人教版八年级数学上《第15章分式》单元测试(6)含答案解析
人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。
RJ人教版八年级上册第十五章《分式》单元测试卷内有答案与解析

第十五章《分式》单元测试卷 (时间:120 分钟满分:120 分)第Ⅰ卷选择题 (共42 分)一、选择题(本大题共16个小题,1~6小题,每小题2 分;7~16 小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填入后面的括号里) 1.给出下列式子:①24x +;②3xy+yz ;③199;④ab;⑤6m n+.其中是分式的是 【 】A.①③④B.①②⑤C.③⑤D.①④ 2.下列说法中,正确的是【 】A.形如AB的式子叫分式 B.分母不等于0,分式有意义 C.分式的值等于0,分式无意义 D.分子等于0,分式的值就等于0 3.如果分式31x - 有意义,则x 的取值范围是 【 】A.全体实数B.x=1C.x ≠1D.x=04.将分式121132a b a b +-的分子和分母中的各项系数都化为整数,应为 【 】A. 3632a b a b +-B.2323a b a b +-C.3623a b a b+-D.3623a ba b--5.如果分式2xx-的值为零,那么x 的值为【 】A.-2B.0C.1D.2 6.下列分式中与分式-xx y-的值相等的是【 】A.xx y ---B.x x y - C.-x y x- D.x x y+ 7.下列分式中是最简分式的是【 】A.221x x + B.24xC.211x x --D.11xx -- 8.对于非零的实数a 、b ,规定a ⊕b=1b- 1a .若2⊕(2x-1)=1,则x=【 】A.56B.54C.32D.-169.设k=(甲图中阴影部分面积):(乙图中阴影部分面积)(a >b >0),则有【 】A.k >2B.1<k <2C.12<k <1D.0<k <1210.若113⨯+ 135⨯ +157⨯ +…+1(21)(21)n n -⨯+的值为1735,则正整数n 的值是【 】A.16B.17C.18D.19 11.已知x ≠0,y ≠0,且x ,y 满足x 2-4xy+4y 2=0,则x yx y-+ 的值为【 】A.-13B.-13yC.13D.13y12.关于x 的分式方程2334ax a x +=-的根为x=1,则a 的取值为【 】A.1B.3C.-1D.-3 13.下列运算正确的是【 】A.(11x -)0=0(x ≠1) B.(1x )6÷(1x )3=(1x)2C.(1x )2·(1x )3=(1x)6D.x -p= 1x p (x ≠0,p 为正整数)14.父子两人沿周长为a 的2周骑自行车匀速行驶.同向行驶时父亲不时超过儿子,而反向行驶时相遇的频率增大为11 倍.已知儿子的速度为v ,则父亲的速度为【 】A.1.1vB.1.2vC.1.3vD.1.4v 15.某工厂生产一种零件,计划在20 天内完成,若每天多生产4 个,则15 天完成且还多生产10 个.设原计划每天生产x 个,根据题意可列分式方程为【 】A.20104x x ++ =15B.20104x x -+ =15C. 20104x x +- =15D.20104x x -- =1516.观察一列有规律的数:13,28,1315,424,535,….根据其规律可知第n 个数应该是【 】 A.2(1)1n n ++B.2(1)n n +C.21(1)1n ++ D.22n n n-第Ⅱ卷非选择题 (共78 分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填入题内的横线上)17.如果a b=2,则2222a ab b a b-++= .18.若22223a a b b ⎛⎫⎛⎫÷= ⎪⎪ ⎪⎝⎭⎝⎭,则a 4b 4的值是 . 19.关于x 的分式方程7311mx x +=--有增根,则m 为 . 20.小成每周末要到距离家5 km 的体育馆打球,他骑自行车前往体育馆比乘汽车多用10 min ,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x km/h ,根据题意列方程为________________. 三、解答题(本大题共6 个小题,共66 分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分9 分) 先化简,再求值:21112aa a a a⎛⎫+÷ ⎪+⎝⎭++,其中-1. 22.(本小题满分10 分) 在等式24111+=-+的两个方格内分别填入一个数使等式成立,要求这两个数互为相反数,则第一个方格内的数是多少? 23.(本小题满分10 分) 若m 使关于x 的方程011x m xx x +-=-+产生增根,求m 的值. 24.(本小题满分11 分)一水池有一进水管和一排水管,开进水管注满水池需(a+2)h ,开排水管把一池水放完需(b-1)h.如果池中无水,先开进水管2h 后,再关闭进水管,打开排水管,问: (1)需多少时间才能把水池的水排完?(列出式子即可) (2)当a=2,b=1.5时,需多少时间才能把水池的水排完? 25.(本小题满分12 分)乌梅是郴州的特色时令水果.乌梅一上市,水果店的小李就用3 000 元购进了一批乌梅,前两天以高于进价40% 的价格共卖出150 kg ,第三天她发现市场上乌梅数量陡增,而自己的乌梅卖相已不大好,于是果断地将剩余乌梅以低于进价20%的价格全部售出,前后一共获利750 元,求小李所进乌梅的数量. 26.(本小题满分14 分) 阅读下列材料:方程1111123x x x x -=-++-的解为x=1; 方程1111134x x x x -=----的解为x=2;方程11111245x x x x -=-----的解为x=3; ……(1)请你观察上述方程与解的特征,写出能反映上述方程一般规律的方程,并求出这个方程的解; (2)根据(1)中所求得的结论,写出一个解为x=-5 的分式方程. 答案 一、1.D 点拨:根据分式定义,分母中应含有字母.2.B 点拨:选项A 中,缺少条件B ≠0;选项C 中,分式有无意义只须看分母是否为0;当分子等于0,分母不等于0 时,分式的值才为0.3.C 点拨:由x-1≠0 得,x ≠1.4.C 点拨:分子分母同乘以6 即可.5.D 点拨:由2-x=0 得x=2.6.B 点拨:x x x y x y -=--+;x xy x x y=--7.A 点拨:2421111;;121111x x x x x x x x --====-+-+-. 8.A 点拨:a ⊕b=1b -1a.若2⊕(2x-1)=11122x -=,解得x=56.9.B 点拨:k=()()()2212a b a b a b a b ba ab a a b a a+--+===+--,∵a >b ,∴0<a b <1,∴1<k<2.10.B 点拨:∵()()1111()212122121n n n n =--⨯+-+,∴111133557++⨯⨯⨯ +…+()()111111111(1)21212335572121n n n n =-+-+-++--⨯+-+=111217(1)2212212135n n n n n -=⨯==+++,∴n=17. 11.C 点拨:由x 2-4xy+4y 2=0,得x=2y ,则21233x y y y y x y y y y --===++. 12.D 点拨:把x=1 代入方程得23314a a +=-,解得a=-3.13.D 点拨:(11x -)0=1(x ≠1);(1x )6÷(1x )3=(1x )3;(1x )2·(1x )3=(1x)5.14.B 点拨:设父亲的速度为x ,则由题意得:11()x v x va a-+=,解得x=1.2v. 15.A 16.A 二、17.35点拨:由ab=2 得a=2b ,则222222222424a ab b b b b a b b b-+-+=++=35. 18.9 点拨:2442222222()()3a a a b a b b b b a ÷=⨯==,则a 4b 4=32=9.19.7 点拨:将原分式方程化为整式方程得7+3(x-1)=m ,∵分式方程有增根,则增根为x=1,将x=1 代入整式方程得m=7. 20.55126x x -= 三、21.解:化简,得原式=a+1.当 -1 时,原式 .22.解:设第一个方格内的数为x ,则第二个方格内的数为原x ,依题意可得分式方程:24111x x+=--,解得x=-1,经检验知x=-1 是该方程的根,故第一个方格内的数是原1. 23.解:m=-1. 24.解:(1)(2121a b ÷+- )h.(2)14h.25.解:设小李所进乌梅的数量为x kg ,根据题意,得150×3000x ·40%-(x-150)·3000x·20%=750,解得:x=200.经检验x=200 是原方程的解且符合题意.答:小李所进乌梅的数量为200 kg.26.解:(1)方程与解的特征是:方程共四项,分子都是1,左边两项与右边两项都是差的形式,且分母相差1,从整体上看四个分母中,若其解的代数式放在中间,则依次递减1,所以一般规律方程是:1111134x a x a x a x a -=-++-+-+-(a 取整数),其解是x=-a+2.检验:对方程两边分别通分,得2211(21)(1)(27)(3)(4)x a x a a x a x a a --=+-+-+-+--所以(2a-7)·x+(a-3)(a -4)=(2a-1)x+a (a-1).所以x=-a+2. (2)解为x=-5 的分式方程是11117643x x x x -=-++++.。
人教版八年级数学上册第十五章《分式》测试带答案解析

人教版八年级数学上册第十五章《分式》测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.据报道,在新冠疫苗的防重症保护效力下,德尔塔毒株的“突破性感染”占比约为0.00098,将0.00098用科学记数法表示为( ) A .29.810-⨯ B .39.810-⨯C .49.810-⨯D .59.810-⨯2.若分式23x x -+的值等于0,则x 的值是( ) A .2B .﹣2C .3D .﹣33.在某核酸检测任务中,甲医疗队比乙医疗队每小时多检测15人,甲队检测600人所用的时间比乙队检测500人所用的时间少10%.设甲队每小时检测x 人,根据题意,可列方程为( ) A .600500(110%)15x x =⨯-- B .600500(110%)15x x ⨯-=- C .600500(110%)15x x=⨯-- D .600500(110%)15x x⨯-=- 4.为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中荧光棒共花费40元,缤纷棒共花费30元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x 元( ) A .4030201.5x x-= B .4030201.5x x-= C .3040201.5x x-= D .3040201.5x x-= 5.某班级开展活动共花费2300元,但有4位同学因时间冲突缺席,若总费用由实际参加的同学平均分摊,则每人比原来多支付4元,设原来有x 人参加活动,由题意可列方程( ) A .2300230044x x =++ B .2300230044x x +=+ C .2300230044x x =+- D .2300230044x x +=- 6.代数式25x ,1π,224x +,x 2﹣23,1x ,12x x ++中,属于分式的有( )A .2个B .3个C .4个D .5个7.若关于x 的方程221mx x =+无解,则m 的值为( ) A .0B .4或6C .6D .0或48.数学家斐波那契编写的《算经》中有如下问题,一组人平分90元钱,每人分得若干,若再加上6人,平分120元钱,则第二次每人所得与第一次相同,求第二次分钱的人数.设第二次分钱的人数为x 人,则可列方程为( ) A .90x =120(x +6) B .90(x ﹣6)=120x C .901206x x =+ D .901206x x=- 9.若整数a 使关于x 的不等式组41232x a x x x -≤-⎧⎪⎨--<⎪⎩有且只有2个偶数解,且关于y 的分式方程342122y y ay y --+=--有整数解,则符合条件的所有整数a 的和为( ) A .4 B .8 C .10 D .1210.已知关于x 的方程232x mx +=-解是正数,那么m 的取值范围为( ) A .m >﹣6且m ≠2 B .m <6C .m >﹣6且m ≠﹣4D .m <6且m ≠﹣211.分式方程1112x x x --=+的解为( ) A .=1x -B .1x =C .2x =-D .2x =12.若数a 使关于x 的不等式组51123522x x x a x a-+⎧+≤⎪⎨⎪->+⎩至少有五个整数解,关于y 的分式方程32211a y y--=--的解是非负整数,则满足条件的所有整数a 之和是( ) A .15 B .14 C .8 D .7二、填空题 13.分式方程532x x=-的解是_______. 14.计算:21211a a a +-=++______.15.若关于x 的分式方程7344mx x x +=--无解,则实数m =_________. 16.分式方程3111x x x +=--的解是_______三、解答题17.某单位党支部在“精准扶贫”活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗.已知每棵乙种树苗的价格比甲种树苗的价格贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,求甲、乙两种树苗每棵的价格.18.解分式方程:1133x x x =-+-. 19.戴口罩可以有效降低感染新型冠状病毒的风险.某学校在本学期开学初为九年级学生购买A 、B 两种口罩,经过市场调查, A 的单价比B 的单价少2元,花费450元购买A 口罩和花费750元购买B 口罩的个数相等. (1)求A 、B 两种口罩的单价;(2)若学校需购买两种口罩共500个,总费不超过2100元,求该校本次购买A 种口罩最少有多少个?20.为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天,问原先每天生产多少万剂疫苗?21.2022年北京冬奥会吉祥物“冰墩墩”深受人们的喜欢,为了抓住商机,某商店决定购进A ,B 两种“冰墩墩”纪念品进行销售.