3-非晶态合金
非晶态合金的特性

非晶态软磁合金的特性——中国磁材网与晶态软磁合金相比,非晶态软磁合金具有以下特点:(1)优良的软磁性:由于晶态材料如硅钢、Fe-Ni坡莫合金或铁氧体等磁性受各向异性相互干扰,磁导率会下降,损耗增大。
而非晶态合金不存在晶体结构,因此不存在磁晶各向异性,所以磁导率、矫顽力等磁性参数主要取决于饱和磁致伸缩值的大小以及内部应力状态。
当λs︾0时,应有最佳的软磁特性。
同时,非晶态合金组织结构均匀,不存在阻碍畴壁运动的晶界或析出物,因此可望获得比晶态更高的磁导率μ和更小的矫顽力Hc。
由于合金有约20at%的类金属原子,因此它们的饱和磁化强度一般低于相应的晶态合金。
其中以铁基合金的饱和磁化强度最高,但最高值也不超过1.8T 。
居里温度也较晶态合金低。
(2)感生磁各向异性常数Ku:非晶合金虽然不存在磁晶各向异性,但它并不是磁各向同性的。
它在制备和以后的热处理过程中可以感生出磁各向异性。
利用由磁场退火感生的磁各向异性来控制合金的磁性已在实际上应用。
由磁场退火感生的磁各向异性大小和合金中磁性元素含量的关系蓦本符合原子对方向有序理论,但存在一定偏离。
(3)高强度:由于没有通常所说的晶体缺陷(如晶界、位错)等,没有滑移变形和易断裂的晶面,非晶合余具有更高的强度和硬度,例如:一些非晶合的抗拉强度可以达到3920MPa,维氏硬度可大于9800MPa,为相应晶态合金的5~10倍,可与铁氧体相媲美。
而且强度的尺寸效应很小,它的弹性也比一般金属好,弯曲形变可达50%以上。
(4) 化学特性:由于非晶态金属的结构均匀,没有与晶态相关联的缺陷,像晶粒边界、位错和堆垛层错。
另外,制备非晶态合金的熔融状态快淬可以防止在淬火过程中的固态扩散。
于是,它们也没有像第二相、沉淀和偏析等缺陷。
因此,在与表面有关的特性(像腐蚀和催化)方面,非晶态合金被认为是理想的化学均匀合金。
例如,在中性盐和酸性溶液中,低铬的铁基金属玻璃(如Fe27Cr8P13C7)的耐腐蚀性优于不锈钢,这是一般晶态软磁合金所难以达到的。
3-非晶态合金

四、非晶态合金的制备
1、气态急冷法: 气态急冷法一般称为气相沉积
法(PVD和CVD),PVD主要包括溅
射法和蒸发法,这两种方法都在真 空中进行。 • 溅射法是通过在电场中加速的粒子 轰击用母材制成的靶(阴极),使被
激发的物质脱离母材而沉积在用液
氮冷却的基板表面上而形成非晶态 薄膜。
• 蒸发法是将合金母材加热汽化,所产生的蒸汽沉积在冷却的 基板上而形成非晶薄膜。这两种方法制得的非晶材料只能是 小片的薄膜,不能进行工业生产,但由于其可制成非晶范围 较宽,因而可用于研究。
造技术,便能制备出大尺寸的非晶合金.
