最优化方法大作业答案

合集下载

最优化方法练习题答案修改建议版本--删减版

最优化方法练习题答案修改建议版本--删减版

最优化⽅法练习题答案修改建议版本--删减版练习题⼀1、建⽴优化模型应考虑哪些要素 ?答:决策变量、⽬标函数和约束条件。

2、讨论优化模型最优解的存在性、迭代算法的收敛性及停⽌准则。

min f (x)答:针对⼀般优化模型 s.t. g i x 0,i 1,2,L m ,讨论解的可⾏域 D ,若存在⼀点 X * D ,对 h j x0, j 1,L , p于 X D 均有 f(X *) f(X)则称 X *为优化模型最优解,最优解存在;迭代算法的收敛性是指迭代所得到的序列 X (1),X (2),L ,X (K)L ,满⾜ f(X (K 1)) f (X (K)),则迭代法收敛;收敛的停⽌准则有等。

练习题⼆1、某公司看中了例 2.1中⼚家所拥有的 3种资源 R 1、R2、和R 3,欲出价收购(可能⽤于⽣产附加值更⾼的产品) 的对偶问题)。

如果你是该公司的决策者,对这 3 种资源的收购报价是多少? (该问题称为例 2.1解:确定决策变量对 3种资源报价 y 1,y 2, y 3作为本问题的决策变量。

确定⽬标函数问题的⽬标很清楚——“收购价最⼩” 。

确定约束条件资源的报价⾄少应该⾼于原⽣产产品的利润,这样原⼚家才可能卖。

因此有如下线性规划问题: min w 170y 1 100y 2 150y 35y 1 2y 2 y 3 10 s.t. 2y 1 3y 2 5y 3 18y 1, y 2,y 3 02、研究线性规划的对偶理论和⽅法(包括对偶规划模型形式、对偶理论和对偶单纯形法) 答:略。

3、⽤单纯形法求解下列线性规划问题:x (k 1) x (k)x (k 1)x (k)x (k) min zx1x2x3minz4x2x3x1 x22x 32x12x2 x32(1) s.t. 2x1x2 x3 3x22x 3x 42 x1x34x2x3x 5 5x 1,x 2,x 3 0x i 0(i 1,2, ,5)解:(1)引⼊松弛变量 x 4, x 5,x 6min z x 1 x 2x30*x 40* x 5 0* x 6x 1 x 22x 3 x4=22x 1 x 2 x 3x5=3x6=4x1, x2, x3, x4, x5, x6 0因检验数σ2<0,故确定 x 2 为换⼊⾮基变量,以 x 2的系数列的正分量对应去除常数列,最⼩⽐值所在⾏对应的基变量 x 4 作为换出的基变量因检验数σ3<0,故确定 x 3 为换⼊⾮基变量,以 x 3的系数列的正分量对应去除常数列,最⼩⽐值所在⾏对应的基变量 x 5作为换出的基变量。

最优化方法(试题+答案)

最优化方法(试题+答案)

一、 填空题1.若()()⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=212121312112)(x x x x x x x f ,则=∇)(x f ,=∇)(2x f .2.设f 连续可微且0)(≠∇x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向。

3.向量T)3,2,1(关于3阶单位方阵的所有线性无关的共轭向量有 . 4. 设R R f n →:二次可微,则f 在x 处的牛顿方向为 . 5.举出一个具有二次终止性的无约束二次规划算法: .6.以下约束优化问题:)(01)(..)(min 212121≥-==+-==x x x g x x x h t s x x f的K-K-T 条件为:. 7.以下约束优化问题:1..)(min 212221=++=x x t s x x x f的外点罚函数为(取罚参数为μ) .二、证明题(7分+8分)1.设1,2,1,:m i R R g n i =→和m m i R R h ni ,1,:1+=→都是线性函数,证明下面的约束问题:},,1{,0)(},1{,0)(..)(min 1112m m E j x h m I i x g t s x x f j i nk k+=∈==∈≥=∑=是凸规划问题。

