七年级数学下册《三角形》知识点总结

合集下载

七年级数学三角形知识点总结

七年级数学三角形知识点总结

七年级数学三角形知识点总结一、三角形的概念1. 定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

三角形有三条边、三个顶点和三个内角。

2. 三角形的表示方法三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。

二、三角形的分类1. 按角分类锐角三角形:三个角都是锐角的三角形。

直角三角形:有一个角是直角的三角形。

直角三角形可以用“Rt△”表示,直角所对的边叫做斜边,夹直角的两条边叫做直角边。

钝角三角形:有一个角是钝角的三角形。

2. 按边分类不等边三角形:三边都不相等的三角形。

等腰三角形:有两边相等的三角形。

相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,腰与底边所夹的角叫做底角。

等边三角形:三边都相等的三角形。

等边三角形是特殊的等腰三角形,它的三个角都相等,并且每个角都等于60°。

三、三角形的三边关系1. 定理三角形两边之和大于第三边。

三角形两边之差小于第三边。

2. 应用判断三条线段能否组成三角形:只需判断较短的两条线段之和是否大于最长的线段。

已知三角形的两边长,求第三边的取值范围:设三角形的两边长分别为a、b (a>b),则第三边c的取值范围是a b < c < a + b。

四、三角形的内角和1. 三角形内角和定理三角形三个内角的和等于180°。

2. 证明方法可以通过作平行线将三角形的三个内角转化为一个平角来证明。

3. 直角三角形的两个锐角关系直角三角形的两个锐角互余。

五、三角形的外角1. 定义三角形的一边与另一边的延长线组成的角,叫做三角形的外角。

2. 三角形外角的性质三角形的一个外角等于与它不相邻的两个内角之和。

三角形的一个外角大于任何一个与它不相邻的内角。

六、多边形1. 多边形的概念在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。

如果一个多边形由n条线段组成,那么这个多边形就叫做n边形。

1北师大版七年级下册数学[.全等三角形的概念和性质(基础)知识点整理及重点题型梳理]

1北师大版七年级下册数学[.全等三角形的概念和性质(基础)知识点整理及重点题型梳理]

北师大版七年级下册数学重难点突破知识点梳理及重点题型巩固练习全等三角形的概念和性质(基础)【学习目标】1.理解全等三角形及其对应边、对应角的概念;能准确辨认全等三角形的对应元素. 2.掌握全等三角形的性质;会用全等三角形的性质进行简单的推理和计算,解决某些实际问题.【要点梳理】要点一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.要点二、全等三角形能够完全重合的两个三角形叫全等三角形.要点三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.要点四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.【典型例题】类型一、全等形和全等三角形的概念1、下列每组中的两个图形,是全等图形的为()A. B.C.D.【答案】A【解析】B,C,D选项中形状相同,但大小不等.【总结升华】是不是全等形,既要看形状是否相同,还要看大小是否相等.举一反三:【变式】(2014秋•岱岳区期末)下列各组图形中,一定全等的是()A.各有一个角是45°的两个等腰三角形B.两个等边三角形C.各有一个角是40°,腰长3cm的两个等腰三角形D.腰和顶角对应相等的两个等腰三角形【答案】D;解析:A、两个等腰三角形的45°不一定同是底角或顶角,还缺少对应边相等,所以,两个三角形不一定全等,故本选项错误;B、两个等边三角形的边长不一定相等,所以,两个三角形不一定全等,故本选项错误;C、40°角不一定是两个三角形的顶角,所以,两个三角形不一定全等,故本选项错误;D、腰和顶角对应相等的两个等腰三角形可以利用“边角边”证明全等,故本选项正确.类型二、全等三角形的对应边,对应角2、(2016•厦门)如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A.∠B B.∠A C.∠EMF D.∠AFB【思路点拨】由全等三角形的性质:对应角相等即可得到问题的选项【答案与解析】∵△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,∴∠DCE=∠B,故选A.【总结升华】全等三角形对应角所对的边是对应边;全等三角形对应边所对的角是对应角. 举一反三:【变式】如图,△ABD≌△ACE,AB=AC,写出图中的对应边和对应角.【答案】AB和AC是对应边,AD和AE、BD和CE是对应边,∠A和∠A是对应角,∠B和∠C,∠ADB和∠AEC是对应角.类型三、全等三角形性质3、已知:如图所示,Rt△EBC中,∠EBC=90°,∠E=35°.以B为中心,将Rt△EBC绕点B逆时针旋转90°得到△ABD,求∠ADB的度数.解:∵Rt△EBC中,∠EBC=90°,∠E=35°,∴∠ECB=________°.∵将Rt△EBC绕点B逆时针旋转90°得到△ABD,∴△________≌△_________.∴∠ADB=∠________=________°.【思路点拨】由旋转的定义,△ABD≌△EBC,∠ADB与∠ECB是对应角,通过计算得出结论.【答案】55;ABD,EBC;ECB,55【解析】旋转得到的图形是全等形,全等三角形对应边相等,对应角相等.【总结升华】根据全等三角形的性质来解题.4、(2014秋•青山区期中)如图,△ABC≌△DEC,点E在AB上,∠DCA=40°,请写出AB的对应边并求∠BCE的度数.【思路点拨】根据全等三角形的性质得出即可,根据全等得出∠ACB=∠DCE ,都减去∠ACE 即可.【答案与解析】解:AB 的对应边为DE ,∵△ABC ≌△DEC ,∴∠ACB=∠DCE ,∴∠ACB —∠ACE=∠DCE —∠ACE ,即∠BCE=∠DCA=40°.【总结升华】本题考查了全等三角形的性质的应用,注意:全等三角形的对应角相等,对应边相等.举一反三:【变式】如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位置,若AC A B ''⊥,则BAC ∠的度数是____________.【答案】70°;提示:BAC ∠=∠B A C ''=90°-20°=70°.。