已知每件A 种纪念品比每件B 种纪念品的进价高30元.用1000元购进A 种纪念品的数量和用400元购进B 种纪念品的数量相同.求A ,B 两种纪念品每件的进价分别是多少元? 22.计算(1)()()()223a b a b a a b -+-+ (2)22242211x x x x x x ⎛⎫-+÷- ⎪-+-⎝⎭23.先化简,再求值:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 24.观察下列等式: 第1个等式:1411=332⎛⎫-÷ ⎪⎝⎭;第2个等式:1921=483⎛⎫-÷ ⎪⎝⎭;第3个等式:11631=5154⎛⎫-÷ ⎪⎝⎭;第4个等式:12541=6245⎛⎫-÷ ⎪⎝⎭;第5个等式:13651=7356⎛⎫-÷ ⎪⎝⎭;……按照以上规律,解决下列问题: (1)写出第6个等式:___________;(2)写出你猜想的第n个等式_________(用含n的等式表示),并证明.25.为支援贫困山区,某学校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品与用120元购买A型学习用品的件数相同.(1)求A,B两种学习用品的单价各是多少元;(2)若购买A、B两种学习用品共100件,且总费用不超过2800元,则最多购买B型学习用品多少件?参考答案:1.C【分析】小于1的正数用科学记数法表示一般形式为10n a -⨯ ,n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.00098=9.8410-⨯ 故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1≤a <10,n 为由原数左边起第一个不为零的数字前面的0的个数. 2.A【分析】根据分式的值为0的条件:分子为0,分母不为0性质即可求解. 【详解】由题意可得:20x -=且30x +≠,解得2,3x x =≠-. 故选A .【点睛】此题主要考查分式为零的条件,解题的关键是熟知分式的性质. 3.A【分析】设甲队每小时检测x 人,根据甲队检测600人所用的时间比乙队检测500人所用的时间少10%,列出分式方程,即可解答. 【详解】设甲队每小时检测x 人,根据题意得,600500(110%)15x x =⨯--, 故选A .【点睛】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,找出等量关系,列出相应的分式方程. 4.B【分析】若设荧光棒的单价为x 元,根据等量关系“缤纷棒比荧光棒少20根”可列方程求解. 【详解】解:设荧光棒的单价为x 元,则缤纷棒单价是1.5x 元,由题意可得: 4030201.5x x-= 故选:B .【点睛】考查了由实际问题抽象出分式方程,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题分析题意,找到合适的等量关系是解决问题的关键.5.D【分析】设原来有x 人参加聚餐,则实际有(x -4)人参加聚餐,根据“总费用由实际参加的同学平均分摊,则每人比原来多支付4元”,列出方程即可解答. 【详解】解:设原来有x 人参加聚餐,则实际有(x -4)人参加聚餐, 根据题意得,2300230044x x +=- 故选:D .【点睛】本题考查由实际问题抽象出分式方程,是重要考点,掌握相关知识是解题关键. 6.B【分析】看分母中是否含有字母,如果含有字母则是分式,如果不含字母则不是,根据此依据逐个判断即可.【详解】分母中含有字母的是224x +,1x ,12x x ++, ∴分式有3个, 故选:B .【点睛】本题考查分式的定义,能够准确判断代数式是否为分式是解题的关键. 7.D【分析】先将分时方程化为整式方程,再根据方程无解的情况分类讨论,当40m -=时,当40m -≠时,0x =或210x +=,进行计算即可.【详解】方程两边同乘(21)x x +,得2(21)x mx +=, 整理得(4)2m x -=, 原方程无解,∴当40m -=时,4m =;当40m -≠时,0x =或210x +=,此时,24x m =-, 解得0x =或12x =-,当0x =时,204x m ==-无解; 当12x =-时,2142x m ==--,解得0m =; 综上,m 的值为0或4; 故选:D .【点睛】本题考查了分式方程无解的情况,即分式方程有增根,分两种情况,分别是最简公分母为0和化成的整式方程无解,熟练掌握知识点是解题的关键. 8.D【分析】设第二次分钱的人数为x 人,则第一次分钱的人数为(x -6)人,根据两次每人分得的钱数相同,即可得出关于x 的分式方程,此题得解.【详解】解:设第二次分钱的人数为x 人,则第一次分钱的人数为(x ﹣6)人, 依题意得:906x -=120x .故选:D .【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键. 9.C【分析】解不等式组得13a-≤x <4,再由题意可得a 的可取值由1,2,3,4,5,6,解分式方程得y =3﹣2a且y ≠2,由此可得符合条件的a 的值有4,6.【详解】解:41?232x a x x x -≤-⎧⎪⎨--<⎪⎩①②, 由①得,x ≥13a -, 由②得,x <4, ∴13a-≤x <4, ∵不等式组有且只有2个偶数解, ∴﹣2<13a-≤0, ∴1≤a <7, ∵a 是整数,∴a 的可取值由1,2,3,4,5,6,342122y y ay y --+=--, 去分母得3y ﹣4+y ﹣2=2y ﹣a , 解得y =3﹣2a ,∵方程有整数解, ∴a 是2的倍数,∵3﹣2a≠2,∴a ≠2,∴a 的取值为4,6,∴符合条件的所有整数a 的和为10, 故选:C .【点睛】本题主要考查了解不等式组和分式方程,解题的关键是掌握解不等式的和分式方程方法. 10.C【分析】先求得分式方程的解(含m 的式子),然后根据解是正数可知m +6>0,从而可求得m >-6,然后根据分式的分母不为0,可知x ≠2,即m +6≠2,由此即可求解. 【详解】将分式方程转化为整式方程得:2x +m =3x -6 解得:x =m +6.∵方程得解为正数,所以m +6>0,解得:m >-6. ∵分式的分母不能为0, ∴x -2≠0,∴x ≠2,即m +6≠2. ∴m ≠-4.故m >-6且m ≠-4. 故选C .【点睛】本题主要考查的是解分式方程和一元一次不等式的应用,求得方程的解,从而得到关于m 的不等式是解题的关键. 11.A【分析】根据解分式方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,解方程,最后验根即可求解. 【详解】解:1112x x x --=+ 去分母得:(1)(2)(2)x x x x x -+-=+ , 去括号得:22222x x x x x x +---=+ , 合并同类项移项得:22x =- , 系数化为1得:=1x - ,当=1x -时,2()0x x +≠ , ∴ 经检验,=1x -是原方程的根.故选A .【点睛】本题考查了分式方程的求解,注意在去分母时,常数也要乘以公分母,并且最后必须验根,这是解分式方程的易错点和关键点. 12.D【分析】解不等式组,根据整数解的个数判断a 的取值范围;解分式方程,用含a 的式子表示y ,检验增根的情况,再根据解的非负性,确定a 的范围,然后根据方程的整数解,确定符合条件的整数a ,相加即可.【详解】51123522x x x a x a -+⎧+≤⎪⎨⎪->+⎩①② 解不等式①,得x ≤11 解不等式②,得x >a∵不等式组至少有五个整数解 ∴a <732211a y y--=-- 322(1)a y -+=- 122a y -=- 21y a =+12a y +=10y -≠ 1y ∴≠∴112a +≠ ∴1a ≠ ∵0y ≥ ∴102a +≥ ∴1a ≥-∴1<7,1a a -≤≠且,a 为整数又∵12a +为整数 ∴a 可以取-1,3,5∴满足条件的所有整数a 之和是-1+3+5=7 故选:D【点睛】本题考查解不等式组求整数解、解分式方程、正确解不等式组是关键,利用不等式组的解集求参数是中考的常考题型. 13.x =-3【分析】方程两边都乘x (x -2)得出整式方程,求出方程的解,再进行检验即可. 【详解】解:方程两边都乘x (x -2),得 5x =3(x -2), 解得:x =-3,检验:当x =-3时x (x -2)≠0, 所以x =-3是原方程的解, 故答案为:x =-3.【点睛】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.解分式方程注意要检验. 14.1a -##1a -+【分析】直接利用分式的加减运算法则计算即可.【详解】解:原式=2121a a +-+ =211a a -+ =(1)(1)1a a a +-+=1a -.【点睛】本题考查了分式的加减运算法则,正确掌握分式的加减运算法则是解题的关键. 15.3-或74【分析】将分式方程转化为整式方程,根据分式方程无解,分类讨论求解即可. 【详解】解:由7344mx x x +=--可得:3127mx x +-= 即(3)19m x += 因为分式方程无解,所以,30m +=或4x =由30m +=可得3m =-将4x =代入(3)19m x +=可得,(3)419m +⨯=,解得74m = 故答案为:3-或74【点睛】本题考查分式方程无解计算,解题时需注意,分式方程无解要根据方程的特点进行判断,既要考虑分式方程有增根的情况,又要考虑整式方程无解的情况.16.x =2【分析】两边都乘以(x -1),去分母,得到x +x -1=3,再移项合并同类项系数化成1,得到化成整式方程的根x =2,检验10x -≠,确定原方程的根为x =2. 【详解】3111x x x +=--, 去分母,得,x +x -1=3移项合并同类项,得,2x =4,系数化成1,得,x =2,检验:当x =2时,12110x -=-=≠,∴x =2是原方程的根,∴故答案为:x =2.【点睛】本题考查了解分式方程,解决问题的关键是熟练去分母,解化成的整式方程,最后须验根.17.甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元【分析】设甲种树苗价格是x 元/棵,则乙种树苗价格是(x +10)元/棵,根据题意列出方程求解即可.【详解】解:设甲种树苗价格是x 元/棵,则乙种树苗价格是(x +10)元/棵, 依题意得:48010x +=360x, 解得:x =30,经检验,x =30是原方程的解,x +10=30+10=40(元),答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元.【点睛】本题考查了分式方程的应用,解题关键是设出未知数,根据题目中的等量关系列出方程,注意:分式方程要检验.18.6x =-【分析】观察可得最简公分母是(x +3)(x ﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】解:方程两边同乘以最简公分母()(33)x x +-,得3(3)(3)(3)x x x x x -=+-+-去括号,得22339x x x x -=+-+解方程,得6x =-检验:当6x =-时,(3)(3)0x x +-≠∴原方程的根是6x =-【点睛】解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(1)A 、B 两种型号口罩的单价分别为3元、5元;(2)该校本次购买A 种口罩最少有200个.【分析】(1)设A 种口罩的单价为x 元,则B 种口罩的单价为(x +2)元,根据题意列出方程并解答即可;(2)设购买A 种口罩m 个,则购买B 种口罩(500-m )个,利用总价=单价×数量,结合总价不超过2100元,即可得出关于m 的一元一次不等式,解之取其中的最小值即可得出结论.(1)解:设A 种口罩的单价为x 元,则B 种口罩的单价为(x +2)元, 依题意得:4507502x x =+, 解得:x =3,经检验:x =3是原方程的根,且符合题意,∴x +2=5.答:A 、B 两种型号口罩的单价分别为3元、5元;(2)解:设购买A 种口罩m 个,则购买B 种口罩(500-m )个,依题意得:3m +5(500-m )≤2100,解得:m ≥200.答:该校本次购买A 种口罩最少有200个.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式. 20.40万【分析】设原先每天生产x 万剂疫苗,根据现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天可得方程,解之即可.【详解】解:设原先每天生产x 万剂疫苗,由题意可得:()2402200.5120%x x +=+, 解得:x =40,经检验:x =40是原方程的解,∴原先每天生产40万剂疫苗.【点睛】此题主要考查了分式方程的应用,列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性.21.A 种纪念品每件的进价是50元,B 种纪念品每件的进价是20元【分析】设A 种纪念品每件的进价是x 元,则B 种纪念品每件的进价是x-30元,根据题意列出分式方程,解方程即可得出答案.【详解】解:设A 种纪念品每件的进价是x 元,则B 种纪念品每件的进价是x-30元, 根据题意列分式方程得,100040030x x =-, 去分母得,1000(30)400x x -=,解得50x =,经检验,50x =是原方程的解,所以A 种纪念品每件的进价为:50(元),B 种纪念品每件的进价为:503020-=(元)答:A 种纪念品每件的进价是50元,B 种纪念品每件的进价是20元.【点睛】本题考查分式方程的实际应用,根据题目中等量关系列出分式方程是解题关键,注意求出解后要进行检验.22.(1)243b ab --1x - 【分析】(1)根据单项式乘多项式和平方差公式可以解答本题;(2)先因式分解,再根据分式的减法和除法解答本题.(1)解:(1)()()()223a b a b a a b -+-+()22243a b a ab =--+22243a b a ab =---243b ab =--(2)(2)22242211x x x x x x ⎛⎫-+÷- ⎪-+-⎝⎭()()()()222212111x x x x x x x x -+-⎡⎤+=÷-⎢⎥---⎣⎦ ()()()()222211x x x x x -+-+⎡⎤=÷⎢⎥--⎣⎦()()()()()222121x x x x x ⎡⎤-+-=⎢⎥-+-⎢⎥⎣⎦ 21x x -=- 【点睛】本题考查整式的混合计算,分式的混合运算、单项式乘多项式、平方差公式,熟悉相关性质是解答本题的关键.23.32m m --;12【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值. 