表上作业法
表上作业法

运输问题的求解方法——表上作业法产销平衡表与单位运价表表上作业法一、产销平衡表与单位运价表运输问题还可用产销平衡表与单位运价表进行描述。
假设某种物资有m个生产地点Ai(i=1,2,…,m),其产量(供应量)分别为ai(i=1,2,…,m),有n个销地Bj(j=1,2,…,n),其销量(需求量)分别为bj(j=1,2,…,n)。
从Ai到Bj运输单位物资的运价(单价)为Cij。
将这些数据汇总可以得到产销平衡表和单位运价表5.3.1。
表5.3.1 产销平衡表与单位运价表二、表上作业法运输这一类特殊问题可用更加简便的求解方法———表上作业法求解,实质仍是单纯形法,步骤如下:(1)确定初始调运方案,即找出初始基可行解,在产销平衡表上给出m+n-1个数字格。
(2)求非基变量的检验数,即在表上计算空格的检验数,判别是否达到最优解:是否存在负的检验数?如果存在负的检验数,则初始调运方案不是最优方案;如果所有检验数都非负,则初始调运方案已经是最优方案了。
如果已经得到最优调运方案,则停止计算,否则转入下一步。
(3)确定换入变量和换出变量,找出新的调运方案(新的基可行解),即在表上用闭回路法进行调整。
(4)重复(1)~(2),直到求出最优解为止。
(一)确定初始可行基的方法⏹最小元素法从单位运价表中最小的运价开始确定供销关系,然后考虑运价次小的,一直到给出初始基可行解为止。
⏹伏格尔法采用最小元素法可能造成其他处的更多浪费,伏格尔法考虑最小运费与次小运费之间的差额,差额越大,就按次小运费调运。
(二)最优解的判别计算非基变量(空格)的检验数,当所有的检验数时,为最优解。
求空格检验数的方法有:⏹闭回路法以某一空格为起点找一条闭回路,用水平或垂直线向前划,每碰到一数字格转900后,继续前进,直到回到起始空格为止。
闭回路如图5.3.1的(a)、(b)、(c)等所示。
从每一个空格出发一定存在并且可以找到唯一的闭回路。
因为,m+n-1个数字格(基变量)对应的系数向量是一个基,任一空格(非基变量)对应的系数向量是这个基的线性组合。
《表上作业法》

《表上作业法》《表上作业法》是一种求解指派问题的优化算法。
这种算法通过在表格中进行标记和计算,找出最优解或可行解,使得分配问题得到最优质的解决方案。
以下是关于《表上作业法》的详细介绍。
1.背景和目的《表上作业法》是一种针对指派问题的优化算法,旨在寻找最优解或可行解,使得分配问题得到最优质的解决方案。
它是一种常见的数学优化方法,适用于各种类型的分配问题,如任务分配、资源分配和决策制定等。
通过使用《表上作业法》,可以在给定的一组选项中,为每个任务或资源选择最佳的分配方案,以达到最优的效果或目标。
2.方法和步骤《表上作业法》的核心思想是将指派问题转化为表格形式,通过在表格中进行标记和计算,找出最优解或可行解。
《表上作业法》可以在一个给定的任务集合中选择一个任务来完成,使得选择的每个任务的综合评估值最大。
它包括以下步骤:(1)定义问题:首先,要明确指派问题的具体目标、任务集合、每个任务的评估值和约束条件等。
(2)建立表格:根据指派问题的任务集合和评估值,建立一个合适的表格。
表格的行代表各个任务,列代表可用的资源或选择方案。
在表格中,每个单元格表示某个任务在某个资源或选择方案下的评估值。
(3)填表:根据问题的约束条件和每个任务的评估值,填写表格中的各个单元格。
填表过程中要确保表格的可行性,即满足所有约束条件。
(4)寻找最优解:在填好表格后,通过一定的搜索策略,找出使得综合评估值最大的任务分配方案。
(5)输出结果:输出找到的最优解或可行解,分析每个任务被分配的情况以及对应的评估值。
3.应用和优势《表上作业法》适用于各种类型的指派问题,如任务分配、资源分配和决策制定等。
它具有以下优势:(1)直观易懂:《表上作业法》通过表格形式展示问题,使得问题更加直观易懂。
(2)容易实现:《表上作业法》算法流程清晰明了,容易实现,不需要太多的编程技巧。