• 进入新世纪以来,人们继续努力寻找各种具有高非晶形成能力和优异 性能的大块非晶合金。先后己有Cu基、Pr基和Co基等新型大块非晶合 金被开发出。
二、非晶态材料结构的主要特征
1.短程有序,长程无序性(乱中有序性) 晶体结构:原子排列是长程有序的,即沿着每个 点阵直线的方向,原子有规则地重复出现(晶体结 构的周期性) 非晶态结构:原子排列没有周期性,即原子的排 列从总体上是无规则的(长程无序),但是,近邻 原子的排列是有一定规律的(短程有序)
“非晶态”含义的英语表达:
Non-crystalline(非结晶状态的); Amorphous(无定形的)
非晶合金发展及研究现状
• 1934年,德国人克雷默采用蒸发沉积法制备出非晶态合金。 • 1950年,布伦纳用电沉积法制备出了Ni-P非晶态合金。 • 1960年,DUWEZ等人从熔融金属急冷制成了金属玻璃并开 始进行研究。
时呈整体屈服而不是局部屈服,具有很高的屈服强度。
Deformation characteristics of metallic glass
一些非晶态合金的力学性能
非晶合金的晶化机理分析

非晶合金的晶化机理分析1. 前言非晶合金是一种新型材料,因具有优良的磁、力学、腐蚀、耐磨、导热等性能,在电力、航空、航天、汽车、医疗等领域得到了广泛的应用。
但非晶合金由于其结构的特殊性质,相对于晶态合金来说更加容易发生晶化行为。
因此,对非晶合金晶化机理的研究具有重要意义。
2. 非晶合金的晶化非晶合金是由一种或几种金属元素与非金属元素在一定温度范围内经过快速冷却得到的无定形材料结构。
(Men '大羽弦小学子')晶化现象是指非晶态合金发生长程有序的过程,由于此过程与材料的性能和应用密切相关,因而引起了广泛的研究。
一般来说,非晶合金通过淬火、挤压、冷轧或退火等方式处理后,由于加工过程或外部温度的影响,存在着晶化倾向。
而非晶合金晶化时的机理包括初基元晶粒生成、晶粒长大和合并以及形成晶格序列等过程。
3. 非晶合金晶化机理分析3.1初基元晶粒生成在非晶合金的晶化过程中,初基元晶粒的生成是晶化机理的第一步。
初基元晶粒的生成主要取决于非晶合金材料内在复杂的局部势能坑与外界条件的复杂耦合关系。
在初基元晶粒生成的过程中,影响因素主要有:工艺状态、沉淀体、微缺陷、外加应力等。
3.2晶粒长大和合并在非晶合金的晶化过程中,晶粒的长大和合并是晶化机理的第二步。
非晶合金晶化时晶粒的尺寸和体积呈指数级增长,晶粒尺寸和晶粒间距逐步增大影响晶化时间和晶粒尺寸的增长速率。
而一旦晶粒的尺寸增加到一定大小,晶粒之间就会出现晶粒合并,从而导致晶粒的细粒化阶段结束。
3.3形成晶格序列在非晶合金晶化的第三个阶段,会形成晶格序列。
晶格序列在非晶合金晶化过程中会形成各种尺寸和形状的结晶体,这种结晶体通常存在于非晶合金的表面,晶化趋势强,而晶化峰桥形态多是由于给定的扰动引起的。
4. 结论非晶合金是一种具有特殊结构和特殊性能的新型材料,在现代产业中有着广泛的应用前景和市场价值。
在制备过程中,非晶合金往往伴随着晶化的现象,而晶化机理的研究正是对非晶合金制备过程中晶化现象的剖析和解释。
非晶相合金的制备及其性能研究

非晶相合金的制备及其性能研究一、引言非晶态材料是指没有长程有序结构的材料,其原子在空间中具有随机分布。
非晶态材料以其独特的物理化学性质,被广泛应用于电子、机械、核、航天等领域。
其中,非晶相合金是非晶态材料中一种成分复杂、力学性能优异的重要类别。
二、制备方法非晶相合金的制备方法较为复杂,主要有:1.快速凝固法:通过快速凝固技术控制合金的冷却速度,从而制备出非晶合金。
常用的快速凝固技术有淬火法、射流冷却法、蒸发法等。
2.气相沉积法:使用化学气相沉积技术,在基底上形成非晶薄膜。