七年级数学《三角形》知识点

七年级数学《三角形》知识点

一、三角形定义及性质:1.三角形是由三条边和三个夹角组成的多边形。

2.三角形的内角和为180°。

3.三角形的外角等于其不相邻内角之和。

二、三角形分类:根据边长分类:1.等边三角形:三条边长度相等。

2.等腰三角形:两条边长度相等。

3.普通三角形:三条边长度都不相等。

根据角分类:1.直角三角形:一个角为90°,另外两个角为锐角或钝角。

2.钝角三角形:三个角都是钝角。

3.锐角三角形:三个角都是锐角。

4. obtuse-angled triangle: A triangle with one obtuse angle.三、三角形的图形性质:1.三角形内任意两边之差小于第三边的长度,任意两边之和大于第三边的长度。

2.等边三角形的三个内角都是60°。

3.等腰三角形的两个内角相等。

4.在直角三角形中,长边对应的角是直角,短边对应的角是锐角或钝角。

四、特殊的角与边关系:1.三角形的中线:连接一个角的顶点和对边中点的线段。

三条中线交于一点,这个点叫做三角形的重心。

2.三角形的高:从三角形的顶点向底边引垂线,垂足到底边的距离叫做三角形的高。

3.三角形的外心:三角形的三条外角的平分线交于一点,这个点叫做三角形的外心。

4.三角形的内心:三角形的三条内角的平分线交于一点,这个点叫做三角形的内心。

五、三角形的计算公式:1.三角形的面积公式:S=1/2*底边长*高。

2.海伦公式(三角形周长和面积的关系):S=√(p*(p-a)*(p-b)*(p-c)),其中p为三角形的半周长,a、b、c为三角形的边长。

3. 正弦定理:a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的边长,A、B、C为三角形的角度。

4. 余弦定理:c² = a² + b² - 2abcosC,其中a、b、c为三角形的边长,C为三角形的夹角。

六、相似三角形:1.相似三角形具有相等的对应角,并且对应边的比例相等。

七年级数学下册第四章三角形知识归纳

七年级数学下册第四章三角形知识归纳

第四章三角形三角形三边关系三角形三角形内角和定理角平分线三条重要线段中线高线全等图形的概念全等三角形的性质SSS三角形SAS全等三角形全等三角形的判定ASAAASHL(适用于RtΔ)全等三角形的应用利用全等三角形测距离作三角形一、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示.2、顶点是A、B、C的三角形,记作“ΔABC”,读作“三角形ABC”.3、组成三角形的三条线段叫做三角形的边,即边AB、BC、AC,有时也用a,b,c来表示,顶点A所对的边BC用a表示,边AC、AB分别用b,c来表示;4、∠A、∠B、∠C为ΔABC的三个内角。

