高一数学必修1测试卷(1)

合集下载

高一必修一考试卷数学

高一必修一考试卷数学

高一必修一考试卷数学高一必修一数学考试卷一、选择题(每题3分,共30分)1. 函数\( f(x) = 2x^2 - 3x + 1 \)的对称轴方程是:A. \( x = 1 \)B. \( x = -1 \)C. \( x = \frac{3}{4} \)D. \( x = 0 \)2. 若\( a \),\( b \),\( c \)是三角形的三边长,且满足\( a^2 + b^2 = c^2 \),则三角形是:A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等边三角形3. 已知\( \sin \alpha = \frac{3}{5} \),\( \alpha \)为锐角,求\( \cos \alpha \)的值:A. \( \frac{4}{5} \)B. \( -\frac{4}{5} \)C. \( \frac{3}{4} \)D. \( -\frac{3}{4} \)4. 集合\( A = \{1, 2, 3\} \),\( B = \{2, 3, 4\} \),求\( A \cup B \):A. \( \{1, 2, 3, 4\} \)B. \( \{1, 2, 3\} \)C. \( \{2, 3, 4\} \)D. \( \{1, 4\} \)5. 已知\( x \),\( y \)满足约束条件\( \begin{cases} x + y\leq 3 \\ x - y \geq 0 \end{cases} \),目标函数\( Z = 2x + y \)的最大值是:A. 4B. 5C. 6D. 76. 函数\( f(x) = x^3 - 3x \)的导数是:A. \( 3x^2 - 3 \)B. \( x^2 - 3 \)C. \( 3x^2 + 3 \)D. \( x^3 - 3 \)7. 已知等差数列\( \{a_n\} \)的首项为\( a_1 = 3 \),公差为\( d = 2 \),求第5项:A. 11B. 13C. 15D. 178. 已知\( \log_{10} 100 = 2 \),求\( \log_{10} 0.01 \)的值:A. -1B. -2C. 1D. 29. 已知\( \frac{1}{a} + \frac{1}{b} = \frac{5}{6} \),\( a >0 \),\( b > 0 \),求\( a + b \)的值:A. \( \frac{6}{5} \)B. \( \frac{5}{6} \)C. \( \frac{7}{5} \)D. \( \frac{6}{7} \)10. 函数\( y = x^2 \)在点\( (1, 1) \)处的切线斜率是:A. 0B. 1C. 2D. 3二、填空题(每题4分,共20分)11. 若\( \cos \theta = \frac{\sqrt{3}}{2} \),则\( \sin\theta \)的值为________。

高一数学必修1测试卷(含详细答案)

高一数学必修1测试卷(含详细答案)

则 f ( 0 ) f (x ) f ( x )
f ( x)
f ( x)
(0)
,, 3 分
所以 f ( x ) 为 R 上的奇函数
,, 6 分
(3 )令 x y 1
则 f (1 1) f (2) f (1) f (1) 2
,, 8 分
f ( 2 a ) f (a 1 ) 2 f ( a2 ) f a( 1 ) f
( D ) { x x 0}
1 (C ) y
2
x
(D) y
2
( x)
2
x
3. 集合 A {( x, y ) y x} ,集合 B {( x, y )
2x y 1 } 之间的关系是
x 4y 5
( A) A B
(B) B A
(C ) A B
(D ) B A
4. 已知函数 f ( x ) log 2 x 1 , 若 f ( a ) 1, 则 a
取值范围 .
22(本小题分 A,B 类,满分 14 分,任选一类,若两类都选,以 A 类记分) ( A 类) 定义在 R 上的函数 y f ( x ) ,对任意的 a, b R ,满足
f ( a b) f (a ) f (b ) ,当 x 0 时,有 f ( x ) 1,其中 f (1) 2 .
( 1) 求 f ( 0 ) 、 f ( 1) 的值; ( 2) 证明 y f ( x ) 在 (0, ) 上是增函数;
10. 已知 f ( x)
2
1 1
x x2
,则
f
( x ) 不.满.足. 的关系是
( A) f ( x) f ( x )
1 (C ) f ( )
x
f (x)