包括磁控溅射、电子束蒸发等。
3.熔体淬火法:将高温的液态金属迅速冷却,使其不能充分结晶,从而获得非晶态合金材料。
三、性能研究非晶相合金的性能研究主要集中在以下几个方面:1.力学性能:非晶相合金具有很高的强度、韧性和延展性。
这与非晶结构的高密度、无序性以及断裂韧性提高有关。
例如,非晶相合金Zr-Cu-Al-Ni具有比钢铁还坚硬的特点。
2.腐蚀性能:非晶相合金具有良好的腐蚀抗性,可用于生物医学领域。
例如,Ni-Cr-Mo合金用于耳环和牙科。
3.磁性:非晶相合金中含有磁性元素,如铁、钴、镍等,因此具有较好的磁性能。
例如,Fe-Ni-Si-B合金被广泛用作变压器芯材,以提高能源利用率。
4.导电性:非晶相合金的电阻率很低,可用于制造传感器以及电子元件等。
例如,Gd-Co合金可用于生产高灵敏度的压敏电阻元件。
四、应用展望非晶相合金具有优异的物理化学性质,可以广泛应用于以下领域:1.航空航天:非晶相合金由于其强度高、抗腐蚀能力强等特点,可以用于航空航天领域的结构材料和表面材料。
2.医疗器械:非晶相合金可用于制造人工关节、牙科、神经修复以及生物传感器等医疗器械。
3.自动化制造:非晶相合金可以用于制造自动化精密零件,如汽车发动机缸体和凸轮轴等。
5.电子领域:非晶相合金可用于制造传感器、电子元件、磁记录介质以及特殊磁场材料等。
五、结论非晶相合金在材料科学领域中越来越受到关注。
功能材料(非晶态合金)

图4-4 纯Ni,Au77.8Ge13.8Si8.4,Pd82Si18, Pd77.5Cu6Si16.5的C曲线
从图中可以看出,不同成分的合金,
形成非晶态的临界冷却速度是不同的。临
界冷却速度从TTT图可以估算出来
Rc = (Tm-Tn)/tn
式中Tm为熔点,Tn,tn分别为C曲线鼻尖所 对应的温度和时间。
组元间电负性及原子尺寸相差越大(10%
~20%),越容易形成非晶态。在相图上,
成分位于共晶点附近的合金,其Tm一般较
低,即液相可以保持到较低温度,而同时
其玻璃化温度Tg 随溶质原子浓度的增加而
增加,令T = Tm-Tg,T随溶质原子的增
加而减小,有利于非晶态的形成。
合金非晶态的形成倾向与稳定性通常 用ΔT=Tm -Tg 或ΔTx =Tx -Tg 来描述,其
3.化学气相沉积法(CVD)
目前,这种方法较多用于制备非晶态Si,Ge, Si3N4,SiC,SiB等薄膜,适用于晶化温度较高的材 料,不适于制备非晶态金属。
4.液体急冷法 将液体金属或合金急冷获得非晶态的方法统称为 液体急冷法。可用来制备非晶态合金的薄片、薄带、 细丝或粉末,适于大批量生产,是目前实用的非晶 态合金制备方法。
若考虑实际冷 却 过程, 就要作 出 合 金的连 续冷却 转 变 图 (CCT 图 , 即 Continous-CoolingTransformation ), 如图4-5,图中示出 了临界冷却速度。
图4-5 几种非晶态合金的CCT图及TTT图
研究表明,合金中组元间电负性及原 子尺寸大小与非晶态的形成有很大关系。
为了进一步了解非晶态的结构,通常 在理论上把非晶态材料中原子的排列情况 模型化,其模型归纳起来可分两大类。一 类是不连续模型,如微晶模型,聚集团模 型;另一类是连续模型,如连续无规网络 模型,硬球无规密堆模型等。
非晶态合金的一种制备方法

非晶态合金的一种制备方法非晶态合金是指具有非晶态结构的金属合金。
与晶体结构的金属合金相比,非晶态合金具有具有更高的硬度、强度和韧性,以及优异的阻尼特性和导电性。
非晶态合金制备方法主要有快速凝固法、化学合成法、机械合金化法以及溶液淬火法等。
以下将详细介绍这些制备方法。
1. 快速凝固法:快速凝固法是制备非晶态合金最常用的方法之一。
该方法在金属熔体状态下,通过快速冷却将熔体迅速凝固成非晶态结构的固体。