(3)可扩展性强:《表上作业法》可以扩展到处理大型复杂的问题,可以有效地处理大规模问题。
管理运筹学 第七章 运输问题之表上作业法

最优解的判断与调整
最优解的判断
比较目标函数值,如果当前基础可行解 的目标函数值最优,则该解为最优解。
VS
最优解的调整
如果当前基础可行解不是最优解,需要对 其进行调整。通过比较不同运输路线的运 输费用,对运输量进行优化分配,以降低 总运输费用。
最优解的验证与
要点一
最优解的验证
对求得的最优解进行检验,确保其满足所有约束条件且目 标函数值最优。
01
将智能优化算法(如遗传算法、模拟退火算法等)与表上作业
法相结合,以提高求解效率和精度。
发展混合算法
02
结合多种算法的优势,发展混合算法以处理更复杂的运输问题。
拓展应用范围
03
在保持简单易行的基础上,拓展表上作业法的应用范围,使其
能够处理更多类型的运筹问题。
THANKS FOR WATCHING
果达到最优解,则确定最优解;如果未达到最优解,则确定次优解。
表上作业法的应用范围
总结词
表上作业法适用于解决供销平衡的运输问题,即供应量和需求量相等的情况。
详细描述
表上作业法适用于解决供销平衡的运输问题,即供应量和需求量相等的情况。在这种情况下,可以通过在运输表 格上填入数字来求解最小运输成本。此外,表上作业法还可以用于解决其他类型的线性规划问题,如资源分配问 题、生产计划问题等。
03 表上作业法的求解过程
初始基础可行解的求解
确定初始基础可行解
根据已知的发货地和收货地的供需关系,以及运输能力限制,通 过试算和调整,求得初始的基础可行解。
初始解的检验
检查初始解是否满足非负约束条件,即所有出发地到收货地的运输 量不能为负数。
初始解的调整
如果初始解不满足非负约束条件,需要对运输量进行调整,直到满 足所有约束条件。
表上作业法的退化解

表上作业法的退化解标题:解析表上作业法的退化现象及其应对策略引言:表上作业法作为一种常见的学习方法,曾被广泛应用于学生课外学习和自我管理。
然而,随着社交媒体和便捷技术的普及,越来越多的学生表现出了对表上作业法退化的现象。
本文将从深度和广度的角度,全面评估表上作业法的退化现象,并提出有效的应对策略。
一、表上作业法的退化现象1. 表上作业法概述1.1 表上作业法的基本原理1.2 表上作业法的优点和适用情境2. 表上作业法退化现象的定义与表现2.1 学生对表上作业法的过度依赖2.2 学生对表上作业法的机械应用2.3 学生对表上作业法的误解与误用二、表上作业法退化的原因分析1. 社交媒体的影响1.1 社交媒体对学生学习动力的影响1.2 社交媒体对学生专注力和注意力的削弱2. 便捷技术的冲击2.1 便捷技术对学生时间管理的影响2.2 便捷技术对学习深度和思考能力的影响三、解决表上作业法退化现象的策略1. 培养学生的问题意识和批判思维能力1.1 激发学生对知识的主动思考和提问1.2 培养学生对信息的筛选和评估能力2. 借助辅助工具提升学习效果2.1 利用科技工具辅助学生的时间管理和学习计划2.2 探索创新工具和方法,使学习更有趣和高效结论:表上作业法的退化现象在当今社交媒体和便捷技术的背景下变得更加普遍。
学生对表上作业法的过度依赖、机械应用、误解与误用,主要源于社交媒体和便捷技术对学习动力、注意力、时间管理以及思考能力的消耗和冲击。
为了有效应对这一现象,学生应培养问题意识和批判思维能力,通过提高对知识的主动思考和自主学习,避免只停留在表面应用的层面。
适当借助辅助工具和创新方法,结合科技的力量提升学习效果,可以帮助缓解表上作业法退化带来的问题。
个人观点和理解:在我看来,表上作业法的退化现象不仅仅是学生个体的问题,更是当下教育环境和文化的共同挑战。
学生在接触到大量信息的应注重提升自身的批判思维和问题解决能力,以便能够更加深入地理解和应用所学知识。
表上作业法

第三章 运输问题的解法运输问题是一类特殊的线性规划问题,最早是从物质调运工作中提出的,后来又有许多其它问题也归结到这一类问题中。