高一数学必修1测试题1

高一数学必修1测试题1

必修1测试题1.已知全集I ={0,1,2},且满足C I (A ∪B )={2}的A 、B 共有组数 .2.如果集合A ={x |x =2k π+π,k ∈Z},B ={x |x =4k π+π,k ∈Z},则A B .3.设A ={x ∈Z||x |≤2},B ={y |y =x 2+1,x ∈A },则B 的元素个数是 .4.若集合P ={x |3<x ≤22},非空集合Q ={x |2a +1≤x <3a -5},则能使Q ⊆(P ∩Q )成立的所有实数a 的取值范围 .5.已知集合A =B =R ,x ∈A ,y ∈B ,f :x →y =a x +b ,若4和10的原象分别对应是6和9,则19在f 作用下的象为 .6.函数f (x )=3x -12-x(x ∈R 且x ≠2)的值域为集合N ,则集合{2,-2,-1,-3}中不属于N 的元素是 .7.已知f (x )是一次函数,且2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )的解析式为 .8.下列各组函数中,表示同一函数的是 .A.f (x )=1,g (x )=x0 B.f (x )=x +2,g (x )=x 2-4x -2 C.f (x )=|x |,g (x )=⎩⎨⎧x x ≥0-x x <0 D .f (x )=x ,g (x )=(x )2 9. f (x )=⎩⎪⎨⎪⎧x 2 x >0π x =00 x <0 ,则f {f [f (-3)]}= . 10.已知2lg(x -2y )=lg x +lg y ,则x y 的值为 .11.设x ∈R ,若a <lg(|x -3|+|x +7|)恒成立,则a 的取值范围为 .12.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则a 的取值范围是 .13.若不等式x 2+ax +a -2>0的解集为R ,则a 可取值的集合为__________.14.函数y =x 2+x +1 的定义域是______,值域为__ ____.15.若不等式3ax x22->(13)x +1对一切实数x 恒成立,则实数a 的取值范围为___ ___.16. f (x )=]()⎪⎩⎪⎨⎧+∞∈--∞∈---,1 231,( 2311x x x x ,则f (x )值域为_____ _. 17.函数y =12x +1 的值域是__________.18.方程log 2(2-2x )+x +99=0的两个解的和是___________.19.全集U =R ,A ={x ||x |≥1},B ={x |x 2-2x -3>0},求(C U A )∩(C U B ).20.已知f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ),f (2)=1.(1)求证:f (8)=3 (2)求不等式f (x )-f (x -2)>3的解集.21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22.已知函数f (x )=log 412x -log 41x +5,x ∈[2,4],求f (x )的最大值及最小值.23.已知函数f (x )=a a 2-2(a x -a -x )(a >0且a ≠1)是R 上的增函数,求a 的取值范围.1.9;2.B A ;3.3;4.(6,9];5.30;6.-3;7.3x -2;8. C ;9.π2;10.4;11.a <1;12.(0,12);13. ∅;14. R ,32,+∞);15. -12 < a < 32;16. (-2,-1];17. (0,1);18. -99; 19.(C U A )∩(C U B )={x |-1<x <1}20.(1)【证明】 由题意得f (8)=f (4×2)=f (4)+f (2)=f (2×2)+f (2)=f (2)+f (2)+f (2)=3f (2)又∵f (2)=1 ∴f (8)=3(2)【解】 不等式化为f (x )>f (x -2)+3 ∵f (8)=3 ∴f (x )>f (x -2)+f (8)=f (8x -16)∵f (x )是(0,+∞)上的增函数 ∴⎩⎨⎧->>-)2(80)2(8x x x 解得2<x <167 21.【解】 (1)当每辆车月租金为3600元时,未租出的车辆数为3600-300050=12,所以这时租出了88辆.(2)设每辆车的月租金定为x 元,则公司月收益为f (x )=(100-x -300050 )(x -150)-x -300050×50 整理得:f (x )=-x 250 +162x -2100=-150(x -4050)2+307050 ∴当x =4050时,f (x )最大,最大值为f (4050)=307050 元22.【解】 令t =log 41x ∵x ∈[2,4],t =log 41x 在定义域递减有log 414<log 41x <log 412,∴t ∈[-1,-12 ],∴f (t )=t 2-t +5=(t -12 )2+194 ,t ∈[-1,-12 ] ∴当t =-12 时,f (x )取最小值 234,当t =-1时,f (x )取最大值7. 23.已知函数f (x )=a a 2-2(a x -a -x )(a >0且a ≠1)是R 上的增函数,求a 的取值范围. 考查指数函数性质.【解】 f (x )的定义域为R ,设x 1、x 2∈R ,且x 1<x 2则f (x 2)-f (x 1)=a a 2-2 (a 2x -a 2x --a 1x +a 1x -) =a a 2-2 (a 2x -a 1x )(1+211x x a a ⋅) 由于a >0,且a ≠1,∴1+211x x a a >0 ∵f (x )为增函数,则(a 2-2)( a 2x -a 1x)>0 于是有⎪⎩⎪⎨⎧<-<-⎪⎩⎪⎨⎧>->-0020********x x x x a a a a a a 或, 解得a > 2 或0<a <1。