常用的快速凝固方法包括水淬法、微滴法以及薄带法等。
其中,水淬法是最常用的方法之一,其原理是将熔融金属注入到冷却剂中,迅速冷却凝固成非晶态合金。
这种方法可以制备出具有高度非晶态结构的合金,但是需要对冷却速度进行精确控制。
2. 化学合成法:化学合成法是通过化学反应来制备非晶态合金。
这种方法通常使用金属有机前体与其他化合物反应生成非晶态合金。
例如,通过气相沉积法,可以将金属有机前体在高温条件下分解成金属原子,然后与其他气体反应生成非晶态合金。
这种方法可以控制合金的化学组成和结构,可以制备出多种不同的非晶态合金。
3. 机械合金化法:机械合金化法是通过机械力的作用来制备非晶态合金。
这种方法通常使用高能球磨、挤压、冲击等机械力对金属粉末进行处理。
机械合金化的原理是通过机械力使金属粉末发生变形、断裂和重新结合,形成非晶态和纳米晶态结构的合金。
机械合金化法制备非晶态合金具有简单、可扩展性好的特点。
4. 溶液淬火法:溶液淬火法是将金属合金在高温状态下快速冷却至低温,制备非晶态合金。
在溶液淬火法中,液体金属合金先加热至高温状态,然后迅速浸入低温淬冷液体中,使其迅速冷却凝固为非晶态合金。
该方法需要对淬冷温度和淬冷液体进行精确控制,可以制备出高度非晶态结构的合金。
总的来说,制备非晶态合金的方法有快速凝固法、化学合成法、机械合金化法以及溶液淬火法等。
这些方法各有优缺点,选择合适的制备方法要根据具体的要求和实际情况来确定。
非晶态合金的制备方法的研究和应用将为制备高性能材料和开发新颖器件提供重要的技术支持。
非晶态合金的形成条件与制备方法

非晶态合金的形成条件与制备方法非晶态合金是一种特殊的材料,其具有非晶态结构和特殊的性能。
它的形成条件和制备方法是研究这一材料的重要内容。
一、形成条件非晶态合金的形成需要满足一定的条件,主要包括以下几个方面:1. 快速凝固条件:非晶态合金的形成需要在非常短的时间内将液态合金快速冷却到玻璃转变温度以下,使其无法发生晶化。
因此,需要使用特殊的快速凝固技术,如快速凝固法、溅射法、等离子体法等。
2. 成分设计:合金的成分对非晶态结构的形成起着重要作用。
一般来说,非晶态合金的成分应具有高浓度的合金元素,以增加原子间的相互作用,阻碍晶体的长程有序排列。
3. 合金元素选择:合金元素的选择也是形成非晶态合金的关键。
一般来说,合金元素应具有较大的原子半径不匹配度,以增加原子间的扭曲和不规则性,从而阻碍晶体的形成。
4. 冷却速度控制:非晶态合金的形成需要控制合金的冷却速度。
通常情况下,冷却速度越快,非晶态合金的形成越容易。
因此,需要采用合适的冷却方式和工艺参数,如快速冷却、淬火等。
二、制备方法非晶态合金的制备方法有多种,常用的方法包括以下几种:1. 快速凝固法:这是最常用的制备非晶态合金的方法之一。
该方法通过将合金液体迅速冷却,使其在非晶态温度范围内快速凝固。
常用的快速凝固方法包括冷轧、快速淬火、溅射等。
2. 溅射法:该方法是将合金靶材溅射到基底上,形成薄膜或涂层。
溅射过程中,由于原子的高能量状态和相互碰撞,可以使合金在非晶态条件下形成。
这种方法可以制备非晶态合金薄膜或涂层,具有广泛的应用前景。
3. 熔体淬火法:该方法是将合金加热到液态状态,然后迅速冷却至非晶态转变温度以下。
通过控制冷却速度和温度梯度,可以制备出非晶态合金。
这种方法适用于大块非晶态合金的制备。
4. 等离子体法:该方法是利用等离子体的高温和高能量特性,将合金加热到液态状态,然后迅速冷却。
等离子体法可以制备出高质量的非晶态合金,具有较好的工艺可控性和成品质量。
非晶态合金催化剂

非晶态合金催化剂非晶态合金催化剂是一种新型的催化材料,具有高效、高选择性、长寿命等优点。
