD22-A118 JESD22-A101 JESD22-A104 JESD22-A105 JESD22-A103
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可靠性试验项目 项目 参考标准 检测目的
预处理PRE JESD22-A113F
模拟贴装产品在运输、贮存直到回流焊上整机受
到温度、湿度等环境变化的影响。

此试验应在可
靠性试验之前进行,仅代表产品的封装等级。

湿气敏感等级试验MSL IPC/JEDEC
J-STD-020
确定那些由湿气所诱发应力敏感的非气密固态
表面贴装元器件的分类, 以便对其进行正确的封
装, 储存和处理, 以防回流焊和维修时损伤元器
件。

稳态湿热THT GB/T2423.3
JESD22-A101
评定产品经长时间施加湿度应力和温度应力作
用的能力。

温度循环TCT JESD22-A104
GB/T 2423.22
评定产品封装承受极端高温和极端低温的能力,
以及极端高温和极端低温交替变化的影响。

高温试验HTST GB/T 2423.2
JESD22-A103
评定产品承受长时间高温应力作用的能力。

低温试验LTST GB/T 2423.1
JESD22-A119
评定产品承受长时间低温应力作用的能力。

高压蒸煮PCT JESD22-A102
评定产品封装的抗潮湿能力。

高速老化寿命试验(u)HAST JESD22-A110
JESD22-A118
评定非气密性封装在(无)偏置条件下的抗潮湿能
力。

回流焊Reflow JESD22-A113
评定产品在回流焊接过程中所产生之热阻力及
效应。

电耐久BURN-IN GB/T 4587
评定器件经长时间施加电应力(电压、电流)和
温度应力(产品因负载造成的温升)作用的能力。

高温反偏HTRB GB/T 4587
JESD22-A108
评定器件承受长时间电应力(电压)和温度应力
作用的能力。

耐焊接热SHT GB/T 2423.28
JESD22-B106
评定产品在其焊接时的耐热能力。

可焊性Solderability GB/T 2423.28
EIA/IPC/JEDEC
J-STD-002
评定产品的可焊性能力。

锡须生长
Tin Whisker Test JESD201
JESD22-A121
评定产品承受长时间施加温湿度应力作用下锡
须生长情况。

电性测试Electrical Test GB/T 4589.1
GB/T 4587
GB/T 4586
GB/T 4023
GB/T 6571
评定产品电性能力。

主要针对分立器件产品测
试。

相关文档
最新文档