2.设R R f →2:连续可微,n i R a ∈,R h i ∈,m i ,2,1=,考察如下的约束条件问题:},1{,0}2,1{,0..)(min 11m m E i b x a m I i b x a t s x f i T i i Ti +=∈=-=∈≥-设d 是问题1||||,0,0..)(min ≤∈=∈≥∇d E i d a Ii d a t s d x f Ti Ti T的解,求证:d 是f 在x 处的一个可行方向。

三、计算题(每小题12分)1.取初始点T x )1,1()0(=.采用精确线性搜索的最速下降法求解下面的无约束优化问题(迭代2步):22212)(m in x x x f +=2.采用精确搜索的BFGS 算法求解下面的无约束问题:21222121)(min x x x x x f -+=3.用有效集法求解下面的二次规划问题:.0,001..42)(min 2121212221≥≥≥+----+=x x x x t s x x x x x f4.用可行方向算法(Zoutendijk 算法或Frank Wolfe 算法)求解下面的问题(初值设为)0,0()0(=x,计算到)2(x 即可):.0,033..221)(min 21211222121≥≥≤+-+-=x x x x t s x x x x x x f参考答案一、填空题 1. ⎪⎪⎭⎫⎝⎛++++3421242121x x x x ⎪⎪⎭⎫⎝⎛4224 2. 0)(<∇d x f T3. T)0,1,2(-,T)1,0,3(-(答案不唯一)。

北航最优化方法有关大作业参考

北航最优化方法有关大作业参考

1流量工程问题重述定一个有向网 G=(N,E) ,此中 N 是点集, E 是弧集。

令 A 是网 G 的点弧关矩,即 N×E 矩,且第 l 列与弧里 (I,j) ,第 i 行元素 1 ,第 j 行元素 -1 ,其他元素 0。

再令b m=(b m1 ,⋯,b mN )T,f m =(f m1,⋯ ,f mE )T,可将等式束表示成:Af m=b m本算例一典 TE 算例。

算例网有 7 个点和 13 条弧,每条弧的容量是 5 个位。

别的有四个需求量均 4 个位的源一目的,详细的源点、目的点信息如所示。

里了,省区了未用到的弧。

别的,弧上的数字表示弧的号。

此,c=((5,5 ⋯,5) 1 )T,×13依据上述四个束条件,分求得四个状况下的最决议量x=((x 12 ,x13,⋯ ,x75)1×13 )。

1 网拓扑和流量需求7 节点算例求解算例1(b1=[4;-4;0;0;0;0;0]T)转变为线性规划问题:Minimize c T x1Subject to Ax1=b1x1>=0 利用 Matlab 编写对偶纯真形法程序,可求得:最优解为 x1*=[4 0 0 0 0 0 0 0 0 0 0 0 0] T对应的最优值 c T x1=201.2.2 算例 2(b2=[4;0;-4;0;0;0;0] T)Minimize c T x2Subject to Ax2=b2X2>=0 利用 Matlab 编写对偶纯真形法程序,可求得:最优解为 x2*=[0 4 0 0 0 0 0 0 0 0 0 0 0]T对应的最优值 c T x2=201.2.3 算例 3(b3=[0;-4;4;0;0;0;0] T)MinimizeTc x3Subject to Ax3=b3X3>=0 利用 Matlab 编写对偶纯真形法程序,可求得:最优解为 x3*=[4 0 0 0 4 0 0 0 0 0 0 0 0] T对应的最优值 c T x3=40算例4(b4=[4;0;0;0;0;0;-4]T )Minimize c T x4Subject to Ax4=b4X4>=0利用 Matlab 编写对偶纯真形法程序,可求得:最优解为 x4*=[4 0 0 4 0 0 0 0 0 4 0 0 0] T对应的最优值 c T x4=601.3 计算结果及结果说明算例1(b1=[4;-4;0;0;0;0;0]T)算例 1 中,由 b1 可知,节点 2 为需求节点,节点 1 为供应节点,由节点 1 将信息传输至节点 2 的最短路径为弧 1。