【详解】解:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭= 2223m m m m ÷--= 2232m m m m-⋅-=2m -∵m 是已知两边分别为2和3的三角形的第三边长,∴3-2<m <3+2,即1<m <5,∵m 为整数,∴m =2、3、4,又∵m ≠0、2、3∴m =4,∴原式=431422-=-. 【点睛】本题主要考查了分式的化简求值以及三角形三边的关系,解题的关键是掌握分式混合运算顺序和运算法则.24.(1)14961=8487⎛⎫-÷ ⎪⎝⎭ (2)21(1)12(2)1n n n n n n +⎛⎫-÷= ⎪+++⎝⎭,见解析【分析】(1)根据题目中的等式,可以写出第6个等式;(2)根据题目中的等式,可以写出第n 个等式,然后根据分式的乘除法,以及平方差公式因式分解,可以将等号左边的式子化简,从而可以证明结论成立.【详解】(1)解:由题意可得,第6个等式:1497486(1)4889784-÷=⨯=, 故答案为:1496)87(148-÷=; (2)解:猜想:第n 个等式是:()2211(1)2(1)11n n n n n +-÷=++-+, 证明: ()2211(1)2(1)1n n n +-÷++- ()221(2)21n n n n n +-+=⋅++ ()2111n n n +=⋅+1n +∴()2211(1)2(1)11n n n n n +-÷=++-+成立. 【点睛】本题考查数字的变化类规律探究,分式乘除法,掌握发现数字的变化特点,写出相应的式子.分式乘除法法则,平方差公式,规律探究的方法是解题关键.25.(1)A ,B 两种学习用品的单价分别为20元和30元(2)80【分析】(1)设A 种学习用品的单价为x 元,则B 种学习用品的单价为(10)x +元,由题意得18012010x x=+,然后解分式方程解即可; (2)设最多购买B 型学习用品x 件,则购买A 型学习用品()100x -件,由题意得,()30201002800x x +⨯-≤,解不等式即可.【详解】(1)解:设A 种学习用品的单价为x 元,则B 种学习用品的单价为(10)x +元 由题意得18012010x x=+ 去分母得,()18012010x x =+移项合并得,601200x =系数化为1得,20x经检验,20x 是原分式方程的解∴1030x +=元∴A 、B 两种学习用品的单价分别为20元和30元.(2)解:设最多购买B 型学习用品x 件,则购买A 型学习用品()100x -件由题意得,()30201002800x x +⨯-≤解得80x ≤∴最多购买B 型学习用品80件.【点睛】本题考查了分式方程的应用,一元一次不等式的应用.解题的关键在于根据题意正确的列等式与不等式.。
人教版八年级上册数学第十五章 分式含答案(附解析)

人教版八年级上册数学第十五章分式含答案一、单选题(共15题,共计45分)1、分式,,的最简公分母是()A.24B.24C.24D.242、甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天可完成,问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天,则可列方程为()A. B.10+8+x=30 C. D.3、当x=1时,下列分式中值为0的是()A. B. C. D.4、纳米是非常小的长度单位,已知1纳米= 毫米,某种病毒的直径为100纳米,若将这种病毒排成1毫米长,则病毒的个数是()A.10 2个B.10 4个C.10 5个D.10 8个5、方程的增根为()A.1B.1和-1C.-1D.06、是下列哪个分式方程的解()A. B. C. D.7、如果a2+2a-1=0,那么代数式的值是()A.-3B.-1C.1D.38、下列各式中,正确的是()A. B. C. D.9、化简:的结果是( )A. B. C. D.10、计算的结果是()A.0B.1C.-1D.x11、若,则的值是()A. B. C. D.12、已知,则满足为整数的所有整数的和是( ).A.-1B.0C.1D.213、若分式有意义,则x的取值范围是()A.x>3B.x<3C.x≠-3D.x=314、化简的结果是()A.1B.C.D.-115、二次根式中x的取值范围是()A.x>3B.x≤3且x≠0C.x≤3D.x<3且x≠0二、填空题(共10题,共计30分)16、甲、乙两个工程队承包一项工程合作15天完成,若他们单独做,甲比乙少用3天,设甲单独做需x天完成,则所列方程式________.17、计算:________.18、使在实数范围内有意义,则实数x的取值范围是________.19、若分式的值为零,则x的值为________ .20、计算-2-4的结果是________.21、计算m÷n•= ;化简=________22、计算﹣的结果为________.23、方程﹣=3的解是________.24、化简x÷ 等于________。
人教版八年级数学上:第15章《分式》单元测试(含答案)(含答案)

第15章分式一、解答题1.某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作______(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.2.某市修通一条与省会城市相连接的高速铁路,动车走高速铁路线到省会城市路程是500千米,普通列车走原铁路线路程是560千米.已知普通列车与动车的速度比是2:5,从该市到省会城市所用时间动车比普通列车少用4.5小时,求普通列车、动车的速度.3.市实验学校为创建书香校园,去年进一批图书.经了解,科普书的单价比文学书的单价多4元,用1500元购进的科普书与1000元购进的文学书本数相等.(1)求去年购进的文学书和科普书的单价各是多少元?(2)若今年书和科普书的单价与去年相比保持不变,该校打算用1250元再购进一批文学书和科普书,问购进科普书65本后至多还能购进多少本文学书?4.列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?5.某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.6.(2014•晋江市)某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?7.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?8.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?9.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.10.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?11.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?12.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?13.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?14.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?15.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?16.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?17.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?18.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.19.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.20.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.21.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?22.端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?23.杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折?(利润=售价﹣进价)24.某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?25.某市区一条主要街道的改造工程有甲、乙两个工程队投标.经测算:若由两个工程队合做,12天恰好完成;若两个队合做9天后,剩下的由甲队单独完成,还需5天时间,现需从这两个工程队中选出一个队单独完成,从缩短工期角度考虑,你认为应该选择哪个队?为什么?26.某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求有几种方案?27.甲、乙两人准备整理一批新到的图书,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?28.国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获得补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?29.某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:(1)参赛学生人数x在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?30.为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m﹣3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.第15章分式参考答案与试题解析一、解答题1.某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作天(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.【解答】解:(1)设乙工程队单独完成此项工程需要x天,由题意得: +=,解得:x=30,经检验:x=30是原分式方程的解,2x=60.答:甲、乙两工程队单独完成此项工程各需要60天,30天;(2)甲工程队单独做a天后,再由甲、乙两工程队合作:(1﹣a×)÷(+)=(天),由题意可得:1•a+(1+2.5)•≤64,解得:a≥36,答:甲工程队要单独施工36天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.故答案为:天.2.某市修通一条与省会城市相连接的高速铁路,动车走高速铁路线到省会城市路程是500千米,普通列车走原铁路线路程是560千米.已知普通列车与动车的速度比是2:5,从该市到省会城市所用时间动车比普通列车少用4.5小时,求普通列车、动车的速度.【解答】解:设普通列车的速度2x千米/小时,则动车的速度是5x千米/小时,由题意有:解得:x=40,经检验:x=40是分式方程的解,∴2x=80,5x=200.答:普通列车的速度80千米/小时,动车的速度是200千米/小时.3.市实验学校为创建书香校园,去年进一批图书.经了解,科普书的单价比文学书的单价多4元,用1500元购进的科普书与1000元购进的文学书本数相等.(1)求去年购进的文学书和科普书的单价各是多少元?(2)若今年书和科普书的单价与去年相比保持不变,该校打算用1250元再购进一批文学书和科普书,问购进科普书65本后至多还能购进多少本文学书?【解答】解:(1)设文学书的单价是x元,则科普书的单价是(x+4)元,根据题意,得=,解得x=8.经检验:x=8是原分式方程的解,x+4=12.答:文学书的单价是8元,则科普书的单价是12元.(2)设购进科普书65本后还能购进y本文学书,则12×65+8y≤1250,解得:y≤58.75,∵y为整数,∴y最大是58,答:购进科普书65本后至多还能购进58本文学书.4.(2014•西藏)列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?【解答】解:设七年级学生每小时植x棵,则八年级每小时植(x+10)棵,由题意得:=,解得:x=50,经检验:x=50是原分式方程的解,则x+10=50+10=60,答:七年级学生每小时植50棵,则八年级每小时植60棵.5.某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.【解答】解:设甲队单独完成这项工程需x天,由题意得:×6+(+)×16=1,解得:x=30,经检验:x=30是原分式方程的解,2x=60,答:甲队单独完成这项工程需30天,乙队单独完成这项工程需60天.6.某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?【解答】解:(1)设第一批葡萄进价每千克x元,则第二批葡萄的进价为(x+2)元,依题意得,,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批葡萄进价每千克8元.(2)由题意,得第一批的数量为:,50×2×11﹣(400+500)=200答:可盈利200元.7.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?【解答】解:设甲队每天完成x米2,乙队每天完成1.5 x米2,根据题意得.﹣=15,解得x=160,经检验,x=160,是所列方程的解.答:甲队每天完成160米2.8.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?【解答】解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.9.