二、三角形中三边的关系1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.用字母可表示为a+b〉c,a+c〉b,b+c〉a;a—b<c,a-c<b,b-c 〈a.2、判断三条线段a,b,c能否组成三角形:(1)当a+b>c,a+c>b,b+c〉a同时成立时,能组成三角形;(2)当两条较短线段之和大于最长线段时,则可以组成三角形。

3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即a b c a b-<<+.三、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800。

2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边.注:直角三角形的性质:直角三角形的两个锐角互余。

(3)钝角三角形,即有一个内角是钝角的三角形。

3、判定一个三角形的形状主要看三角形中最大角的度数.4、直角三角形的面积等于两直角边乘积的一半.5、任意一个三角形都具备六个元素,即三条边和三个内角.都具有三边关系和三内角之和为1800的性质。

(完整版)人教版七年级数学三角形知识点归纳和常见题型总结,推荐文档

(完整版)人教版七年级数学三角形知识点归纳和常见题型总结,推荐文档

P,若∠A=500,求∠BPC 的度数。
A
20.已知,如图 8,∠ABD=∠DBC,∠ACD=∠DCE (1) ∠A=500, 求∠D 的度数。 (2)∠D 与∠A 有什么关系,并说明理由。
D B
P (图 6)
E C
7.3 多边形及其内角和 在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
7.2.2 三角形的外角
三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角。
1.在△ABC 中,若∠A=∠B= 1 ∠C,则∠C 等于(

2
A.45° B.60° C.90°
D.120°
2.如图所示,∠1+∠2+∠3+∠4 的度数为(

A100° B.180° C.360°
D.无法确定
3.如图所示,AB∥CD,AD,BC 交于 O,∠A=35°,∠BOD= 76°,则∠C 的度数是( )
A.31°
B.35° C.41° D.76°
4.如图所示,∠1+∠2+∠3+∠4 的度数为
.
第 2 题图
第 4 题图
第 3 题图
第 6 题图
5.一幅三角板,如图所示叠放在一起,则 图中 a 的度数为(
11.如图 11 所示,在△ABC 中,∠A=70°,BO,CO 分别平分∠ABC 和∠ACB,求∠BOC 的度数.
A
A
A
D
O
B
O
C
D
E
图9

七年级数学下册第七章《三角形复习课》

七年级数学下册第七章《三角形复习课》
A D
B
C
E
提高作业
如图所示, △ABC的高 、CE交于 点, 如图所示, 的高BD、 交于H点 的高 交于 的度数? ∠A=50°,求∠BHC的度数? °求 的度数
A
E B
H
D C
0 0 0
(1)
0
500
X0
∴ X = 180 − 50 − 90 = 40 0 0 0 0 (2).∵ X + X + 40 = 180
0 0 0
0
∴ 2 X = 1800 − 400 = 1400
(2)
400
X0 X0
∴ X = 700
(3).∵ ( X 0 + 700 ) = ( X 0 + 100 ) + X 0 (三角形的一个外角等于与它不相邻的两个内角和)
5.如右图,AD是BC边上的高,BE 如右图, 是 边上的高 边上的高, 如右图 的角平分线, 是 △ ABD的角平分线,∠1=40°, 的角平分线 ° ° 60°∠ ° ∠2=30°,则∠C= ____∠BED= 65° ° 。
B
A 1 2 E D C
6.直角三角形的两个锐角相等, 6.直角三角形的两个锐角相等,则每一个锐角等于 直角三角形的两个锐角相等 45 _____度 _____度。
225°,则与这个外角相邻的内角是 ° 则与这个外角相邻的内角是 则与这个外角相邻的内角是____
9.△ABC中 9.△ABC中,∠ABC的平分线BD和 ABC的平分线BD和 的平分线BD ABC的外角平分线CD交于 的外角平分线CD交于D △ABC的外角平分线CD交于D, 求证: 求证:∠A=2∠BDC
ቤተ መጻሕፍቲ ባይዱ
13、有一六边形,截去一三角形,内角和会发生 、有一六边形,截去一三角形, 怎样变化?请画图说明。 怎样变化?请画图说明。