重庆大学最优化方法习题答案

重庆大学最优化方法习题答案
ax z = x1 + x2 3x1 + x2 ≥ 2
s.t.x1 + 2x2 ≤ 5 x1, x2 ≥ 0
解:根据条件,可行域为下面图形中的阴影部分,,有图形可知,原问题在 A 点取得最优值, 最优值 z=5
(2) min z = x1 − 6x2 2x1 + x2 ≤ 1
s.t.− x1 + x2 ≤ 7 x1, x2 ≥ 0
解:图中阴影部分表示可行域,由图可知原问题在点 A 处取得最优值,最优值 z=-6.
(3) max z = 3x1 + 2x2
− x1 + x2 ≤ 1 s.t.x1 − 2x2 ≥ −4
x1, x2 ≥ 0
解:如图 所示,可行域为图 中阴影部 分,易得 原线性规 划问题 为无界 解。
所以 x(2) , x(4) , x(6) 是原问题的基可行解, x(6) 是最优解,最优值是 z = −3 。
(2) max z = x1 + x2 − 2x3 + x 4 − x5
x1 + x2 + x3 + x4 = 1 s.t.− x1 + 2x2 + x5 = 4
xi ≥ 0,i = 1,2,3,4,5
解:易知
x1
的系数列向

p1
= 1− 1

x2
的系数列向

p2
=
1
2

x3
的系
数列向量
1
1
0
p3
=
0

x4
的系数列向量
p4
=
0

x5
的系数列向量

最优化方法部分课后习题解答(1-7)

最优化方法部分课后习题解答(1-7)

最优化方法部分课后习题解答习题一1.一直优化问题的数学模型为:22121122123142min ()(3)(4)5()02()50..()0()0f x x xg x x x g x x x s t g x x g x x =−+−⎧=−−≥⎪⎪⎪=−−+≥⎨⎪=≥⎪=≥⎪⎩试用图解法求出:(1)无约束最优点,并求出最优值。

(2)约束最优点,并求出其最优值。

(3)如果加一个等式约束,其约束最优解是什么?12()0h x x x =−=解:(1)在无约束条件下,的可行域在整个平面上,不难看出,当=(3,4)()f x 120x x *x 时,取最小值,即,最优点为=(3,4):且最优值为:=0()f x *x *()f x (2)在约束条件下,的可行域为图中阴影部分所示,此时,求该问题的最优点就是()f x 在约束集合即可行域中找一点,使其落在半径最小的同心圆上,显然,从图示中可12(,)x x 以看出,当时,所在的圆的半径最小。

*155(,)44x =()f x 其中:点为和的交点,令求解得到:1()g x 2()g x 1122125()02()50g x x x g x x x ⎧=−−=⎪⎨⎪=−−+=⎩1215454x x ⎧=⎪⎪⎨⎪=⎪⎩即最优点为:最优值为:=*155(,)44x =*()f x 658(3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。

2.一个矩形无盖油箱的外部总面积限定为S,怎样设计可使油箱的容量最大?试列出这个优化问题的数学模型,并回答这属于几维的优化问题.解:列出这个优化问题的数学模型为:该优化问题属于三维的优化问题。

123122313123max ()220..00f x x x x x x x x x x S x s t x x =++≤⎧⎪>⎪⎨>⎪⎪>⎩32123sx y z v⎛⎞=====⎜⎟⎝⎠习题二3.计算一般二次函数的梯度。

最优化方法(试题+答案)