正是由于它的特殊结构,我们不是采用线性规划的单纯方法求解,而是根据单纯形方法的基本原理结合运输问题的具体特性须用表上作业的方法求解。
§1 运输问题的数学模型及其特性1.1 运输问题的数学模型设有 个地点(称为产地或发地) 的某种物资调至 个地点(称为销地或收地),各个发点需要调出的物资量分别为个单位,各个收点需要调进的物资量分别为 个单位。
已知每个发点到每个收点的物资每单位运价为 ,现问如何调运,才能使总的运费最小。
我们把它列在一张表上(称为运价表)。
设 表示从产地运往销地的运价( =1,2,…, ; =1,2,…, )。
表3-1如果(总发量)(总收量),我们有如下线性规划问题:m mA A A ,,,21 n nB B B ,,,21 ma a a ,,,21 nb b b ,,,21 iA jB ijc ijx iA jB i m jn(3.1)(3.1)式称为产销平衡运输问题的数学模型。
当(总发量)(总收量)时。
即当产大于销()时,其数学模型为(3.2)当销大于产()时,其数学模型为(3.3)因为产销不平衡的运输问题可以转化为产销平衡的运输问题。
所以我们先讨论产销平衡的运输问题的求解。
运输问题有个未知量,个约束方程。
例如当≈40,=70时(3.1)式就有2800个未知量,110个方程,若用前面的单纯形法求解,计算工作量是相当大的。
我们必须寻找特殊解法。
1.2 运输问题的特性∑∑===m i nj ijij x c z 11min ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≥====∑∑==),,2,1;,2,1(0),,2,1(),,2,1(11n j m i x n j b x m I a x ij j mi ij i nj ij ∑∑==≠nj jm i i ba 11∑∑==>nj jm i i ba 11∑∑===mi nj ijij x c z 11min ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≥===≤∑∑==),,2,1;,2,1(0),,2,1(),,2,1(11n j m i x n j b x m I a x ij j mi ij i nj ij ∑∑==<nj jm i i ba 11∑∑===m i nj ijij x c z 11min ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≥=≤==∑∑==),,2,1;,2,1(0),,2,1(),,2,1(11n j m i x n j b x m I a x ij j mi ij i nj ij mn n m +m n由于运输问题也是线性规划问题,根据线性规划的一般原理,如果它的最优解存在,一定可以在基可行解中找到。
运筹学。 表上作业法

销地 产地
B1
B2
B3 4+1
B4 3-1 +1 3
产量 7 4 9
A1 A2 A3 3 6
1-1
销量
销地 产地
3
B1 3
6
B2
5
B3
6
B4 产量
调整后的新调运方案如下表:
A1
A2 A3 销量 3 6 6
5
2
1 3
7
4 9
20
5
6
对调整后的调运方案再进行最优性检验
销地 产地
B1
3 (0) 1 (0) 7
的对偶变量为u1,u2,…, um;v1,v2,…,vn
ui v j cij s.t . ui , v j 无 约 束 决策变量 xij 的检验数
ij cij C B B 1 Pij
cij YPij cij ( u1 , , um , v1 , , v n ) Pij cij ( ui v j )
§2 表上作业法
• 表上作业法实质是单纯形法。可归纳为: • (1) 找出初始基可行解。即在(m×n)产销平衡表 上用西北角法或最小元素法或Vogel法给出 m+n-1 个数字,称为数字格。它们就是初始基变量的 取值。 • (2) 求各非基变量的检验数,即在表上计算空格 的检验数,判别是否达到最优解。如已是最优 解,则停止计算,否则转到下一步。 • (3) 确定换入变量和换出变量,找出新的基可行 解。在表上用闭回路法调整。 • (4) 重复(2),(3)直到得到最优解为止。 1