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.【解答】解:设文具厂原计划每天加工x套这种画图工具.根据题意,得﹣=4.解得 x=125.经检验,x=125是原方程的解,且符合题意.答:文具厂原计划每天加工125套这种画图工具.10.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?【解答】解:(1)设乙工程队单独完成这项工作需要a天,由题意得+36()=1,解之得a=80,经检验a=80是原方程的解.答:乙工程队单独做需要80天完成;(2)∵甲队做其中一部分用了x天,乙队做另一部分用了y天,∴=1即y=80﹣x,又∵x<46,y<52,∴,解得42<x<46,∵x、y均为正整数,∴x=45,y=50,答:甲队做了45天,乙队做了50天.11.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.12.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得 x=5经检验,x=5是原方程的解.所以 x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得 25a+5(2a+8﹣a)≤670解得 a≤21∴荣庆公司最多可购买21个该品牌的台灯.13.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?【解答】解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.14.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?【解答】解:(1)设乙种图书的单价为x元,则甲种图书的单价为1.5x元,由题意得﹣=10解得:x=20则1.5x=30,经检验得出:x=20是原方程的根,答:甲种图书的单价为30元,乙种图书的单价为20元;(2)设购进甲种图书a本,则购进乙种图书(40﹣a)本,根据题意得解得:20≤a≤25,所以a=20、21、22、23、24、25,则40﹣a=20、19、18、17、16、15∴共有6种方案.15.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.16.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?【解答】解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得: =,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:特快列车的平均速度为90km/h,动车的速度为144km/h.17.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【解答】解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.。
人教版八年级数学上册第十五章《分式》单元测试题(含答案)

人教版八年级数学上册第十五章《分式》单元测试题(含答案)一、选择题(每小题3分,共24分)1.在式子x y 3,πa ,13+x ,31+x ,a a 2中,分式有( ) A .1个 B .2个 C .3个 D .4个2.分式32+x x 无意义的条件是( ) A .x≠—3 B . x=-3 C .x=0 D .x=33.下列各分式中与分式ba a --的值相等是( ) A .b a a -- B .b a a +- C .a b a - D .—a b a - 4.计算(2-a a —2+a a )·a a 24-的结果是( ) A . 4 B . -4 C .2a D .-2a5.分式方程2114339x x x +=-+-的解是( ) A .x=-2 B .x=2 C . x=±2 D .无解6.把分式(0)xy x y x y+≠+中的x ,y 都扩大3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的13C .扩大为原来的9倍D .不变 7.若分式34922+--x x x 的值为0,则x 的值为( ) A .3 B .3或-3 C .-3 D .08.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求需提前5 天交货.设每天应多做x 件,则x 应满足的方程为 ( )A .72072054848x -=+ B .72072054848x+=+ C .720720548x -= D .72072054848x -=+ 二、填空题(每小题4分,共32分)9.当x= 时,分式22x x --值为零.10.计算.2323()a b a b --÷= .11.用科学记数法表示0.002 014= . 12.分式222439x x x x --与的最简公分母是____ ______. 13.若方程322x m x x-=--无解,则m =__________________. 14.已知a 1-b 1=21,则b a ab -的值为________________. 15.若R 1=11R +21R (R 1≠R 2),则表示R 1的式子是________________. 16.(2013年泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产.若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务.问:甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为________________.三、解答题(共64分)17.(14分)计算:(1)(2x -3y 2)-2÷(x -2y )3; (2)21+-x x ÷41222-+-x x x +11-x .18.(8分)先化简,再求值:211122x x x -⎛⎫-÷ ⎪++⎝⎭,其中2x =.19.(8分)解方程21124x x x -=--.20.(10分)先仔细看(1)题,再解答(2)题.(1)a 为何值时,方程 3x x -= 2 + 3a x -会产生增根? 解:方程两边乘(x-3),得x = 2(x-3)+a①.因为x=3是原方程的增根,•但却是方程①的解,所以将x=3代入①,得3=2×(3-3)+a ,所以a=3.(2)当m 为何值时,方程1y y --2m y y -=1y y-会产生增根?25.(12分)贵港市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,求原计划每小时修路的长度.26.(12分)荷花文化节前夕,我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局根据甲、乙两队的投标书测算,有三种施工方案.(1)甲队单独做这项工程刚好如期完成.(2)乙队单独做这项工程,要比规定日期多5天.(3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.第十五章 分式测试题参考答案一、1. C 2. B 3. C 4. B 5. B 6. A 7. C 8. D二、9.-2 10.a 4b 6 11.-2.014×10-3 12.x(x+3)(x-3) 13.114.-2 15.R 1=RR RR -22 16.333.123002300=++x x x 三、17.(1)7124yx . (2)1. 18.原式=11-x .代入x=2,得原式=1. 19.x=-23. 20.解:方程两边乘y (y-1),得y 2-m=(y-1)2.化简,得m=2y -1.因为y=0和y=1都是原方程的的增根,但却是化简后整式方程的解.故将y=0和y=1分别代入m=2y -1,得m=-1或m=1.所以m =±1.21.解:设原计划每小时修路x 米,根据题意,得8%)201(24002400=+-xx . 解得50=x .经检验.x=50是原方程的解,且符合题意.答:原计划每小时修路50米.22.解:设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x +5)天. 根据题意,得415x x x +=+. 解得x=20.经检验,x=20是原方程的解,且符合题意.所以在不耽误工期的情况下,有方案(1)和方案(3)两种方案合乎要求.方案(1)需工程款1.5×20=30(万元),方案(3)需工程款1.5×4+1.1×20=28(万元). 故方案(3)最节省工程款且不误期.人教版八年级上册第十五章分式单元检测(含答案)一、单选题1.在5x ,38a ,2π,1x a -中,属于分式的个数为( ) A .0个B .1个C .2个D .3个 2.下列分式为最简分式的是( )A .11a a --B .235xy y xy -C .22m n n m +-D .22a b a b++ 3.下列各式中,变形不正确的是( )A .2233x x=-- B .66a a b b -=- C .3344x x y y -=- D .5533n n m m --=- 4.计算322b b 1·a a b⎛⎫⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭的值为 ( ) A .222b a B .6ab 2 C .8a D .15.计算:22m-1m -1m m÷的结果是 ( ) A .m m 1+ B .1m C .m-1 D .1m-16.若111u v f+=,则用u 、v 表示f 的式子应该是( ) A .u v uv + B .uv u v + C .v u D .u v7.若234a b c ==,则2222232a bc c a ab c-+--的值是( ) A .13 B .13- C .12 D .12- 8.纳米材料多被应用于建筑、家电等行业,实际上,纳米(nm)是一种长度的度量单位:1纳米=0.000000001米,用科学记数法表示0.12纳米应为( )A.0.12×10-9米B.0.12×10-8米C.1.2×10-10米D.1.2×10-8米 9.计算20140的结果是( )A .1B .0C .2014D .﹣1 10.当m 为何值时,方程会产生增根( ) A.2 B.-1 C.3 D.-311.下列各式中,是分式方程的是( )A.x+y=5B.C.D.12.已知一汽船在顺流中航行46千米和逆流中航行34千米,共用去的时间,正好等于它在静水中航行80千米用去的时间,且水流速度是2千米/时,求汽船在静水中的速度,若设汽船在静水中速度为x 千米/时,则所列方程正确的是( ) A.+= B.+= C.=- D.=+二、填空题13.当x =_________时,分式242x x -+的值为0. 14.当x =__________时,分式3x x-无意义. 15.若a+b=1,且a ∶b=2∶5,则2a-b=____________.16.计算:(12)﹣2+(﹣2)3﹣20110=__________.三、解答题17.解方程:(1)233011x x x +-=--;(2)1433162x x -=--. 18.计算:①()223·14a aa a a ----; ②211a a a ---; ③225611x x x x x+⎛⎫-÷ ⎪--⎝⎭ 19.22322222244(82)25356a b ab b b a b b ab a b ab a ++-÷⋅---+,其中12a =-,14b =. 20.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本. (1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n 折售完剩余的书,结果第二次共盈利100m 元(n 、m 为正整数),求相应的n 、m 的值.答案1.C 2.D 3.D 4.C 5.A 6.B 7.C 8.C 9.A10.C 11.D 12.B 13.2 14.315.-1 716.﹣517.(1)x=0;(2)23 x=.18.①11aa-+;②11a-;③-5x19.242a ba b+-+,020.(1)第一次购书的进价为5元/本,且第二次买了2500本;(2)当n=4时,m=4;当n=6时,m=11;当n=8时,m=18人教版八年级上数学第十五章分式单元测试(解析)一、选择题(每小题3分,共24分)1.若代数式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x=32.下列等式成立的是( )A.+=B.=C.=D.=-3.下列运算结果为x-1的是( )A.1-B.·C.÷D.4.化简+的结果是( )A.m+nB.n-mC.m-nD.-m-n5.当x=6,y=3时,代数式·的值是( )A.2B.3C.6D.96.计算÷-的结果为( )A. B. C. D.a7.甲、乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( )A.甲、乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与v有关8.(2016黑龙江龙东中考)关于x的分式方程=3的解是正数,则字母m的取值范围是( )A.m>3B.m<3C.m>-3D.m<-3二、填空题(每小题3分,共24分)9.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为.10.当x= 时,分式的值为0.11.某市为治理污水,需要铺设一段全长600 m的污水排放管道.铺设120 m后,为加快施工速度,后来每天比原计划增加20 m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可列方程: .12.计算:÷= .13.如图15-4-1,点A、B在数轴上,它们所对应的数分别是-4、,且点A、B到原点的距离相等,则x= .图15-4-114.甲、乙二人做某种机械零件,已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件.15.计算(x+1)的结果是.16.若a2+5ab-b2=0,则-的值为.三、解答题(共52分)17.(4分)化简:-.18.(5分)计算:÷.19.