初一下册几何知识点总结归纳

初一下册几何知识点总结归纳

初一下册几何知识点总结归纳一、初中数学几何知识点1、三角形内角定理定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°2、几何平行平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补3、点、线、角点的定理:过两点有且只有一条直线点的定理:两点之间线段最短角的定理:同角或等角的补角相等角的定理:同角或等角的余角相等直线定理:过一点有且只有一条直线和已知直线垂直直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短4、全等三角形判定定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等5、角的平分线定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合6、等腰三角形性质等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)7、对称定理定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称8、直角三角形定理定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形9、多边形内角和定理定理:四边形的内角和等于360°;四边形的外角和等于360°多边形内角和定理:n边形的内角和等于(n-2)×180°推论:任意多边的外角和等于360°10、平行四边形定理平行四边形性质定理:1.平行四边形的对角相等2.平行四边形的对边相等3.平行四边形的对角线互相平分推论:夹在两条平行线间的平行线段相等平行四边形判定定理:1.两组对角分别相等的四边形是平行四边形2.两组对边分别相等的四边形是平行四边形3.对角线互相平分的四边形是平行四边形4.一组对边平行相等的四边形是平行四边形11、矩形定理矩形性质定理1:矩形的四个角都是直角矩形性质定理2:矩形的对角线相等矩形判定定理1:有三个角是直角的四边形是矩形矩形判定定理2:对角线相等的平行四边形是矩形12、菱形定理菱形性质定理1:菱形的四条边都相等菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1:四边都相等的四边形是菱形菱形判定定理2:对角线互相垂直的平行四边形是菱形13、正方形定理正方形性质定理1:正方形的四个角都是直角,四条边都相等正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角14、中心对称定理定理1:关于中心对称的两个图形是全等的定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称15、等腰梯形性质定理等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等2.等腰梯形的两条对角线相等等腰梯形判定定理:1.在同一底上的两个角相等的梯形是等腰梯形2.对角线相等的梯形是等腰梯形平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边16、中位线定理三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h17、相似三角形定理相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似相似三角形判定定理:1.两角对应相等,两三角形相似(ASA)2.两边对应成比例且夹角相等,两三角形相似(SAS)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似判定定理3:三边对应成比例,两三角形相似(SSS)相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似性质定理:1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比2.相似三角形周长的比等于相似比3.相似三角形面积的比等于相似比的平方18、三角函数定理任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值19、圆的定理定理:过不共线的三个点,可以作且只可以作一个圆定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧定理:1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线3.圆的切线垂直经过切点的半径4.三角形的三个内角平分线交于一点,这点是三角形的内心5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角6.圆的外切四边形的两组对边的和相等7.如果四边形两组对边的和相等,那么它必有内切圆8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等20、比例性质定理比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b二、数学知识点总结热冰时间在学习中流逝着,不觉间又一学期走了一半,七下数学的几何部分也告一段落,故将一些重要的和易错的知识点总结于此,供日后学习完善!此内容仅限于人教版内容顺序平行线与相交线部分1过两点有且只有一条直线(强调唯一性和存在性)2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补尺规作图(这是重难点)作线段等于已知线段和作角等于已知角(1)理解尺规作图的含义①只用没有刻度的直尺和圆规作图称为尺规作图.显然,尺规作图的工具只能是直尺和圆规.其中直尺用来作直线、线段、射线或延长线段等;圆规用来作圆或圆弧等.值得注意的是直尺是没有刻度的或不考虑刻度的存在.②基本作图:a.用尺规作一条线段等于已知线段;b.用尺规作一个角等于已知角.利用这两个基本作图,可以作两条线段或两个角的和或差.(2)熟练掌握尺规作图题的规范语言Ⅰ.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;Ⅱ.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×.(3)尺规作图题的步骤:①已知:当题目是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;②求作:能根据题目写出要求作出的图形及此图形应满足的条件;③作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°(掌握证明此定理的两种方法)附加:画三角形的高时,只需向对边或对边的延长线作垂线,连接顶点与垂足的线段就是该边上的高.(易错点)注意:(1)三角形的高是线段,垂线段.(2)锐角三角形的高都在三角形内部;直角三角形仅斜边上的高在三角形内部,另两边上的高为三角形的两条直角边;钝角三角形仅一条高在三角形内部,另两条高在三角形外部.(3)三角形三条高所在直线交于一点.且这点叫做三角形的垂心.三角形的三条中线交于三角形内部,这一点叫做三角形的重心.三角形三条角平分线交于三角形内部,这一点叫做三角形的内心.四边形内容部分18定理四边形的内角和等于360°19四边形的外角和等于360°20多边形内角和定理 n边形的内角的和等于(n-2)×180°21推论任意多边的外角和等于360°22多边形对角线公式n (n-3)/21点、线、面、体知识点三、几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