最优化方法(试题+答案)
一、填空题
1.若 ,则 , .
2.设 连续可微且 ,若向量 满足,则它是 在 处的一个下降方向。
3.向量 关于3阶单位方阵的所有线性无关的共轭向量有.
4.设 二次可微,则 在 处的牛顿方向为.
5.举出一个具有二次终止性的无约束二次规划算法:.
6.以下约束优化问题:
的K-K-T条件为:
.
7.以下约束优化.证明:要证凸规划,即要证明目标函数是凸函数且可行域是凸集。
一方面,由于 二次连续可微, 正定,根据凸函数等价条件可知目标函数是凸函数。
另一方面,约束条件均为线性函数,若任意 可行域,则
故 ,从而可行域是凸集。
2.证明:要证 是 在 处的一个可行方向,即证当 , 时, ,使得 ,
解此线性规划(作图法)得 ,于是 .由线性搜索
得 .因此, .重复以上计算过程得下表:
0
1
1
2
(注:范文素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注。)
2.采用精确搜索的BFGS算法求解下面的无约束问题:
3.用有效集法求解下面的二次规划问题:
4.用可行方向算法(Zoutendijk算法或Frank Wolfe算法)求解下面的问题(初值设为 ,计算到 即可):
参考答案
一、填空题
1. 2. 3. , (答案不唯一)。4.
5. 牛顿法、修正牛顿法等(写出一个即可)
0
1/2
1
2
2
3.解:取初始可行点 求解等式约束子问题
得解和相应的Lagrange乘子
转入第二次迭代。求解等式约束子问题
得解

转入第三次迭代。求解等式约束子问题
得解和相应的Lagrange乘子

重庆大学最优化方法习题答案

重庆大学最优化方法习题答案
解:引入松弛变量 x 4 ,剩余变量 x 5 和人工 变量 x 6 ,把原问题规范化为
max z = x1 + x 2 − 2x 3 − Mx 6 3x1 + x 2 − x 3 + x 4 = 5 s.t.x1 − 4x 2 + x 3 − x 5 + x 6 = 7 x i ≥ 0,i = 1,2...6 x1 x2 x3 x4 x5 x6
②因为 p1 , p 3 线性无关,可得基解 x (2) = ( ,0, ③因为 p1 , p 4 线性无关,可得基解 x (3) ④因为 p 2 , p 3 线性无关,可得基解 x
(4)
43 11 ,0) , z 2 = ; 5 5 11 1 = (− ,0,0, ) ,是非基可行解; 3 6 2 5 = (0,2,1,0) , z 4 = −1 ;
x1 + 4x 2 + 2x 3 ≥ 8 s.t.3x1 + 2x 2 ≥ 6 x 1 , x 2 , x 3 ≥ 0
解:引入剩余变量 x 4 , x 5 和人工变量 x 6 , x 7 ,利用两阶段法得到辅助线性规划
max w = −x 6 − x 7 max z ' = −2x 1 − 3x 2 − x
①因为 p1 , p 2 线性无关,故有
x 1 + x 2 = 1 − x 3 − x 4 − x1 + 2x 2 = 4 − x 5
,令非基变量为 x 3 = x 4 = x 5 = 0 ,得
x = − 2 1 3 ,所以得到一个基解 x (1) = (− 2 , 5 ,0,0,0) ,是非基可行解; 3 3 x = 5 2 3
x1 + 2x 2 + 3x 3 + 4x 4 = 7 s.t.2x1 + x 2 + x 3 + 2x 4 = 3 x 1 , x 2 , x 3 , x 4 ≥ 0 1 2 3 解: 易知 x1 的系数列向量 p1 = , x 的系数列向量 p 2 = , x 的系数列向量 p 3 = , 2 3 2 1 1 4 x 4 的系数列向量 p 4 = 。 2 x1 + 2x 2 = 7 − 3x 3 − 4x 4 ,令非基变量为 x 3 = x 4 = 0 ,得 ① 因为 p1 , p 2 线性无关,故有 + x = 3 − x − 2x 2x 2 3 4 1 x = − 1 1 3 ,所以得到一个基解 x (1) = (− 1 , 11 ,0,0) 是非基可行解; 3 3 x = 11 2 3