(6分)(2016山东菏泽中考)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)20.(6分)先化简,再求值:÷·,其中a=-,b=.21.(7分)解分式方程:(1)(2016广西贵港中考)+1=-;(2)(2016湖北天门中考)=-1.22.(6分)(2015四川广元中考)先化简:÷,然后解答下列问题:(1)当x=3时,求代数式的值;(2)原代数式的值能等于-1吗?为什么?23.(8分)(2016辽宁铁岭中考)先化简,再求值:÷-,其中a=(3-)0+-.24.(10分)(2016新疆乌鲁木齐中考)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?第十五章分式答案解析满分:100分;限时:60分钟一、选择题(每小题3分,共24分)1.若代数式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x=3答案 C 由分式有意义的条件得x-3≠0,解得x≠3.故选C.2.下列等式成立的是( )A.+=B.=C.=D.=-答案 C +=,所以A错误;=不成立,所以B错误;==,所以C正确;=-,所以D错误,故选C.3.下列运算结果为x-1的是( )A.1-B.·C.÷D.答案 B 选项A的运算结果为,选项B的运算结果为x-1,选项C的运算结果是,选项D的运算结果为x+1.故选B.4.化简+的结果是( )A.m+nB.n-mC.m-nD.-m-n答案 A +=-==m+n,故选A.5.当x=6,y=3时,代数式·的值是( )A.2B.3C.6D.9答案 C ·=·=.当x=6,y=3时,原式==6.6.计算÷-的结果为( )A. B. C. D.a答案 C ÷-=÷-=×-=-=,故选C.7.甲、乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( )A.甲、乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与v有关答案 B 设从A地到B地的距离为2s,∵甲的速度v保持不变,∴甲所用时间为,∵乙先用v的速度到达中点,再用2v的速度到达B地,∴乙所用时间为+=+,∵s>0,v>0,∴+>,故甲先到达B地.8.(2016黑龙江龙东中考)关于x的分式方程=3的解是正数,则字母m的取值范围是( )A.m>3B.m<3C.m>-3D.m<-3答案D解分式方程,得x=-3-m,∵方程的解为正数,∴-3-m>0,解得m<-3,∵x+1≠0,∴x≠-1,∴-3-m≠-1,解得m≠-2,∴m<-3,故选D.二、填空题(每小题3分,共24分)9.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为.答案 6.9×10-7解析0.000 000 69=6.9×10-7.10.当x= 时,分式的值为0.答案 2解析分式的值为0,则即所以当x=2时,原分式的值为0.11.某市为治理污水,需要铺设一段全长600 m的污水排放管道.铺设120 m后,为加快施工速度,后来每天比原计划增加20 m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可列方程: .答案+=11解析根据题意,可列方程为+=11.12.计算:÷= .答案解析原式=a4b2c-2÷=a4b2c-2÷=b6c-2=.13.如图15-4-1,点A、B在数轴上,它们所对应的数分别是-4、,且点A、B到原点的距离相等,则x= .图15-4-1答案解析由题意,得=4,解得x=,经检验,x=是方程=4的解.14.甲、乙二人做某种机械零件,已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件. 答案9解析设甲每小时做x个零件,则乙每小时做(x-3)个零件,根据题意可得=,解得x=9.经检验,x=9是方程的解,且符合题意.因此甲每小时做9个零件.15.计算(x+1)的结果是.答案x解析(x+1)=(x+1)=(x+1)=x.16.若a2+5ab-b2=0,则-的值为.答案 5解析由a2+5ab-b2=0,得b2-a2=5ab,∴-===5.三、解答题(共52分)17.(4分)化简:-.解析原式=-=-==1.18.(5分)计算:÷.解析原式=·=·=·=.19.(6分)(2016山东菏泽中考)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)解析设A4薄型纸每页的质量为x克,则厚型纸每页的质量为(x+0.8)克.根据题意,得×=.解得,x=3.2.经检验,x=3.2是原分式方程的根,且符合题意.答:A4薄型纸每页的质量为3.2克.20.(6分)先化简,再求值:÷·,其中a=-,b=.解析÷·=··=··=.当a=-,b=时,原式==-6.21.(7分)解分式方程:(1)(2016广西贵港中考)+1=-;(2)(2016湖北天门中考)=-1.解析(1)去分母,得x-3+x-2=-3,移项,得x+x=-3+3+2,合并同类项,得2x=2,系数化为1,得x=1,经检验,x=1为原分式方程的根,∴分式方程的解为x=1.(2)两边同时乘(x+1)(x-1),得3(x-1)=x(x+1)-(x+1)(x-1),解得x=2. 检验:当x=2时,(x+1)(x-1)=(2+1)(2-1)=3≠0,∴原方程的解为x=2.22.(6分)(2015四川广元中考)先化简:÷,然后解答下列问题:(1)当x=3时,求代数式的值;(2)原代数式的值能等于-1吗?为什么? 解析原式=·=·=.(1)当x=3时,原式=2.(2)不能.理由:如果=-1,那么x+1=-x+1,则x=0,当x=0时,原代数式中的除式=0,矛盾, ∴原代数式的值不能等于-1.23.(8分)(2016辽宁铁岭中考)先化简,再求值:÷-,其中a=(3-)0+-.解析 原式=÷- =×- =- =,∵a=(3-)0+-=1+3-1=3,∴原式===-.24.(10分)(2016新疆乌鲁木齐中考)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售? 解析 (1)设第一次购入的空调每台进价是x 元,依题意,得=2×,解得x=2 400,经检验,x=2 400是原方程的解.答:第一次购入的空调每台进价为2 400元.(2)第一次购进空调的数量为24 000÷2 400=10台,总收入为3 000×10=30 000元, 第二次购进空调的数量为52 000÷(2 400+200)=20台,不妨设打折售出y 台空调, 则总收入为(3 000+200)·(20-y)+(3 000+200)·0.95y=(64 000-160y)元.两次空调销售的总利润为[30 000+(64 000-160y)]-(24 000+52 000)=(18 000-160y)元, 依题意,得18 000-160y≥(24 000+52 000)×22%,解得y≤8.答:最多可将8台空调打折出售.人教版八年级上第十五章《分式》单元检测卷(含答案)一、选择题(每题3分,共30分)1.(2019·常州)若代数式x +1x -3有意义,则实数x 的取值范围是( )A .x =-1B .x =3C .x ≠-1D .x ≠3 2.如果把xy x y+中的x 与y 都扩大10倍,那么这个代数式的值() A .不变 B .扩大20倍C .扩大10倍D .缩小为原来的110 3.计算22x y y y x x -⎛⎫÷⋅ ⎪⎝⎭的结果是() A .2x y B .y x C .2x y - D .-x4.已知a =2-2,b =1)0,c =(-1)3,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a5.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可以用科学记数法表示为( )A .3.7×10-5克B .3.7×10-6克C .3.7×10-7克D .3.7×10-8克6.若(244a -+12a-)⋅w =1,则w =( ) A .a +2(a ≠-2) B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠-2)7.分式方程11x --21x +=211x -的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解 8.若分式22-x 与1互为相反数,则x 的值为( ) A .2B .-2C .1D .-19.(2019·十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( )A.6000x -6000x +20=15 B.6000x +20-6000x =15 C.6000x -6000x -15=20 D.6000x -15-6000x=20 10.已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围为( ) A .m <-6B .m >-6C .m >-6且m ≠-4D .m ≠-4二、填空题(每题3分,共18分)11.如果分式11x x +-的值为0,那么x 的值为______. 12.某中学图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多4本.求文学书的单价.设这种文学书的单价为x 元,则根据题意,所列的方程是______.13.计算:(-2xy -1)-3=______.14.(2019·绥化)当a =2018时,代数式⎝⎛⎭⎫a a +1-1a +1÷a -1(a +1)2的值是________. 15.若(x -y -2)2+│xy +3│=0,则(3x x y --2x x y -)÷1y的值是. 16.(2019·齐齐哈尔)关于x 的分式方程2x -a x -1-11-x=3的解为非负数,则a 的取值范围为_____________.三、解答题(共52分)17.(12分)(1)计算1-2a b a b -+÷222244a b a ab b -++;(2) (2019·枣庄)先化简,再求值:x 2x 2-1÷⎝⎛⎭⎫1x -1+1,其中x 为整数且满足不等式组⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2.18.(12分)解方程:(1)32x x ++22x -=3;(2)241x -+21x x +-=-1.19.(8分)先化简2249xx--÷(1-13x-),再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.20.(8分)(2019·黄冈)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.21.(12分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?参考答案1.D2.A3.D4.B5.D6.D7.D8.D9.A 10.C 11.-112.45.1240200=-xx 13.-338xy 14.201915.-23 16.a ≤4且a ≠3 17.(1)-b a b+. (2)由⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2得2<x ≤72. ∵x 为整数,∴x =3,∴x 2x 2-1÷⎝⎛⎭⎫1x -1+1=x 2()x +1()x -1÷1+x -1x -1=x 2()x +1()x -1×x -1x =x x +1=34. 18.(1)x =4.(2)x =31.19.答案不唯一,略20.解:设其他班步行的平均速度为x 米/分,则九(1)班步行的平均速度为1.25x 米/分.依题意,得4000x -40001.25x=10,解得x =80, 经检验,x =80是原方程的解,且符合题意,∴1.25x =100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.21. (1)乙队单独做需要100天才能完成任务.(2)甲、乙两队实际分别做了14天和65天.。
人教版八年级数学上册第十五章分式章检测题(含答案解析)

人教版八年级数学上册第十五章分式章检测题一、 选择题 1.若代数式13x x +-有意义,则实数x 的取值范围是( ) A.x=-1 B.x=3 C.x ≠-1 D.x ≠32.下列各式从左到右的变形正确的是( )A.211a a a +=+ B.2222255102a b ab c abc-=- C.b a a bb a a b--=--+ D.29133m m m -=-+ 3.某工厂计划生产300个零件,由于采用新技术,实际每天生产零件的数量是原计划的2倍,因此提前5天完成任务设原计划每天生产零件x 个,根据题意,所列方程正确的是( ) A. 30030052x x -=+ B. 30030052x x -= C. 30030052x x -= D.30030052x x-=+ 4.下列计算正确的是( ) A. 222122b a a b b ab -⋅=--- B. 2m n mn x x x÷= C. ()221a b a ab a a -÷-= D.318(6)55xy xy xy a a÷= 5.一辆货车送货上山,并按原路下山,上山速度为a 千米/时,下山速度为b 千米/时,则货车上、下山的平均速度为( )A. 1()2a b +千米/时 B. aba b+千米/时 C. 2a bab+千米/时 D.2aba b+千米/时 6.化简341132a a a a -⎛⎫⎛⎫+⋅- ⎪⎪--⎝⎭⎝⎭的结果等于( ) A.2a -- B.23a a -- C.2a + D.32a a -- 7.当|a |=3时,代数式213124a a a -⎛⎫-÷ ⎪--⎝⎭的值为( )A.5B.-1C.5或-1D.08.如图,“优选1号”水稻的实验田是边长为a m (a >1)的正方形去掉一个边长为1m 的正方形水池后余下的部分,“优选2号”水稻的实验田是边长为(a -1)m 的正方形,若两块试验田的水稻都收了600kg ,则对于这两种水稻的单位面积产量的说法正确的是( )A.“优选1号”水稻单位面积产量高B.“优选2号”水稻单位面积产量高C.两种水稻单位面积产量相等D.“优选1号”水稻的单位面积产量不大于“优选2号”水稻的单位面积产量 9.定义一种新运算1d an n n b n x x a b -⋅=-⎰,例如2d kn x x ⎰2k =2n -,若25d 2mm x x --=-⎰,则m= A.