高一数学必修1第一章测试题及答案

高一数学必修1第一章测试题及答案

高一第一章测试题(一)一.选择题(本大题共12小题,第小题5分,共60分.在每小题给出的四个选项中,只有一项符是合题目要求的.)1.设集合{}1->∈=x Q x A ,则( ) A . A ∅∉ B .2A ∉ C .2A ∈ D .{}2⊆A2、已知集合A 到B 的映射f:x→y=2x+1,那么集合A 中元素2在B 中对应的元素是:A 、2B 、5C 、6D 、83.设集合{|12},{|}.A x x B x x a =<<=<若,A B ⊆则a 的范围是( )A .2a ≥B .1a ≤C .1a ≥D .2a ≤ 4.函数21y x =-的定义域是( )1111. (,) . [,) . (,) . (,]2222A B C D +∞+∞-∞-∞ 5.全集U ={0,1,3,5,6,8},集合A ={ 1,5, 8 }, B ={2},则集合)A B =U (C ( )A .{0,2,3,6}B .{ 0,3,6}C . {2,1,5,8}D .∅6.已知集合{}{}13,25A x x B x x A B =-≤<=<≤=,则( )A. ( 2, 3 )B. [-1,5]C. (-1,5)D. (-1,5]7.下列函数是奇函数的是( )A .x y =B .322-=x yC .21x y = D .]1,0[,2∈=x x y 8.化简:2(4)ππ-+=( )A . 4B .2 4π-C .2 4π-或4D .4 2π-9.设集合{}22≤≤-=x x M ,{}20≤≤=y y N ,给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )10、已知f (x )=g (x )+2,且g(x)为奇函数,若f (2)=3,则f (-2)=。

A 0B .-3C .1D .311、已知f (x )=20x π⎧⎪⎨⎪⎩000x x x >=<,则f[f(-3)]等于A 、0B 、πC 、π2D 、912.已知函数()x f 是R 上的增函数,()1,0-A ,()1,3B 是其图像上的两点,那么()1f x <的解集是( )A .()3,0-B .()0,3C .(][),13,-∞-⋃+∞D .(][),01,-∞⋃+∞二.填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上.)13.已知25(1)()21(1)x x f x x x +>⎧=⎨+≤⎩,则[(1)]f f =. 14.已知2(1)f x x -=,则 ()f x =.15. 定义在R 上的奇函数()f x ,当0x >时,()2f x =;则奇函数()f x 的值域是.16.关于下列命题:①若函数x y 2=的定义域是{}0|≤x x ,则它的值域是}1|{≤y y ;② 若函数x y 1=的定义域是}2|{>x x ,则它的值域是}21|{≤y y ; ③若函数2x y =的值域是}40|{≤≤y y ,则它的定义域一定是}22|{≤≤-x x ;④若函数x y 2=的定义域是}4|{≤y y ,则它的值域是}80|{≤<x x .其中不正确的命题的序号是_____________( 注:把你认为不正确的命题的序号都填上).(第II 卷)三、解答题:本大题共5小题,共70分.题解答应写出文字说明,证明过程或演算步骤.17.设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x ∈R ,如果A∩B=B ,求实数a 的取值范围。