例3-1 某公司经销甲产品。它下设三个加工
厂。每日的产量分别是:A1为7吨,A2为4吨, A3为9吨。该公司把这些产品分别运往四个销 售点。各销售点每日销量为:B1为3吨,B2为6 吨,B3为5吨,B4为6吨。已知从各工厂到各销 售点的单位产品的运价为表3-3所示。问该公 司应如何调运产品,在满足各销点的需要量的
用表上作业法求解指派问题的方法
用表上作业法求解指派问题的方法指派问题是一类经典的优化问题,其目标是找到最佳的任务分配方案,使得总成本或总利益最小或最大化。
其中,指派问题的目标是将一系列任务分配给一组人员或资源,使得总成本最小化。
表上作业法(Hungarian algorithm)是解决指派问题的一种有效方法。
它的基本思想是利用矩阵的行和列的减法和加法运算,在保证每行每列至多只有一个0的条件下,找到最优的任务分配方案。
具体来说,表上作业法的步骤如下:1. 创建一个n x n的矩阵,其中n表示任务和人员或资源的数量。
矩阵的每个元素表示将某个任务分配给某个人员或资源的成本或利益。
2. 对矩阵进行行减法和列减法,使得每行和每列至少有一个0。
行减法和列减法的目的是找到一个初始解。
3. 在矩阵中找到一个0,标记该0为“*”。
如果该0位于独立的行或列中,则找到最优解,算法结束。
4. 如果该0位于非独立的行或列中,找到与该0同行或同列的其他0,并标记为“*”。
然后,以标记的0为新的起点,重复步骤3和4,直到找到最优解或无法找到更多的0。
5. 如果无法找到更多的0,则进行列减法和行加法,找到一个最小的非标记元素,并将其减去该行的最小非标记元素。
然后,将矩阵中所有的标记元素去除,回到步骤3。
通过重复执行步骤3至步骤5,直到找到最优解为止。
最优解是指在保证每行和每列至多只有一个0的条件下,使得总成本最小化或总利益最大化的任务分配方案。
表上作业法是解决指派问题的一种经典算法,其时间复杂度为O(n^3),能够快速找到最优解。
因此,它在实际应用中被广泛使用,如任务分配、人员调度、作业调度等领域。
表上作业法添0
表上作业法添0(实用版)目录1.表上作业法的概念2.表上作业法的应用3.表上作业法添 0 的规则4.表上作业法添 0 的实际应用案例5.表上作业法添 0 的优点与局限性正文一、表上作业法的概念表上作业法是一种基于数学表格进行计算和解决问题的方法,它将问题分解成若干个简单的步骤,通过表格的形式进行计算,从而得出最终结果。
这种方法在中小学数学教学中被广泛应用,有助于培养学生的逻辑思维能力和计算能力。
二、表上作业法的应用表上作业法在数学问题求解中有着广泛的应用,例如:解方程、求和、求积、比较大小等。
通过表上作业法,学生可以将复杂的问题分解成简单的步骤,逐步求解,从而降低问题的难度。
三、表上作业法添 0 的规则在表上作业法中,有一种常见的技巧叫做添 0 法。
具体规则如下:1.在乘法表格中,某一行的数字都乘以一个相同的数,可以在该行下方添 0,以保持计算的平衡。
2.在加法表格中,某一列的数字都加上一个相同的数,可以在该列左侧添 0,以保持计算的平衡。
四、表上作业法添 0 的实际应用案例例如,求解以下方程:3x + 2 = 11我们可以使用表上作业法添 0 的方法,将方程转化为:3x + 0 = 11 - 23x = 9然后,将等式两边同时除以 3,得到:x = 3五、表上作业法添 0 的优点与局限性表上作业法添 0 的优点在于,它可以将复杂的问题分解成简单的步骤,降低问题的难度,有助于培养学生的逻辑思维能力和计算能力。
然而,这种方法也有局限性,对于一些复杂的问题,可能需要运用其他更高级的数学方法进行求解。
总之,表上作业法添 0 是一种实用的数学技巧,对于提高学生的计算能力和解决实际问题具有积极的意义。
表上作业法
精品课程《运筹学》
.