-2 B.25- C.2 D.2510.已知关于x 的分式方程23x mx -=-1的解是非正数,则m 的取值范围是( ) A.m ≤3 B.m<3 C.m>-3 D.m ≥-3 二、 填空题11.若分式22x xx-的值为0,则x 的值是__________.12.冠状病毒在系统分类上属套式病毒目、冠状病毒科、冠状病毒属.冠状病毒属的病毒是具有囊膜、基因组为线性单股正链的RNA 病毒,是自然界广泛存在的一大类病毒,它的平均直径是100纳米,1纳米=910-米,则冠状病毒的直径用科学记数法表示为__________米.13.计算:2111x x x+--=__________. 14.方程33122x x x-+=--的解是__________. 15.计算: 2221222332a b c a b ----⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=__________.16.若112m n +=,则分式552m n mn m n+---的值为__________. 17.我们定义一种新运算:记22*()()a b a b a b =+--,如果设A 为代数式,若2212*4162x yA x y x y-=-+以,则A=_________.(用含x ,y 的代数式表示) 18.若关于x 的分式方程2222x mm x x+=--有增根,则m 的值为_________. 三、 解答题19.(6分)计算:222131111x x x x x x x ⎛⎫⎛⎫++-÷- ⎪⎪---⎝⎭⎝⎭.20.(7分)先化简,再求值:2221211a a a a a a +⎛⎫÷- ⎪-+-⎝⎭,其中101(2)3a -⎛⎫=-- ⎪⎝⎭. 21.(7分)“一带一路”倡议给沿线国家和地区带来很大的经济效益,某企业的产品对沿线地区实行优惠,决定在原定价的基础上每件降价40元,这样按原定价需花费5000元购买的产品,现在只花费了4000元,求每件产品的实际定价是多少元.22.(8分)解分式方程:(1)29472;393x x x x +-=+-- (2)22402242x x x x x -++=+--. 23.(8分)化简代数式:23111x x xx x x ⎛⎫-÷⎪-+-⎝⎭,再从不等式组2(1)161031x x x x --≥⎧⎨+>+⎩的解集中取一个合适的整数值代入,求出代数式的值.24.((10分)在我市“青山绿水”行动中,某社区计划对面积为3600m 2的区域进行绿化,经投标,由甲、乙两个工程队来完成已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,当两队各自独立完成面积为600m 2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天各能完成的绿化面积;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用是0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?参考答案 1.答案:D 解析:∵代数式13x x +-有意义,∴x -3≠0, ∴x ≠3.故选D. 2.答案:C解析:A 项,211a a a +≠+,所以A 中的变形不正确;B 项,2222255102a b aab c bc -=-,所以B 中的变形不正确;C 项,()()b a a b a bb a a b a b ----==---++,故C 中的变形正确;D 项,2933m m m -=+-,所以D 中的变形不正确.故选C. 3.答案:C解析:根据“实际每天生产零件的数量是原计划的2倍,提前5天完成任务”可以列出分式方程.由题意可得30030052x x-=,故选C. 4.答案:C 解析:A ,2222322b a a a b b a b b -⋅=---,故A 项错误;B ,m n m x x n÷=,故B 项错误;C ,()2211()a b a b a ab a a a a b a --÷-=⋅=-,故C 项正确;D ,31(6)510xy xy a a÷=,故D 项错误.故选C. 5.答案:D解析:设上山的路程为x 千米,则上山的时间为x a小时,下山的时间为x b小时,故上、下山的平均速度为22xabx x a b a b=++千米/时.故选D. 6.答案:A解析:原式=223341243332232a a a a a a a a a a a a ⎛⎫-----+⎛⎫+⋅-=⋅= ⎪ ⎪------⎝⎭⎝⎭(2)(2)3a a a -+⋅-(3)2a a ---(2)2a a =-+=--.故选A.7.答案:B 解析:原式=3(2)(2)223a a a a a a -+-⋅=+--, ∵|a |=3,a ≠±2且a ≠3,∴a =±3,a ≠±2且a ≠3,∴a =-3,当a =-3时,原式=-3+2=-1,故选B. 8.答案:B解析:“优选1号”水稻单位面积产量与“优选2号”水稻单位面积产量的差为2222600600600(1)600(1)1(1)(1)(1)(1)(1)a a a a a a a a -+-=-=--+-+-21200kg,10,(1)(1)a a a -+>+-2(1)a -212000,0(1)(1)a a ->∴<+-, ∴“优选1号”水稻单位面积产量低于“优选2号”水稻单位面积产量,即“优选2号”水稻单位面积产量高.故选B. 9.答案:B解析:由题意得11(5)2m m ---=-,∴112,51105m m m -=-∴-=-,解得25m =-, 经检验,25m =-是1125m m-=-的解.故选B. 10.答案:A解析:方程两边同乘x -3,得2x -m=x -3,移项、合并同类项,得x=m -3,∵分式方程213x mx -=-的解是非正数且x -3≠0.∴30(3)30m m -≤⎧⎨--≠⎩,解得m ≤3,故选A. 11.答案:2解析:∵分式22x xx-的值为0,220x x -=且x ≠0,解得x=2.12.答案:7110-⨯解析:100纳米=9710010110--⨯=⨯米. 13.答案:x+1解析:原式=21(1)(1)1111x x x x x x x +--==+---. 14.答案:x=1解析:去分母,得x -3+x -2=-3, 移项、合并同类项,得2x=2, 解得x=1,检验:当x=1时,x -2≠0, 所以原方程的解为x=1.15.答案:62b c解析:原式=242244422299344a b c a b a b c ----⎛⎫⎛⎫-÷=÷ ⎪ ⎪⎝⎭⎝⎭64462294ba b b c c --⎛⎫== ⎪⎝⎭.16.答案:-4解析:由112m n+=,可得2m n mn +=,故5525()21024()2m n mn m n mn mn mnm n m n mn+-+--===----+-.17.答案:2(2)x y - 解析:∵22*()()[()()][()(a b a b a b a b a b a b a =+--=++-+--b) ]22a b =⋅=22124,*4162x yab A x y x y-=-+, 1244(2)(2)2x yA x y x y x y -∴⋅=+-+,2(2)(2)21x y x y x y A x y -+-∴=⋅+, 2(2)A x y ∴=-.18.答案:1解析:方程两边都乘x -2,得x -2m=2m (x -2).① ∵原方程有增根,∴最简公分母x -2=0,解得x=2, 将x=2代人①式得2=2m=0,解得m=1,故m 的值是1. 19.答案:见解析解析:原式=2(1)131(1)(1)111x x x x x x x x x x ⎛⎫⎡⎤++-+÷- ⎪⎢⎥-+---⎣⎦⎝⎭ =2121111xx x x x x ++⎛⎫+÷ ⎪---⎝⎭=2111(1)x x x x +-⋅-+ =11x +. 20.答案:见解析解析:2221211a a a a a a +⎛⎫÷- ⎪-+-⎝⎭=2(1)2(1)(1)(1)a a a a a a a +--÷-- =2(1)(1)(1)21a a a a a a a +-⋅--+ =(1)11a a aa a +⋅-+ =21a a -.当11(2)3123a -⎛⎫=--=-= ⎪⎝⎭时,原式=22421=-. 21.答案:见解析解析:设每件产品的实际定价是x 元,则原定价为(x+40)元,由题意,得=5000400040x x=+. 解得x=160.经检验,x=160是原方程的解,且符合题意.答:每件产品的实际定价是160元.22.答案:见解析解析:(1)方程两边同乘3(x -3),得2x+9=3(4x -7)+6(x -3), 解得x=3,检验:当x=3时,3(x -3)=0, ∴原方程无解.(2)方程两边同乘x 2-4,得 (x -2)2-40=(x+2)2,去括号,得22444044x x x x -+-=++, 移项、合并同类项,得-8x=40, 解得x=-5,检验:当x=-5时,24x -≠0, 所以x=-5是分式方程的解. 23.答案:见解析 解析:原式=3(1)(1)(1)(1)11x x x x x x x x x x+-+-⋅-⋅-+ =3(1)(1)x x +--=24x +.{x −2(x −1)≥1,①6x +10>3x +1,②,解①得x ≤1, 解②得x>-3,故不等式组的解集为-3<x ≤1,当代数式有意义时,x ≠±1,0,∵x 为整数,∴x=-2.当x=-2时,原式=0.24.答案:见解析解析:(1)设乙工程队每天能完成绿化的面积是xm 2,则甲工程队每天能完成绿化的面积是2xm 2.根据题意,得60060062x x-=,解得x=50, 经检验,x=50是原方程的解,且符合题意, 则2x=50×2=100.答:甲、乙两工程队每天能完成绿化的面积分别是100m 2、50m 2.(2)设安排甲工程队绿化a 天,乙工程队绿化b 天刚好完成绿化任务.由题意得100a +50b=3600,则722ba -=, 根据题意得721.20.5402bb -⨯+≤, 解得b ≥32.答:至少应安排乙工程队绿化32天.。
人教版八年级数学上册《第十五章 分式》章节检测卷-附答案

人教版八年级数学上册《第十五章 分式》章节检测卷-附答案学校:___________班级:___________姓名:___________考号:___________知识点回顾1、分式的定义:一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式。
2、分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变。
A A C B B C ⋅=⋅ A A C B B C÷=÷(C ≠0)。
3、分式的约分和通分:定义1:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
定义2:分子与分母没有公因式的分式,叫做最简分式。
定义3:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
定义4:各分母的所有因式的最高次幂的积叫做最简公分母。
4、分式的乘除:①乘法法则:d b c a d c b a ⋅⋅=⋅。
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
②除法法则:c b d a c d b a d c b a ⋅⋅=⋅=÷。
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
③分式的乘方:n n n a a b b ⎛⎫= ⎪⎝⎭。
分式乘方要把分子、分母分别乘方。
④整数负指数幂:1n na a -=。
5、分式的加减:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。
①同分母分式的加减:a b a b c c c±±=; ②异分母分式的加法:a c ad bc ad bc b d bd bd bd ±±=±=。
注:不论是分式的哪种运算,都要先进行因式分解。
练习题一、选择题1. 下列各式不是分式的是( )A .x yB .3x x+1C .x πD .x−1x2.下列分式变形从左到右一定成立的是()A.ab =a⋅ab⋅bB.ab=a+cb+cC.−ab=−abD.−a−b=−ab3.若分式2x−5有意义,则x的取值范围是()A.x≠5B.x≠0C.x=0D.x=54.分式x+1x2−x ,2x2−1,−xx2+2x+1的最简公分母是()A.(x2−x)(x+1)B.(x2−1)(x+1)2 C.x(x−1)(x+1)2D.x(x+1)25.关于x的方程x−1x−3=2+ kx−3有增根,则k的值为()A.±3 B.3 C.﹣3 D.26.在计算时,把运算符号“÷”看成了“+”,得到的计算结果是 m,则这道题正确的结果是()A.m B.1m C.m-1 D.1m−17.“五一”节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设实际参加游览的同学共x人,则所列方程为()A.180x −180x+2=3B.180x+2−180x=3C.180x −180x−2=3D.180x−2−180x=38.若关于x的分式方程m1−x =3x−1−2有非负实数解,且关于x的不等式组{x+1≥0x+m≤2有解,则满足条件的所有整数m的和为()A.−9B.−8C.−7D.−6二、填空题9.a2b2÷(ba)2 =10.若分式2−|x|x+2的值为零,则x的值为.11.方程x+1x =x−1x+1的解是.12.已知a、b为实数,且ab=1,设M=aa+1+bb+1,N=1a+1+1b+1则M、N的大小关系是M N(填=、>、<、≥、≤).13.若关于x 的方程4x x−2﹣5=mx 2−x 无解,则m 的值为 .三、解答题14.解方程(1)x x−2−1=1x 2−4(2)3x x+2+2x−2=315.先化简,再求值:x−3x 2−4⋅x 2+4x+4x−3−(2x−2+1),其中x =23.16.为了响应打赢“蓝天保卫战”的号召,黄老师上下班的交通方式由驾车改为骑自行车,黄老师家距离学校的路程是9千米,在相同的路线上,驾车的平均速度是骑自行车的平均速度的3倍,所以黄老师每天上班要比开车早出发20分钟,才能按原驾车的时间到达学校.(1)求黄老师驾车的平均速度;(2)据测算,黄老师的汽车在上下班行驶过程中平均每小时碳排放量约为2.4千克,按这样计算,求黄老师一天(按一个往返计算)可以减少的碳排放量.17.