高中数学必修1集合测试题及答案

高中数学必修1集合测试题及答案

高中数学集合检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ150分;考试时间90分钟.第Ⅰ卷(选择题;共60分)一、选择题:本大题共12小题;每小题5分;共60分. 在每小题给出的四个选项中;只有一项是符合题目要求的.1.已知集合M={x N|4-x N}∈∈;则集合M 中元素个数是( ) A .3 B .4 C .5 D .62.下列集合中;能表示由1、2、3组成的集合是( ) A .{6的质因数} B .{x|x<4;*x N ∈} C .{y||y |<4;y N ∈} D .{连续三个自然数} 3. 已知集合{}1,0,1-=A ;则如下关系式正确的是 A A A ∈ B 0A C A ∈}0{ D ∅A4.集合}22{<<-=x x A ;}31{<≤-=x x B ;那么=⋃B A ( )A. }32{<<-x xB.}21{<≤x xC.}12{≤<-x xD.}32{<<x x 5.已知集合}01|{2=-=x x A ;则下列式子表示正确的有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个6.已知2U U={1,2,23},A={|a-2|,2},C {0}a a A +-=;则a 的值为( ) A .-3或1 B .2 C .3或1 D .17. 若集合}8,7,6{=A ;则满足A B A =⋃的集合B 的个数是( )A. 1B. 2C. 7D. 88. 定义A —B={x|x A x B ∈∉且};若A={1;3;5;7;9};B={2;3;5};则A —B 等于( ) A .A B .B C .{2} D .{1;7;9}9.设I 为全集;1S ;2S ;3S 是I 的三个非空子集;且123S S S I ⋃⋃=;则下面论断正确的是( )A .()I 123(C S )S S ⋂⋃= φB .()1I 2I 3S [C S )(C S ]⊆⋂C .I 1I 2I 3(C S )(C S )(C S )⋂⋂=∅D .()1I 2I 3S [C S )(C S ]⊆⋃ 10.如图所示;I 是全集;M ;P ;S 是I 的三个子集;则阴影部分所表示的集合是( )A .()M P S ⋂⋂B .()M P S ⋂⋃C .()I (C )M P S ⋂⋂D .()I (C )M P S ⋂⋃11. 设},2|{R x y y M x ∈==;},|{2R x x y y N ∈==;则( )A. )}4,2{(=⋂N MB. )}16,4(),4,2{(=⋂N MC. N M =D. N M ≠⊂12.已知集合M={x|x 1},N={x|x>}a ≤-;若M N ≠∅;则有( ) A .1a <- B .1a >- C . 1a ≤- D .1a ≥-第Ⅱ卷(非选择题 共90分)二、填空题:本大题6小题;每小题5分;共30分. 把正确答案填在题中横线上13.用描述法表示右侧图中阴影部分的点(含边界上的点)组成的集合M 是___________________________.14. 如果全集}6,5,4,3,2,1{=U 且}2,1{)(=⋂B C A U ;}5,4{)()(=⋂B C A C U U ;}6{=⋂B A ;则A 等于_________15. 若集合{}2,12,4a a A --=;{}9,1,5a a B --=;且{}9=B A ;则a 的值是________; 16.设全集{|230}U x N x =∈≤≤;集合*{|2,,15}A x x n n N n ==∈≤且;*{|31,,9}B x x n n N n ==+∈≤且;C={x|x 是小于30的质数};则[()]U C A B C =________________________.17.设全集R B C A x x B a x x A R =⋃<<-=<=)(},31{},{且;则实数a 的取值范围是________________18.某城市数、理、化竞赛时;高一某班有24名学生参加数学竞赛;28名学生参加物理竞赛;19名学生参加化学竞赛;其中参加数、理、化三科竞赛的有7名;只参加数、物两科的有5名;只参加物、化两科的有3名;只参加数、化两科的有4名;若该班学生共有48名;则没有参加任何一科竞赛的学生有____________名三、解答题:本大题共5小题;共60分;解答应写出文字说明;证明过程或演算步骤.19. 已知:集合{|A x y ==;集合2{|23[03]}B y y x x x ==-+∈,,; 求A B (本小题8分)20.若A={3;5};2{|0}B x x mx n =++=;A B A =;{5}A B =;求m 、n 的值。

高一数学必修1第一章测试题及答案

高一数学必修1第一章测试题及答案

高一数学必修1第一章测试题及答案高一第一章测试题(一)一.选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

)1.设集合 $A=\{x\in Q|x>-1\}$,则()A。

$\varnothing \in A$ B。

$2\in A$ C。

$2\in A$ D。

$\{2\}\subseteq A$2.已知集合 $A$ 到 $B$ 的映射 $f:x\rightarrow y=2x+1$,那么集合 $A$ 中元素 $2$ 在 $B$ 中对应的元素是:A。