七年级数学三角形知识点总结归纳

七年级数学三角形知识点总结归纳

七年级数学三角形知识点总结归纳数学中的三角形是一个重要的概念,它不仅在几何学中有广泛的应用,也在实际生活中存在着丰富的实例。

作为一个七年级学生,我们需要掌握一些关于三角形的基本知识。

在本文中,我将对七年级数学课程中的三角形知识进行总结和归纳。

一、三角形的定义和分类三角形是一个有三条边和三个角的几何形状。

根据边的长度,三角形可以分为等边三角形、等腰三角形和普通三角形。

根据角的大小,三角形可以分为直角三角形、钝角三角形和锐角三角形。

二、三角形的性质1. 三角形内角和定理:- 所有三角形的内角和等于180度。

- 直角三角形中,一个内角为90度,其他两个内角之和为90度。

2. 三角形的外角性质:- 三角形的外角等于其对应内角的补角。

3. 三角形的边长关系:- 等边三角形的三条边相等。

- 等腰三角形的两边相等。

4. 三角形的角度关系:- 锐角三角形的三个内角都是锐角。

- 钝角三角形至少有一个内角是钝角。

三、特殊三角形1. 45-45-90三角形:- 一个45度的角和一个45度的角的三角形。

- 其他一个角为90度。

- 其中的两个直角边长度相等。

2. 30-60-90三角形:- 一个30度的角和一个60度的角的三角形。

- 其他一个角为90度。

- 三条边的长度之间存在特殊关系。

四、勾股定理勾股定理是三角形中的一个重要定理,它描述了直角三角形中两条直角边和斜边之间的关系。

勾股定理可以用公式表示为:c² = a² + b²,其中c为斜边的长度,a和b为直角边的长度。

五、三角形的相似性1. 两个三角形相似的条件:- 对应角相等。

- 对应边成比例或者平行。

2. 相似三角形的性质:- 相似三角形的对应角相等。

- 相似三角形的对应边成比例。

六、三角形的中位线和高线1. 中位线:- 连接三角形的一个角和对边中点的线段。

- 三角形的三条中位线交于一点,这个点被称为质心。

2. 高线:- 四边形的一个边和对角线所成角的平分线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册第五章《三角形》知识点总结
考点一、三角形
1、三角形的三边关系定理及推论
(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

2、三角形的内角和定理及推论
三角形的内角和定理:三角形三个内角和等于180°。

推论:
①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。

③三角形的一个外角大于任何一个和它不相邻的内角。

注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

4、三角形的面积
三角形的面积=21
×底×高
考点二、全等三角形 1、全等三角形的概念
能够完全重合的两个三角形叫做全等三角形。

2、三角形全等的判定 三角形全等的判定定理:
(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)
(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)
(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。