一、初始基本可行解的确定
根据上面的讨论,要求得运输问 题的初始基本可行解,必须保证找 到 m + n – 1 个不构成闭回路的基 变量。
一般的方法步骤如下:
精品课程《运筹学》
.
(1)在运输问题求解作业数据表中任选一个单 元格 xij ( Ai 行 Bj 列交叉位置上的格),令
mn
考虑 i=1si >j=1dj 的运输问题,得到的数学模 型为
精品课程《运筹学》
.
min
mn
f = cij xij
i=1 j=1
n
s.t. xij si i = 1,2,…,m
j=1
m
xij =dj j = 1,2,…,n
i=1
xij≥0(i=1,2,…,m;j=1,2,…,n)
精品课程《运筹学》
(3)若 ai = 0,则划去对应的行(已经把拥有 的量全部运走),若 bj = 0 则划去对应的 列(已经把需要的量全部运来),且每次 只划去一行或一列(即每次要去掉且只去 掉一个约束);
精品课程《运筹学》
.
(4)当最终的运输量选定时,其所在行、列 同时满足,此时要同时划去一行和一列。 这样,运输平衡表中所有的行与列均被划 去,则得到了一个初始基本可行解。
x32 = 6, x34 = 3, 其余 xij = 0 ;
最优值:
精品课程f《*运=筹3学×》5+10×2+1×3+.8×1+4×6+5×3 = 85
四、产销不平衡问题的处理
在实际中遇到的运输问题常常不是产销
平衡的,而是下列的一般运输问题模型
min
mn
f
土石方调配_表上作业法
土石方调配--表上作业法一、土方调配原理土方调配就是场地平整施工设计得一个重要内容。
土方调配得目得就是在使土方总运输量最小或土方运输成本最小得条件下,确定填挖方区土方得调配方向与数量,从而达到缩短工期与降低成本得目得。
(一)土方调配区得划分,平均运距与土方施工单价得确定1、调配区得划分原则进行土方调配时,首先要划分调配区。
划分调配区应注意下列几点:(1)调配区得划分应该与工程建(构)筑物得平面位置相协调,并考虑它们得开工顺序、工程得分期施工顺序;(2)调配区得大小应该满足土方施工主导机械(铲运机、挖土机等)得技术要求;(3)调配区得范围应该与土方工程量计算用得方格网协调,通常可由若干方格组成一个调配区;(4)当土方运距较大或场地范围内土方不平衡时,可根据附近地形,考虑就近取土或就近弃土,这时一个取土区或弃土区都可作为一个独立得调配区。
2、平均运距得确定调配区得大小与位置确定之后,便可计算各填、挖方调配区之间得平均运距。
当用铲运机或推土机平土时,挖土调配区与填方调配区土方重心之间得距离,通常就就是该填、挖方调配区之间得平均运距。
当填、挖方调配区之伺距离较远,采用汽车、自行式铲运机或其她运土工具沿工地道路或规定线路运土时,其运距应按实际情况进行计算。
3、土方施工单价得确定如果采用汽车或其她专用运土工具运土时,调配区之间得运土单价,可根据预算定额确定。
当采用多种机械施工时,确定土方得施工单价就比较复杂,因为不仅就是单机核算问题,还要考虑运、填配套机械得施工单价,确定一个综合单价。
(二)用“线性规划”方法进行土方调配时得数学模型表就是土方平衡与施工运距(单价)表。
此表格说明了整个场地划分为个挖方区,,…,,其挖方量应为,,…,;有个填方区,,,…,,其填方量相应为,,…,;用表示由挖方区到填方区得土方调配数,由填挖方平衡,即:(1-1-6)若从到得价格系数(平均运距,或单位土方运价、或单位土方施工费用)为,一般地,从到得价格系数为,于就是土方调配问题可以用下列数学模型表达:求一组得值、使目标函数:(1-l-7)为最小值,并满足下列约束条件:(=1,2,…,)(=1,2,…,)据约束条件知道,未知量有X个,而方程数为+个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档