某商场计划购进一批篮球和足球,其中篮球的单价比足球的单价多30元,已知用360元购进的足球和用480元购进的篮球数量相等.(1)篮球和足球的单价各是多少元?(2)若篮球售价为每个150元,足球售价为每个110元,商场售出足球的数量比篮球数量的三分之一还多10个,且获利超过1300元,问篮球最少要卖多少个?参考答案1.C2.C3.A4.C5.D6.A7.D8.D9.a410.211.x=−1312.=13.﹣4或114.(1)解:方程两边同乘以(x+2)(x−2)去分母得:x(x+2)−(x+2)(x−2)=1解得:x=−32经检验:当x=−32时(x+2)(x−2)≠0所以原分式方程的解为x=−32.(2)解:方程;两边同乘以(x+2)(x−2)去分母得:3x(x−2)+2(x+2)=3(x−2)(x+2)整理得:−4x=−16解得:x=4经检验:当x=4时(x+2)(x−2)≠0所以原分式方程的解为:x=4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《第15章分式》一、选择题1.在,﹣,﹣y2,,,,3x﹣2,a﹣2﹣b﹣2中,属于分式的个数为()A.3 B.4 C.5 D.62.下列代数式:①;②;③;④;⑤3y﹣3+2;⑥;⑦(x﹣2)0中,在字母取任何值的情况下都有意义的代数式个数为()A.2 B.3 C.4 D.53.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是()A.米B.米C.米D.米4.式子2a﹣1可以化为()A.B.C.﹣2a D.2a﹣15.下列运算正确的是()A.x10÷x5=x2B.x﹣4•x=x﹣3C.x3•x2=x6D.(2x﹣2)﹣3=﹣8x66.下列分式是最简分式的()A.B.C.D.7.下面约分的式子中,正确的是()A.B.C.D.8.下列各式中,可能取值为零的是()A.B.C.D.9.式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C. D.10.分式的最简公分母是()A.3xy B.6x3y2 C.6x6y6 D.x3y311.把,,通分过程中,不正确的是()A.最简公分母是(x﹣2)(x+3)2B. =C. =D. =12.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣613.若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则正确的为()A.a<b<c<d B.c<a<d<b C.a<d<c<b D.b<a<d<c14.若分式中的m、n的值同时扩大到原来的10倍,则此分式的值()A.不变 B.是原来的20倍C.是原来的10倍D.是原来的15.若m人需a天完成某项工程,则这样的人(m+n)个完成这项工程需要的天数是()A.(a+m)B. C. D.16.下列计算正确的是()A.÷﹣÷=B.÷(﹣)=2yC.÷(1﹣)=1 D.(1﹣)÷=117.化简÷(1+)的结果是()A.B. C.D.18.若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1 C.﹣1.5或2 D.﹣0.5或﹣1.519.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.20.若+=,则用u、v表示f的式子应该是()A. B. C.D.21.已知x﹣=7,则x2+的值是()A.49 B.48 C.47 D.5122.如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.二、填空题:23.如果分式的值为零,那么x的值为.24.若关于x的分式方程的解为正数,那么字母a的取值范围是.25.若|a|﹣2=(a﹣3)0,则a= .26.分式,,的最简公分母为.27.纳米是一种长度单位,常用于度量物质原子的大小,1纳米=10﹣9米,已知某种植物孢子的直径为45000纳米,用科学记数法表示该孢子的直径为米.28.①若=,则= .②若==,则= .③已知+=4,则= .④若m+n=5,mn=3,则+= .29.不改变分式的值,把分式中的分子、分母中各项的系数都化为整数,且使系数的绝对值最小,则所得的结果为.30.计算:①()﹣2014•(﹣)﹣2015= ;②(π﹣)0+(﹣)﹣3= ;③﹣2﹣3= .31.计算化简(结果若有负指数幂要化为正整数指数幂):= .32.计算(m﹣)÷(n﹣)的结果为.33.若M=,N=,P=,则M﹣N+P= .34.小刚同学不小心弄污了练习本的一道题,这道题是:“化简÷()”,其中“☀”处被弄污了,但他知道这道题的化简结果是,则“☀”处的式子为.35.已知a2﹣6a+9与|b﹣1|互为相反数,则式子()÷(a+b)的值为.36.当x= 时,2x﹣3与的值互为倒数.37.对于实数a、b,定义运算:a▲b=;如:2▲3=2﹣3=,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]= .38.若32m=,()n=262m,则m+n= .39.若a1=1﹣,a2=1﹣,a3=1﹣…则a2014的值为(用含m的式子表示),a2015的值为(用含m的式子表示).40.若x2+4x=1,则①x+= ;②x2+x﹣2= ;③x4+= ;④ = .三、解答题:41.计算:①﹣3﹣2+(﹣3)﹣2+(﹣2)﹣3;②(3×10﹣5)3÷(3×10﹣6)2×(3×10﹣7)2③(﹣1)2014﹣|﹣7|+×(5﹣π)0+(﹣)﹣1.42.计算:①•÷;②b2c﹣3•;③a2b3÷×a2b.43.计算:①(a﹣)÷;②÷(1﹣);③;④+﹣;⑤(﹣)÷(+﹣2)÷;⑥[×(a﹣4+)]÷(﹣1)⑦1﹣ [(1﹣)÷(﹣)]《第15章分式》参考答案与试题解析一、选择题1.在,﹣,﹣y2,,,,3x﹣2,a﹣2﹣b﹣2中,属于分式的个数为()A.3 B.4 C.5 D.6【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,,,3x﹣2,a﹣2﹣b﹣2的分母中含有字母,因此是分式.﹣,﹣y2,,分母中均不含有字母,因此它们是整式,而不是分式.故选:C.【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.下列代数式:①;②;③;④;⑤3y﹣3+2;⑥;⑦(x﹣2)0中,在字母取任何值的情况下都有意义的代数式个数为()A.2 B.3 C.4 D.5【考点】分式有意义的条件;负整数指数幂;二次根式有意义的条件.【分析】根据分式有意义,分母不等于0,二次根式的被开方数大于等于0,零指数幂和负整数指数幂的底数不等于0,对各小题分析判断即可得解.【解答】解:①,x≠﹣4无意义;②,x取全体实数;③,a=1无意义;④,m=﹣1无意义;⑤3y﹣3+2,y≠0;⑥,b取全体实数;⑦(x﹣2)0,x≠2,所以,在字母取任何值的情况下都有意义的是②⑥共2个.故选A.【点评】本题考查了分式有意义的条件,负整数指数幂,零指数幂,二次根式有意义的条件,是基础题,需熟记.3.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是()A.米B.米C.米D.米【考点】列代数式(分式).【专题】应用题.【分析】首先根据1米长的电线,称得它的质量为a克,则剩余电线的质量为b克的长度是米,根据题意可求得总长度.【解答】解:根据题意得:剩余电线的质量为b克的长度是米.所以这卷电线的总长度是(+1)米.故选B.【点评】首先根据长度=质量÷每米的质量求得剩余的长度,最后不要忘记加1.解决问题的关键是读懂题意,找到所求的量的等量关系.4.式子2a﹣1可以化为()A.B.C.﹣2a D.2a﹣1【考点】负整数指数幂.【分析】根据负整数指数幂的运算法则进行计算.【解答】解:2a﹣1=2×=.故选:B.【点评】本题考查了负整数指数幂.幂的负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.5.下列运算正确的是()A.x10÷x5=x2B.x﹣4•x=x﹣3C.x3•x2=x6D.(2x﹣2)﹣3=﹣8x6【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【分析】根据同底数的幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项计算后利用排除法求解.【解答】解:A、应为x10÷x5=x5,故本选项错误;B、x﹣4•x=x﹣3,正确;C、应为x3•x2=x5,故本选项错误;D、应为(2x﹣2)﹣3=x6,故本选项错误.故选B.【点评】本题主要考查同底数幂乘法,同底数幂除法的运算,熟练掌握运算法则是解题的关键,另外负指数次幂是学生容易出错的地方.6.下列分式是最简分式的()A.B.C.D.【考点】最简分式;分式的基本性质;约分.【专题】计算题.【分析】根据分式的基本性质进行约分,画出最简分式即可进行判断.【解答】解:A、=,故本选项错误;B、=,故本选项错误;C、,不能约分,故本选项正确;D、==,故本选项错误;故选C.【点评】本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解此题的关键.7.下面约分的式子中,正确的是()A.B.C.D.【考点】约分.【分析】根据分式的基本性质作答.分子和分母同乘以(或除以)一个不为0的数,分数值不变.【解答】解:A、不能将幂约掉,故A错误;B、分子和分母同时减掉一个数,比值会发生变化,故B错误;C、=,故C错误;D、将分母变为﹣(a﹣b),然后化简得﹣1,故D正确.故选D.【点评】解答此类题一定要熟练掌握分式的基本性质以及约分的概念.8.下列各式中,可能取值为零的是()A.B.C.D.【考点】分式的值为零的条件.【分析】要使分式的值为0,必须使分式分子的值为0,与分母的值不为0,同时成立.【解答】解:根据m2+1≠0一定成立,故选项A,D一定错误;C、m+1=0,解得:m=﹣1,由分子m2﹣1=0解得:m=±1.故C不可能是0;B、m2﹣1=0,解得:m=±1,当m=±1时,分母m2+1=2≠0.所以m=±1时,分式的值是0.故选B.【点评】要注意分母的值一定不能为0,分母的值是0时分式没有意义.9.式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C. D.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.10.分式的最简公分母是()A.3xy B.6x3y2 C.6x6y6 D.x3y3【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选B.【点评】通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.11.把,,通分过程中,不正确的是()A.最简公分母是(x﹣2)(x+3)2B. =C. =D. =【考点】通分.【分析】按照通分的方法依次验证各个选项,找出不正确的答案.【解答】解:A、最简公分母为最简公分母是(x﹣2)(x+3)2,正确;B、=,通分正确;C、=,通分正确;D、通分不正确,分子应为2×(x﹣2)=2x﹣4;故选:D.【点评】根据分数的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.通分保证(1)各分式与原分式相等;(2)各分式分母相等.12.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣6【考点】科学记数法—表示较小的数.【专题】常规题型.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0025=2.5×10﹣6;故选:D.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则正确的为()A.a<b<c<d B.c<a<d<b C.a<d<c<b D.b<a<d<c【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】根据负整数指数幂、有理数的乘方、零指数幂的定义将a、b、c、d的值计算出来即可比较出其值的大小.【解答】解:因为a=﹣0.32=﹣0.09,b=﹣3﹣2=﹣=﹣,c=(﹣)﹣2==9,d=(﹣)0=1,所以c>d>a>b.故选D.【点评】本题主要考查了(1)零指数幂,负整数指数幂和有理数的乘方运算:负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.(2)有理数比较大小:正数大于0;0大于负数;两个负数,绝对值大数的反而小.14.若分式中的m、n的值同时扩大到原来的10倍,则此分式的值()A.不变 B.是原来的20倍C.是原来的10倍D.是原来的【考点】分式的基本性质.【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.【解答】解;分式中的m、n的值同时扩大到原来的10倍,则此分式的值扩大10倍,故选:C.【点评】本题考查了分式基本性质,利用了分式的基本性质.15.若m人需a天完成某项工程,则这样的人(m+n)个完成这项工程需要的天数是()A.(a+m)B. C. D.【考点】列代数式(分式).【分析】把某项工程看作单位1,再进一步根据工作总量=工作效率×工作时间×工作人数这一公式灵活变形求解.【解答】解:根据m人需a天完成某项工程,得1人1天完成,则(m+n)个人完成这项工程需要的天数是1÷=.故选B.【点评】此题考查了工程问题中各个量之间的关系,能够求得每人每天的工作效率.16.下列计算正确的是()A.÷﹣÷=B.÷(﹣)=2yC.÷(1﹣)=1 D.(1﹣)÷=1【考点】分式的混合运算.【分析】根据分式的混合运算的顺序即可求解.【解答】解:A、÷﹣÷=•﹣•=﹣=,选项错误;B、÷=•=,选项错误;C、÷(1﹣)=÷=1,选项正确;D、(1﹣)÷=•(2﹣x)=﹣,选项错误.故选C.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.17.化简÷(1+)的结果是()A.B. C.D.【考点】分式的混合运算.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.18.若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1 C.