最优化方法与应用大作业(一)最速下降法

最优化方法与应用大作业(一)最速下降法

最优化方法与应用大作业(一)
---最速下降法部分:
1.问题描述:
用梯度下降法求解以下优化问题
min f(x)=(x1+10*x2)^2+5(x3-x4)^2+(x2-2*x3)^4+10*(x1-x4)^4
2.编程感想:
该算法需要计算Hesse矩阵,C语言在向量运算时没有Matlab方便,所以手工完成了理论计算,再输入,破坏了程序的移植性。

同时,实验表明当初始值离理想点较远且精度要求较高时,最速下降法的收敛速率极慢,迭代几乎不可能完成,这对初值的选取提出了一定限制。

3.结果分析:
编译界面(Mac os X,Xcode环境)
输入参数(设定为(0.1,0.2,0.3,0.4)):
结果(此处列出每次迭代结果)。

明显的看到,最速下降法的收敛较慢,最终结果接近理论值(F(0,0,0,0)=0)所以该结果可以满意。

4.算法代码见下页
西安电子科技大学电子工程学院020951
李骏昊02095005。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。

确定货箱的长x 1、宽x 2和高x 3。

试列出问题的数学模型。

解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x2.将下面的线性规划问题表示为标准型并用单纯形法求解max f=x 1+2x 2+x 3s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形:Min 321x x x z -+=224321=+-+x x x x 6525321=++-x x x x646321=+++x x x x列成表格:121610011460105122001112-----可见此表已具备1°,2°,3°三个特点,可采用单纯形法。

首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得121210231040116201002121211--------再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得12123230210231040116201002121211-------再从底行中选元素-3,和第二列正元素2,迭代一次得4233410120280114042001112---再迭代一次得1023021062210231010213000421021013--选取最优解:01=x 42=x 23=x3. 试用DFP 变尺度法求解下列无约束优化问题。

min f (X )=4(x 1-5)2+(x 2-6)2取初始点X=(8,9)T ,梯度精度ε=0.01。

解:取IH=0,初始点()TX 9,8=2221)6()5(4)(-+-=x x x f⎥⎦⎤⎢⎣⎡--=∇122408)(21x x x f⎪⎪⎭⎫⎝⎛=∇624)()0(xfTx f d )6,24()()0()0(--=-∇=)0(0)0()1(dxxα+=T)69,248(00αα--=])669()5248(4min[)(min 2020)0(0)0(--+--⨯=+αααdxf 0)6()63(2)24()2458(8)(00)0(0)0(=-⨯-+-⨯--=+ααααd d xdf13077.0130170≈=α⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--⨯+⎪⎪⎭⎫ ⎝⎛=21538.886153.462413077.098)1(x⎪⎪⎭⎫⎝⎛-=∇43077.410784.1)()1(xf进行第二次迭代:⎥⎦⎤⎢⎣⎡--=-=78463.013848.31)0()1(xxδ⎥⎦⎤⎢⎣⎡--=∇-∇=56924.110783.25)()(1)0()1(xf xf γ101011011101γγγγγδδδH HH H H TTTT-+=03172.8011=γδT86614.6321101==γγγγH T⎥⎦⎤⎢⎣⎡=61561.046249.246249.285005.911Tδδ⎥⎦⎤⎢⎣⎡==46249.240022.3940022.3940363.630110110TTHH γγγγ所以:⎪⎪⎭⎫⎝⎛--=0038.103149.003149.012695.01H⎪⎪⎭⎫⎝⎛-⨯⎪⎪⎭⎫⎝⎛---=∇-=43076.410784.10038.103149.003149.012695.0)()1(1)1(xf H d⎪⎪⎭⎫⎝⎛-=48248.428018.0令 )1(1)1()2(dx x α+=利用)()1()1(=+ααd dxdf ,求得49423.01=α,所以⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫⎝⎛=+=21538.213848.021538.886152.449423.0)1()1()2(dxx⎪⎪⎭⎫ ⎝⎛=65因)()2(=∇xf ,于是停,)2(x 即为最优解。