它是由非晶态合金制备而成,其特殊的结构和性质使其成为一种非常有前途的催化剂。
非晶态合金是一种具有非晶态结构的金属合金,它的原子排列方式比晶态合金更加杂乱无章。
这种特殊的结构造就了非晶态合金催化剂的高效性和高选择性。
非晶态合金催化剂在催化反应中的表现要比传统的晶态合金催化剂更为优异。
非晶态合金催化剂在许多领域中都有广泛的应用。
例如,在石油化工、化学工业、环保等领域,非晶态合金催化剂可以被用来加速化学反应的速度,提高反应的选择性和效率。
此外,非晶态合金催化剂还可以用于催化剂的再生和催化剂的制备等方面。
非晶态合金催化剂的优点主要有以下几个方面:1.高效性:非晶态合金催化剂具有优异的催化效果,可以大大提高反应速度和产率。
2.高选择性:非晶态合金催化剂可以选择性地催化目标产品的生成,避免了副产品的生成和废物的产生。
3.长寿命:非晶态合金催化剂具有较长的使用寿命,可以降低催化剂的更换频率,减少生产成本。
4.可再生性:非晶态合金催化剂可以进行催化剂的再生,使其具有多次使用的能力。
5.适应性广:非晶态合金催化剂可以适用于多种不同的反应体系,具有广泛的应用前景。
非晶态合金催化剂的制备方法主要有物理制备和化学制备两种方法。
物理制备是指通过物理方法将金属材料制备成非晶态合金;化学制备是指通过化学反应将金属离子还原成非晶态合金。
目前主要采用的是化学制备方法,其制备过程相对简单,可以得到高纯度、均匀分布的非晶态合金催化剂。
在非晶态合金催化剂的应用中,还需要考虑到其在实际生产中的稳定性和可控性。
为了解决这些问题,需要对非晶态合金催化剂进行进一步的研究和开发,以提高其在实际应用中的表现。
非晶态合金催化剂是一种非常有前途的催化材料,具有广泛的应用前景。
随着科技的不断进步,相信非晶态合金催化剂将在未来的化学工业中发挥越来越重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因此,一般来说,多元复杂系更容易形成非晶 态。
非晶态的结构弛豫
弛豫是指在外界因素影响下,一个偏离了原来平衡 态或亚稳态的体系回复到原来状态的过程。
第三章非晶态合金
(Amorphous Alloys)
晶 体 与 非 晶 体 的 结 构
一、晶态与非晶态
• 晶体是指原子呈长程有序排列的固体。非晶态 是指原子呈长程无序排列的状态。具有非晶态 结构的合金称为非晶态合金(或称金属玻璃)。
晶体与非晶态固体的差别:
(1)晶体一般都有特定的多面体外形,而非晶体无论是 在什么条件下形成的,总不会有晶体所具有的特定外 形。 (2)晶体具有解理性,即具有容易沿着一些特定界面裂 开的特性。而常见的非晶态玻璃破裂时,断裂面总是 凹凸不平的。 (3)晶体的力、电、光、热学等性质是是各向异性的, 而非晶体材料通常是各向同性的。
(4)晶体有确定的熔点,即有一固定的固-液相变温度; 而非晶体(如玻璃)没有确定的熔点,只有一定的软 化温度。
立方体外形:食盐
六方柱外形:祖母绿
六方柱外形:水晶晶簇
正十二面体外形: 石榴子石
非晶态材料包括:
(1)非晶态金属及合金(金属玻璃) (2)非晶态半导体﹑非晶态超导体 (3)非晶态电介质 (4)非晶态离子导体 (5)非晶态高聚合物 (6)传统的氧化物玻璃等
晶态和非晶态材料的X-射线衍射谱
晶态和非晶态材料的电子衍射图
晶体衍射花样
非晶合金衍射花样
2.亚稳定性
非晶态是一种亚稳态,其结构具有相对的稳定性,这种稳定
性直接关系非晶态材料的应用及使用寿命。
3.均匀性 显著特点
一层含义:结构均匀、各向同性,它是单相无定形结构,没有 象晶体那样的结构缺陷,如晶界、孪晶、晶格缺陷、位错、层 错等。 二层含义:成分均匀性。在非晶态金属形成过程中,无晶体 那样的异相、析出物、偏析以及其他成分起伏.