﹣1.5或2 D.﹣0.5或﹣1.5【考点】分式方程的解.【专题】计算题;压轴题.【分析】去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.【解答】解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选D.【点评】本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.19.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】工程问题.【分析】关键描述语为:“共用了18天完成任务”;等量关系为:采用新技术前用的时间+采用新技术后所用的时间=18.【解答】解:采用新技术前用的时间可表示为:天,采用新技术后所用的时间可表示为:天.方程可表示为:.故选:B.【点评】列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题要注意采用新技术前后工作量和工作效率的变化.20.若+=,则用u、v表示f的式子应该是()A. B. C.D.【考点】分式的加减法.【专题】计算题.【分析】已知等式左边通分并利用同分母分式的加法法则计算,表示出f即可.【解答】解: +=,变形得:f=.故选B.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.已知x﹣=7,则x2+的值是()A.49 B.48 C.47 D.51【考点】分式的混合运算.【专题】计算题.【分析】将已知等式两边平方,利用完全平方公式展开即可得到所求式子的值.【解答】解:已知等式x﹣=7两边平方得:(x﹣)2=x2+﹣2=49,则x2+=51.故选D.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.【考点】分式的乘除法.【专题】计算题.【分析】分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.【解答】解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,∴1<+1<2,∴1<k<2【点评】本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.二、填空题:23.如果分式的值为零,那么x的值为﹣3 .【考点】分式的值为零的条件.【分析】分式的值为0:分子等于0,分母不等于0.【解答】解:依题意得|x|﹣3=0,且2x﹣6≠0,解得 x=﹣3.故答案是:﹣3.【点评】本题考查了分式的值为0的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.24.若关于x的分式方程的解为正数,那么字母a的取值范围是a>1且a≠2 .【考点】分式方程的解.【专题】计算题.【分析】将a看做已知数求出分式方程的解得到x的值,根据解为正数列出不等式,求出不等式的解集即可得到a的范围.【解答】解:分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,根据题意得:a﹣1>0且a﹣1﹣1≠0,解得:a>1且a≠2.故答案为:a>1且a≠2.【点评】此题考查了分式方程的解,弄清题意是解本题的关键.注意分式方程分母不等于0.25.若|a|﹣2=(a﹣3)0,则a= ﹣3 .【考点】零指数幂.【分析】根据零指数幂的知识可得等式右边为1,然后进行绝对值的化简,求出a的值.【解答】解:∵|a|﹣2=(a﹣3)0=1,即a=±3.∵(a﹣3)0=1(a≠3),∴a=﹣3.故答案为:﹣3.【点评】本题考查了零指数幂的知识,关键是掌握a0=1(a≠0).26.分式,,的最简公分母为36m2n(m+n)(m﹣n)2.【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,,的分母分别是36m2n,4mn(m ﹣n)2,6mn(m+n)(m﹣n),故最简公分母是36m2n(m+n)(m﹣n)2,故答案是:36m2n(m+n)(m﹣n)2.【点评】本题考查了最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.27.纳米是一种长度单位,常用于度量物质原子的大小,1纳米=10﹣9米,已知某种植物孢子的直径为45000纳米,用科学记数法表示该孢子的直径为 4.5×10﹣5米.【考点】科学记数法—表示较小的数.【专题】应用题.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式).其中1≤|a|<10,n表示整数,n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:∵1纳米=10﹣9米,∴45 000纳米=4.5×104纳米=4.5×10﹣5米.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).28.①若=,则= ﹣8 .②若==,则= .③已知+=4,则= .④若m+n=5,mn=3,则+= .【考点】分式的化简求值.【专题】计算题.【分析】①对所要求的式子进行变形,即分子和分母都除以式子n2,然后把条件代入即可求值;②令,则x=3k,y=4k,z=5k,然后代入即可求值;③由条件可以得到a+b=4ab,然后代入进行求值即可;④把要求的式子进行变形为,然后把条件代入即可求值.【解答】解:① ==﹣8;②令,则x=3k,y=4k,z=5k,所以==;③由得a+b=4ab,所以=;④=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.29.不改变分式的值,把分式中的分子、分母中各项的系数都化为整数,且使系数的绝对值最小,则所得的结果为.【考点】分式的基本性质.【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.【解答】解;把分式中的分子、分母中各项的系数都化为整数,且使系数的绝对值最小,则所得的结果为,故答案为:.【点评】本题考查了分式的基本性质,利用了分式的基本性质.30.计算:①()﹣2014•(﹣)﹣2015= ﹣24029;②(π﹣)0+(﹣)﹣3= ﹣7 ;③﹣2﹣3= ﹣.【考点】负整数指数幂;零指数幂.【专题】计算题.【分析】原式各项利用负指数幂法则计算即可得到结果.【解答】解:①()﹣2014•(﹣)﹣2015=﹣()﹣4029=﹣24029;②(π﹣)0+(﹣)﹣3=1﹣8=﹣7;③﹣2﹣3=﹣.故答案为:①﹣24029;②﹣7;③﹣【点评】此题考查了负整数指数幂,熟练掌握运算法则是解本题的关键.31.计算化简(结果若有负指数幂要化为正整数指数幂):= .【考点】负整数指数幂.【专题】计算题.【分析】原式利用积的乘方与幂的乘方运算法则变形,再利用负指数幂法则计算即可得到结果.【解答】解:原式==,故答案为:【点评】此题考查了负整数指数幂,熟练掌握运算法则是解本题的关键.32.计算(m﹣)÷(n﹣)的结果为.【考点】分式的混合运算.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=.故答案为:.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.33.若M=,N=,P=,则M﹣N+P= 0 .【考点】分式的加减法.【专题】计算题.【分析】将M,N以及P代入M﹣N+P计算即可得到结果.【解答】解:∵M=,N=,P=,∴M﹣N+P=﹣+==0,故答案为:0【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.34.小刚同学不小心弄污了练习本的一道题,这道题是:“化简÷()”,其中“☀”处被弄污了,但他知道这道题的化简结果是,则“☀”处的式子为.【考点】分式的乘除法.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:÷=•=,则“☀”处的式子为.故答案为:.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.35.已知a2﹣6a+9与|b﹣1|互为相反数,则式子()÷(a+b)的值为.【考点】非负数的性质:偶次方;相反数;非负数的性质:绝对值.【专题】配方法.【分析】根据相反数及非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”求出a、b的值,再代入所求代数式计算即可.【解答】解:由题意知a2﹣6a+9+|b﹣1|=(a﹣3)2+|b﹣1|=0,∴a﹣3=0,b﹣1=0,∴a=3,b=1.∴()÷(a+b)=•===.【点评】本题考查了非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.36.当x= 3 时,2x﹣3与的值互为倒数.【考点】解一元一次方程.【专题】计算题.【分析】首先根据倒数的定义列出方程2x﹣3=,然后解方程即可.【解答】解:∵2x﹣3与的值互为倒数,∴2x﹣3=,去分母得:5(2x﹣3)=4x+3,去括号得:10x﹣15=4x+3,移项、合并得:6x=18,系数化为1得:x=3.所以当x=3时,2x﹣3与的值互为倒数.【点评】本题主要考查了倒数的定义及一元一次方程的解法,属于基础题比较简单.37.对于实数a、b,定义运算:a▲b=;如:2▲3=2﹣3=,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]= 1 .【考点】负整数指数幂.【专题】新定义.【分析】原式根据题中的新定义计算即可得到结果.【解答】解:根据题意得:2▲(﹣4)=2﹣4=,(﹣4)▲(﹣2)=(﹣4)2=16,则[2▲(﹣4)]×[(﹣4)▲(﹣2)]=×16=1,故答案为:1【点评】此题考查了负整数指数幂,熟练掌握运算法则是解本题的关键.38.若32m=,()n=262m,则m+n= 60 .【考点】负整数指数幂.【分析】将32m=化为=3﹣4,再将()n=262m,化为2﹣2n=262m,根据对应相等求得m,n的值,代入即可.【解答】解:∵32m=,()n=262m,∴=3﹣4,2﹣2n=262m,∴2m=﹣4,﹣2n=62m,∴m=﹣2,n=62,∴m+n=﹣2+62=60,故答案为60.【点评】本题考查了负整数指数幂,负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.39.若a1=1﹣,a2=1﹣,a3=1﹣…则a2014的值为1﹣()2013(用含m的式子表示),a2015的值为1﹣()2014(用含m的式子表示).【考点】分式的混合运算.【专题】规律型.【分析】根据已知求得a2=1﹣=1﹣,a3=1﹣=1﹣()2,从而找出规律,即可解答.【解答】解:∵a1=1﹣,a2=1﹣,a3=1﹣,∴a2=1﹣=1﹣=1﹣==1﹣,a3=1﹣=1﹣=1﹣==1﹣()2,∴a2014=1﹣()2013,a2015=1﹣()2014.【点评】本题考查了分式的混合运算,找出已知式子的规律是本题的关键.40.若x2+4x=1,则①x+= ±2;②x2+x﹣2= 18 ;③x4+= 322 ;④ = .【考点】分式的混合运算.【分析】(1)移项后两边都除以x,即可求出x﹣,求出x2+的值,再根据完全平方公式求出即可;(2)移项后两边都除以x,即可求出x﹣,求出x2+的值即可;(3)根据完全平方公式变形后,代入求出即可;(4)先分子和分母都除以x2,再代入求出即可.【解答】解:∵x2+4x=1,∴x2+4x﹣1=0,∴x+4﹣=0,∴x﹣=4,∴(x﹣)2=16,∴x2﹣2+=16,∴x2+=18,(1)∵(x+)2=x2++2=18+2=20,∴x+=±2,故答案为:±2;(2)x2+x﹣2=x2+=18,故答案为:18;(3)x4+=(x2+)2﹣2x2•=182﹣2=322,故答案为:322;(4)===,故答案为:.【点评】本题考查了对完全平方公式的灵活运用,注意:(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.三、解答题:41.计算:①﹣3﹣2+(﹣3)﹣2+(﹣2)﹣3;②(3×10﹣5)3÷(3×10﹣6)2×(3×10﹣7)2③(﹣1)2014﹣|﹣7|+×(5﹣π)0+(﹣)﹣1.【考点】负整数指数幂;零指数幂.【分析】①根据a﹣p=进行计算即可;②先算乘方,再按同底数幂的乘法运算进行计算即可;③根据乘方、绝对值、算术平方根、零指数幂、负整数指数幂进行计算.【解答】解:①原式=﹣+﹣=﹣;②原式=27×10﹣15÷9×10﹣12×9×10﹣14=3×10﹣3×9×10﹣14=27×10﹣17=2.7×10﹣16,③原式=1﹣7+3﹣5=﹣8.【点评】本题考查了负整数指数幂,零指数幂,负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.42.计算:①•÷;②b2c﹣3•;③a2b3÷×a2b.【考点】负整数指数幂.【分析】①根据分式的乘方、乘除进行计算即可;②先算乘方,再根据负指数幂运算进行即可;③根据除以一个数等于乘以这个数的倒数进行计算即可.【解答】解:①原式=••=x5;②原式=b2c﹣2•8b6c﹣6=8b8c﹣8=;③原式=a2b3•a2b×a2b=a6b5.【点评】本题考查了负整数指数幂,负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.43.计算:①(a﹣)÷;②÷(1﹣);③;④+﹣;⑤(﹣)÷(+﹣2)÷;⑥[×(a﹣4+)]÷(﹣1)⑦1﹣ [(1﹣)÷(﹣)]⑧(+)﹣⑨+++⑩(a﹣2﹣b﹣2)÷(a﹣1+b﹣1)+(a﹣2﹣b﹣2)÷(a﹣1﹣b﹣1)【考点】分式的混合运算.【分析】①、②、③、⑤、⑥、⑦、⑧先算括号里面的,再算乘除,最后算加减即可;②根据分式的除法法则进行计算即可;⑨根据分式的加法法则进行计算即可;⑩先根据负整数指数幂的计算法则计算出各数,再根据分式混合运算的法则进行计算即可.【解答】解:①原式=•=•=;②原式=÷=•=;③=•(a﹣1)(a+1)=2a(a+1)﹣a(a﹣1)=2a2+2a﹣a2+a=a2+3a;④原式=+﹣=;⑤(﹣)÷(+﹣2)÷=0÷(+﹣2)÷=0;⑥[×(a﹣4+)]÷(﹣1)=(×)÷=×=;⑦原式= [÷]= [•]=•=;【点评】本题考查的是分式的混合运算,在解答此类题目时要注意通分及约分的灵活应用.。