(4)角角边定理:有两角和一边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”)。

直角三角形全等的判定:
对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)
3、全等变换
只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。

全等变换包括一下三种:
(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。

(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。

(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。

考点三、等腰三角形
1、等腰三角形的性质
(1)等腰三角形的性质定理及推论:
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。

即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°。

2、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

(2)要会区别三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:
位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

结论4:三角形一条中线和与它相交的中位线互相平分。

结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

解直角三角形
考点一、直角三角形的性质 1、直角三角形的两个锐角互余
2、在直角三角形中,30°角所对的直角边等于斜边的一半。

3、直角三角形斜边上的中线等于斜边的一半
4、直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+
5、摄影定理
在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项
∠ACB=90° BD AD CD •=2
⇒ AB AD AC •=2
CD ⊥AB AB BD BC •=2 6、常用关系式
由三角形面积公式可得: AB •CD=AC •BC
考点二、锐角三角函数的概念 (3~8分) 1、如图,在△ABC 中,∠C=90° ①c a
sin =∠=
斜边的对边A A
②c
b
cos =∠=
斜边的邻边A A
③b a
tan =∠∠=
的邻边的对边A A A
④a
b
cot =∠∠=
的对边的邻边A A A
2、一些特殊角的三角函数值
3、各锐角三角函数之间的关系
(1)互余关系:sinA=cos(90°—A),cosA=sin(90°—A),tanA=cot(90°—A),cotA=tan(90°—A)
(2)平方关系:1cos sin 22=+A A (3)倒数关系:tanA •tan(90°—A)=1 (4)弦切关系:tanA=A
A
cos sin 三角形相似
考点一、比例线段 1、比例的性质 (1)基本性质 ①a :b=c :d ⇔ad=bc ②a :b=b :c ac b =⇔2
(2)更比性质(交换比例的内项或外项)
d
b
c a =(交换内项) ⇒=
d c b a a
c
b d =(交换外项) a b
c d =(同时交换内项和外项)
(3)反比性质(交换比的前项、后项):
c d a b d c b a =⇒= (4)合比性质:
d d
c b b a
d c b a ±=
±⇒= (5)等比性质:
b
a n f d
b m e
c a n f
d b n m f
e d c b a =++++++++⇒≠++++==== )0( 3、黄金分割
把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=
2
1
5-AB ≈0.618AB 考点二、平行线分线段成比例定理
三条平行线截两条直线,所得的对应线段成比例。

考点三、相似三角形 1、相似三角形的概念
对应角相等,对应边成比例的三角形叫做相似三角形。

相似用符号“∽”来表示
2、相似三角形的基本定理
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

相似三角形的等价关系:
(1)反身性:对于任一△ABC,都有△ABC∽△ABC;
(2)对称性:若△ABC∽△A’B’C’,则△A’B’C’∽△ABC
(3)传递性:若△ABC∽△A’B’C’,并且△A’B’C’∽△A’’B’’C’’,则△ABC ∽△A’’B’’C’’。

3、三角形相似的判定
(1)三角形相似的判定方法
①定义法:对应角相等,对应边成比例的两个三角形相似
②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似(2)直角三角形相似的判定方法
①以上各种判定方法均适用
②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
4、相似三角形的性质
(1)相似三角形的对应角相等,对应边成比例
(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比
(3)相似三角形周长的比等于相似比
(4)相似三角形面积的比等于相似比的平方。

5、相似多边形
(1)如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形。

相似多边形对应边的比叫做相似比(或相似系数)(2)相似多边形的性质
①相似多边形的对应角相等,对应边成比例
②相似多边形周长的比、对应对角线的比都等于相似比
③相似多边形中的对应三角形相似,相似比等于相似多边形的相似比
④相似多边形面积的比等于相似比的平方
6、位似图形
如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比。

性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比。

由一个图形得到它的位似图形的变换叫做位似变换。

利用位似变换可以把一个图形放大或缩小。

相关文档
最新文档