欲制备非晶材料,必须抑制过程E(结晶 过程)、D(非晶晶化过程)的发生; 欲保证非晶材料稳定性,要研究过程D (非晶晶化过程)发生的条件; 非晶态形成过程的本质是亚稳液相与亚稳 固相之间的转变
非晶态形成条件
• 冷却速度:冷速足够大(大于RC)
• 化学成分:组元间电负性与原子尺寸相差越大(10%~ 20%), 越容易形成非晶态。因而过渡族金属或贵金属 与类金属 (B、C、N、Si、P)、稀土金属与过渡族金
为零,而晶态的18-8不锈钢腐蚀速率则为10mm/年。
非晶态合金和晶态不锈钢在10%FeCl3· 2O溶液中 10H 的腐蚀速率
试样 晶态不锈钢 18Cr-8Ni 17Cr-14Ni-2.5Mo 非晶态合金 Fe72Cr8P13C7 Fe70Cr10P13C7 Fe65Cr10Ni5P13C7 腐蚀速率/mm· -1 a
晶态 18Ni-9Co-5Mo
• 非晶态合金延伸率低但并不脆,而且具有很
高的韧性,非晶薄带可以反复弯曲180º 而不
断裂,并可以冷轧,有些合金的冷轧压下率
可达50%。
各种合金弹性应变极限比较
2、耐蚀性
非晶态合金具有很强的耐腐蚀能力。不锈钢在含有氯离子 的溶液中,易发生点腐蚀、晶间腐蚀,甚至应力腐蚀和氢脆。 而非晶态的Fe-Cr合金可以弥补不锈钢的这些不足。含 ≧8%Cr的铁基非晶态合金在各种介质中都显示出其优越的抗 蚀特性,如在1mol的盐酸溶液中,在30℃下浸泡168小时后, Fe70Cr10P13C7和Fe65Cr10Ni5P13C7非晶态合金的腐蚀速度
大块非晶合金
Mg合金
Zr-Ti-Cu-Ni-Al合金
五、非晶态合金的特性
1、力学性能
非晶态合金力学性能的特点是具有高的强度和硬度。例如
非 晶 态 铝 合 金 的 抗 拉 强 度 (1140MPa) 是 超 硬 铝 抗 拉 强 度 (520MPa)的两倍。非晶态合金Fe80B20抗拉强度达3630MPa, 而晶态超高强度钢的抗拉强度仅为 1820~2000MPa,可见非 晶态合金的强度远非合金钢所及。
• 1984年,Turnbull领导的小组采用B2O3包覆技术净化合金熔体,有效
抑制了过冷合金液体中的非均质形核,进一步得到了厘米级的Pd一Ni 一P大块非晶合金。这也是人们开发出来的第一种大块非晶合金。
• 从二十世纪八十年代末开始,大块非晶合金的研发取得了突破性进展,
人们发现了许多类多组元合金具有很好的非晶形成能力,其临界冷却 速率大都在 100K/s以下,利用简单的水淬法或铜模吸铸法等传统的铸
时呈整体屈服而不是局部屈服,具有很高的屈服强度。
Deformation characteristics of metallic glass
一些非晶态合金的力学性能
合金 Pd83Fe7Si10 非 晶 态 合 金 Cu57Zr43 Co75Si15B10 Fe80P13C7 Ni75Si8B17 硬度 HV 4018 5292 8918 7448 8408 断裂强度 MPa 1860 1960 3000 3040 2650 1810~213 0 延伸率 弹性模量 % MPa 0.1 0.1 0.2 0.03 0.14 10~12 66640 74480 53900 121520 78400
• 1969年,美国人庞德和马丁研究了生产非晶态合金带材的
技术,为规模生产奠定了技术基础。
1976年,美国联信公司生产出10mm宽的非晶态合金 带材,到1994年已经达到年产4万吨的能力。目前美国能 生产出最大宽度达217mm的非晶带材。 2000年9月20日,在钢铁研究总院的非晶带材生产线 上成功地喷出了宽220mm、表面质量良好的非晶带材,它 标志着我国在该材料的研制和生产上达到国际先进水平。
三、非晶态的形成过程