4. 某厂生产甲乙两种口味的饮料,条件如下:因条件所限,甲饮料产量不能超过8百箱。

问如何安排生产计划,即两种饮料各生产多少使获利最大。

(要求:1.建立数学模型,并求解。

2.用mat lab 编写程序) 解:模型假设:设生产甲饮料错误!未找到引用源。

百箱,生产乙饮料2x 百箱,获利最大为z. 符号说明:错误!未找到引用源。

错误!未找到引用源。

为生产甲饮料的百箱数2x 错误!未找到引用源。

为生产乙饮料的百箱数z 为生产甲饮料x 百箱和生产乙饮料y 百箱数获利最大值.建立模型:目标函数:21910maxx x z +=错误!未找到引用源。

原料供应:错误!未找到引用源。

工人加工:错误!未找到引用源。

产量限制:错误!未找到引用源。

非负约束:错误!未找到引用源。

02,1≥x x得出模型为:错误!未找到引用源。

21910maxx x z +=⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,815020106056,2112121x x x x x x x t s先化标准形:min 21910x x Z +=6056321=++x x x1502010421=++x x x851=+x x列成表格91081000115001020106000156--可见此表已具备1°,2°,3°三个特点,可采用单纯形法。

首先从底行中选元素-9,由最小者150/20决定选第二行第二列的元素20,标以记号,迭代一次得910810001150202145021207---2135020902118100011502021********--再从底行中选元素-11/2,和第1列正元素7,迭代一次得2135020902117111141720073002829711074501417201----7720035871107111141720073002829711074501417201---选取最优解:7451=x 7302=x编写M 文件,代码如下:>> f=[-10,-9]'; a=[6,5;10,20;1,0;-1,0;0,-1];b=[60,150,8,0,0]'; x=linprog(f,a,b)运行结果:Optimization terminated.x =6.42864.2857>> ans=f'*xans =-102.8571结果分析:甲饮料生产642箱,乙饮料生产428箱时,获利最大为102.8万元。

5.某家具厂要安排一周的生产计划,产品是桌子和椅子。

制作一张桌子需4m2木板及时性20小时的工时,制作一只椅子需6m2木板及18小时的工时,每周能拥有的木板是600m2,可利用的工时是400小时;每张桌子的利润是50元,每只椅子的利润是60元。

按合同每周至少要交付8张桌子和5只椅子,并假定所有的产品都能够销售出去。

问:该厂每周生产桌子和椅子的数量分别是多少时,能获得最大利润?(要求:1.建立数学模型,并求解。

2.用mat lab编写程序)解:设x1为每周生产桌子数,x2为每周生产椅子数,则:S max=50 x1+60 x2约束条件:4 x 1 +6 x 2≤600(材料)20 x 1+18 x 2≤400(工时)x 1≥8,x 2≥5先化标准形:min 216050x x z +=60064321=++x x x4001820421=++x x x851-=+-x x562-=+-x x列成表格:60505100010801000140000101820600000164------可见此表已具备1°,2°,3°三个特点,可采用单纯形法。

首先从底行中选元素-50,由最小者400/20决定选第二行第一列的元素20,标以记号,迭代一次得:10005.20155120001024000101802000021091026000015120----再从底行中选元素-15,和第2列元素18,迭代一次得:12003503200150182010002400201018016002000020732004051500---得:1200350320032519101810003400910181010801000148803831100---选取最优解:81=X3402=X4883=X3254=X编写M 文件,代码如下:>> f=[-50,-60]'; a=[4,6;20,18;-1,0;0,-1]; b=[600,400,-8,-5]';x=linprog(f,a,b)运行结果:Optimization terminated.x =8.000013.3333>> ans=f'*xans =-1.2000e+003结果分析:当生产8张桌子,13张椅子时,可获最大利润为1200元.。

相关文档
最新文档