20
第五次
A1
A2
A3
销量
列⑤
罚 数
B1 B2 B3 B4
4
12 12 4 4 11
82
10
32 9
8 14 5
11 8 6
80 104 102 16404
2
产量 ⑤行罚数
1046 0 1020 0 2802 48
实用文档
21
例1用伏格尔法得到的初始基可行解
B1 B2 B3 B4 产量
A1
第二节 运输问题的表上作业法
由上节介绍运输问题的数学模型 及其约束方程组的系数矩阵结构的特 殊性,本节将由此给出运输问题的比 单纯形法更为简便的求解方法—表 上作业法。
实用文档
单纯形法与表上作业法的关系:
(1)找出初始基可行解
表上给出m+n-1个数字格
(2)求各非基变量的检验数
计算表中空格检验数
(3)判断是否最优解
9
2
7 64
10
3 60 5
2
1
24
B4
10 8
35
63
3
产量 ②行罚数
对差额最大处,采用最小运费调运。
罚数(即差额)=次小运价-最小运价
实用文档
11
伏格尔法思路
罚数(即差额)的解释:
差额大,则不按最小运费调运,运费 增加大。
差额小,则不按最小运费调运,运费 增加不大。
实用文档
12
结合例1说明这种方法。
第一次
4-4=0 B1 B2 B3 B4 产量 ①行罚数
A1
实用文档
22
练习
第一次
A1 A2 A3
销量 ①列
罚 数
实用文档
B1 B 2 B3
3
11
3
1
9
2
7 64
10
3 60 5
251
23
B4
10 8 5
6
3
产量 ①行罚数
70 41 39 1 20
优先安排销地
B2 ,否则运
价会更高
第二次
A1 A2 A3
销量
②列 罚 数
实用文档
B1 B 2 B3
3
11
3
1
判断方法相同
实用文档
2
?是
最优解
停止
否
换基:
(4)确定换入变量和换出变量找出新 的基可行解。
表上调整(闭回路调整)
(5)重复(2)、(3)直至求出最优
解。
(运输问题必有最优解)
实用文档
3
举例说明表上作业法
某部门三个工厂生产同一产品的产量,四个销 售点的销量及单位运价如下表:
B1 B 2 B3 B 4 产量
4 12 12 4 4 11 16
A2
82
10
3 2 9 10
A3
8 14 5
11 用8最小6 元2素2法
求出的目标函
销量 8 14 12 数z1=424648
目标一函般数说值来z, 伏1格2 尔4法得4 出1的1 初8始2
解的质量2 最好9 ,1常4 用5来作8 为6运输2问44
题最优解的近似解。
A1
3 11 4 3 3 10 7
A2 3 1
9
1
2
考虑
8
4
A3
7 6 4 运1价0 差3 5 9
销量 3 6 5 6 2 0
最z小0 元3 素1法6 缺4 点 :4 会3 出1 现2 顾3 此 失1 0彼3 5
8 6
(运费差额问题)
实用文档
10
第一步:确定初始基可行解 ——最小元素法、伏格尔法
【2】伏格尔法思路:
3 11
3 10 7
1
9
2 84
7
4 10
59
3 6 5 6 20ຫໍສະໝຸດ 8最小元素法练习A1 A2 A3
销量
实用文档
B1
3
31
7
30
B2
11
9
64 60
B3 43 12
10
54 0
B 4 产量
3 10 73 0 8 410