过热熔体 (稳定相) B 过 冷 熔 体 C (亚稳相) E A 晶 体 (稳定相) D
非晶固体 (亚稳相)
E:结晶过程;C:非晶形成过程 ;D:非晶晶化过程
与结晶相比,非晶态形成过程有以下特点:
(1)从熔体中形成非晶态的过程是:ABC 即:过热熔体 过冷熔体 非晶固相 (2)非晶形成是亚稳相之间相互转变,即: 稳定过热液相 亚稳过冷液相 亚稳固相 (3)从现象上看,在非晶态的形成过程中,熔体由 液态变为固态时是连续的、粘滞系数加大的过 程
刚制备完的非晶材料,不是稳定态。在常温常压条 件下,或加热到一定温度进行保温退火,非晶材料 的许多性质将随时间而发生变化,最终会达到另一 种亚稳态,这就是非晶态的结构弛豫。
在非晶态的弛豫过程中,并末发生结晶,它在微观 上发生了结构松弛,是由一种亚稳态变化为另一种 能量较低的亚稳态。 弛豫过程总伴随着体系各种物理性质的改变,所以 从材料的实际应用上看,弛豫过程的研究具有重要 的意义。
40℃
17.75 — — 0.0000 0.0000
60℃
120.0 29.24 0.0000 0.0000 0.0000
影响非晶态合金耐蚀性的重要因素是合金成分。Cr对改善 非晶态合金的耐蚀性非常显著,此外还有P. 非晶态合金耐蚀性好的主要原因是能迅速形成致密、均匀、
稳定的高纯度Cr2O3钝化膜。此外,非晶态合金组织结构均匀,
玻璃态 粘 滞 系 数 液态
Tg
粘滞系数随温度降低 而加大,曲线没有间 断点,是连续的;
在T=Tg附近,发生 了比较陡的改变 ;
Tg称为玻璃转变温度, 这是描述非晶态由熔 态冷却形成非晶态过 程的一个重要参量 ;
温度
C过程主要是指在温度 经过Tg点时发生的许 多体系性质上的变化。
造技术,便能制备出大尺寸的非晶合金.
• 进入新世纪以来,人们继续努力寻找各种具有高非晶形成能力和优异 性能的大块非晶合金。先后己有Cu基、Pr基和Co基等新型大块非晶合 金被开发出。
二、非晶态材料结构的主要特征
1.短程有序,长程无序性(乱中有序性) 晶体结构:原子排列是长程有序的,即沿着每个 点阵直线的方向,原子有规则地重复出现(晶体结 构的周期性) 非晶态结构:原子排列没有周期性,即原子的排 列从总体上是无规则的(长程无序),但是,近邻 原子的排列是有一定规律的(短程有序)
非晶态合金强度高的原因是由于其结构中不存在位错,没
有晶体那样的滑移面,因而不易发生滑移.
屈服强度
各 种 合 金 强 度 比 较
比强度
晶体受到剪切应力时,会以位错为媒介在特定晶面上滑移, 而非晶合金的原子排列是无序的,有很高的自由体积,外力作 用时,可重新排列形成另一稳定的组态,因而非晶态合金屈服
属、后过渡族金属与前过渡族金属组成的合金易于形
成非晶.
• 熔点和玻璃化温度之差T : T =Tm-Tg ,T越小,
形成非晶倾向越大。 因而,成分位于共晶点附近的 合金易于形成非晶.
例如: 一些二元体系(Pd-Si,Zr-Cu、Zr-Be等), 较难形成非晶态;即使形成了非晶态,在Tg 温度以下极易晶化(不稳定);
四、非晶态合金的制备
1、气态急冷法: 气态急冷法一般称为气相沉积
法(PVD和CVD),PVD主要包括溅
射法和蒸发法,这两种方法都在真 空中进行。 • 溅射法是通过在电场中加速的粒子 轰击用母材制成的靶(阴极),使被
激发的物质脱离母材而沉积在用液
氮冷却的基板表面上而形成非晶态 薄膜。
• 蒸发法是将合金母材加热汽化,所产生的蒸汽沉积在冷却的 基板上而形成非晶薄膜。这两种方法制得的非晶材料只能是 小片的薄膜,不能进行工业生产,但由于其可制成非晶范围 较宽,因而可用于研究。
含氧量。
⑴ 熔体水淬法:此方法是将试样用低熔点氧化物
(如B2O3) 包裹起来,在石英管中感应加热熔化,最
后淬入水中得到非晶态合金试样。