3 5 930 630 2 0
9
初始调运方案
B 1 B 2 B 3 B 4 产量
11 8 6
80 104 12 164
2
12
产量 ③行罚数
16 0 120 1 2802 48
实用文档
19
下次不考虑该列 第四次
A1
A2
A3
销量
列④
罚 数
B1 B2 B3 B4
4
12 12 4
11
82
10
3
9
8 14 5
11 8 6
80 104 102 164
12
产量 ④行罚数
146 7 120 6 2802 48
4
12
4 11 16
0
A2
2
10
3 9 10
A3
8
5
11
6 22
销量 8 14 12 14 48
实用文档
13
第一次
3-2=1 B1 B2 B3 B4 产量 ①行罚数
A1
4
12
4 11 16
0
A2
2
10
3
9 10
1
A3
8
5
11
6 22
销量 8 14 12 14 48
实用文档
14
第一次
A1 A2 A3
A3
8 14 5 11 8 6 22
销量 8 14 12 14 48
z 0 8 2 1 5 4 1 4 0 2 3 6 1 8 1 6 246
实用文档
7
练习
某部门三个工厂生产同一产品的产量,四个销 售点的销量及单位运价如下表:
A1 A2 A3
销量
实用文档
B 1 B 2 B 3 B 4 产量
A1
4 12 10 4 6 11 166 0
A2 8 2 10 2 3 9 1020
A3
8 14 5 11 8 6 228 0
销量
80
140
1210
0
1460
48
实用文档
6
最小元素法得到的初始调运方案
B1 B 2 B3 B 4 产量
A1
4 12 10 4 6 11 16
A2 8 2 10 2 3 9 10
数
实用文档
16
第一次
下次不考虑该列
A1 A2 A3
销量 列①
罚 数
实用文档
B1 B2 B3 B4
4
12
4
11
2
10
3
9
8 14 5
11
6
8 104 12 14
2 5 13
17
产量 ①行罚数
16 0 10 1 282 1 48
优先安排销地
B2 ,否则运
价会更高
第下二次次不考虑该行
A1 A2 A3
销量 列②
罚 数
实用文档
B1 B2 B3 B4
4
12
4
11
2
10
3
9
8 14 5
11 8 6
8 104 12 164
2
13
18
产量 ②行罚数
16 0 10 1 2082 2 48
优先安排销地
B4 ,否则运
价会更高
下次不考虑该列 第三次
A1
A2
A3
销量
列③
罚 数
B1 B2 B3 B4
4
12
4
11
82
10
3
9
8 14 5
销量
B1 B2 B3 B4
4
12
4
11
2
10
3
9
8
5
11
6
8 14 12 14
产量 ①行罚数
16 0 10 1 22 1 48
实用文档
15
第一次
A1 A2 A3
销量
B1 B2 B3 B4
4
12
4
11
2
10
3
9
8
5
11
6
8 14 12 14
产量 ①行罚数
16 0 10 1 22 1 48
列①
罚2
5
13
A1
4 12
4 11 16
A2
2 10
3 9 10
A3
8
5 11 6 22
销量 8 14 12 14 48
实用文档
4
第一步:确定初始基可行解 ——最小元素法、伏格尔法
【1】最小元素法思路:
就近供应,从单价中最小运价 确定供应量,逐步次小,直至得
到m+n-1个数字格。
实用文档
5
最小元素法举例
B1 B 2 B3 B 4 产量