$2$ B。

$5$ C。

$6$ D。

$8$3.设集合 $A=\{x|1<x<2\},B=\{x|x<a\}$。

若 $A\subseteq B$,则 $a$ 的范围是()A。

$a\geq 2$ B。

$a\leq 1$ C。

$a\geq 1$ D。

$a\leq 2$4.函数 $y=2x-1$ 的定义域是()A。

$(,\infty)$ B。

$[。

\infty)$ C。

$(-\infty,)$ D。

$(-\infty,]$5.全集 $U=\{0,1,3,5,6,8\}$,集合 $A=\{1,5,8\},B=\{2\}$,则集合 $B$ 为()A。

$\{0,2,3,6\}$ B。

$\{0,3,6\}$ C。

$\{2,1,5,8\}$ D。

$\varnothing$6.已知集合 $A=\{x-1\leq x<3\},B=\{x^2<x\leq 5\}$,则$A\cap B$ 为()A。

$(2,3)$ B。

$[-1,5]$ C。

$(-1,5)$ D。

$(-1,5]$7.下列函数是奇函数的是()A。

$y=x$ B。

$y=2x-3$ C。

$y=x^2$ D。

$y=|x|$8.化简:$(\pi-4)+\pi=$()A。

$4$ B。

$2\pi-4$ C。

$2\pi-4$ 或 $4$ D。

$4-2\pi$9.设集合 $M=\{-2\leq x\leq 2\},N=\{y\leq y\leq 2\}$,给出下列四个图形,其中能表示以集合 $M$ 为定义域,$N$ 为值域的函数关系的是()无法呈现图片,无法回答)10.已知$f(x)=g(x)+2$,且$g(x)$ 为奇函数,若$f(2)=3$,则 $f(-2)=$A。

高一数学必修一试题(带答案)

高一数学必修一试题(带答案)

高中数学必修1检测题本试卷分第Ⅰ卷(选择题)与第Ⅱ卷(非选择题)两部分、共120分,考试时间90分钟、第Ⅰ卷(选择题,共48分) 一、选择题:本大题共12小题,每小题4分,共48分、 在每小题给出得四个选项中,只有一项就是符合题目要求得、1.已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于 ( )A .{2,4,6}B .{1,3,5}C .{2,4,5}D .{2,5}2.已知集合}01|{2=-=x x A ,则下列式子表示正确得有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个3.若:f A B →能构成映射,下列说法正确得有 ( ) (1)A 中得任一元素在B 中必须有像且唯一; (2)A 中得多个元素可以在B 中有相同得像; (3)B 中得多个元素可以在A 中有相同得原像; (4)像得集合就就是集合B 、A 、1个B 、2个C 、3个D 、4个4、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 得取值范围就是 ( )A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥5 5、下列各组函数就是同一函数得就是 ( )①()f x =()g x =()f x x =与()g x =; ③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。

A 、①② B 、①③ C 、③④ D 、①④6.根据表格中得数据,可以断定方程02=--x e x 得一个根所在得区间就是 ( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)7.若=-=-33)2lg()2lg(,lg lg yx a y x 则 ( )A .a 3B .a 23C .aD .2a 8、 若定义运算ba ba b aa b<⎧⊕=⎨≥⎩,则函数()212log log f x x x =⊕得值域就是( ) A [)0,+∞ B (]0,1 C [)1,+∞ D R9.函数]1,0[在x a y =上得最大值与最小值得与为3,则=a ( )A .21 B .2 C .4 D .41 10、 下列函数中,在()0,2上为增函数得就是( )A 、12log (1)y x =+ B、2log y =C 、21log y x = D、2log (45)y x x =-+ 11.下表显示出函数值y 随自变量x 变化得一组数据,判断它最可能得函数模型就是( )A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型12、下列所给4个图象中,与所给3件事吻合最好得顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于就是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只就是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

高一数学必修1综合测试题3套(附答案)

高一数学必修1综合测试题3套(附答案)

高一数学综合检测题(1)一、选择题:(每小题5分,共60分,请将所选答案填在括号内) 1.已知集合M ⊂≠{4,7,8},且M 中至多有一个偶数,则这样的集合共有 ( )(A)3个 (B) 4个 (C) 5个 (D) 6个2.已知S={x|x=2n,n ∈Z}, T={x|x=4k ±1,k ∈Z},则 ( ) (A)S ⊂≠T (B) T ⊂≠S (C)S ≠T (D)S=T 3.已知集合P={}2|2,y y x x R =-+∈, Q={}|2,y y x x R =-+∈,那么PQ 等( )(A)(0,2),(1,1) (B){(0,2 ),(1,1)} (C){1,2} (D){}|2y y ≤4.不等式042<-+ax ax 的解集为R ,则a 的取值范围是 ( ) (A)016<≤-a (B)16->a (C)016≤<-a (D)0<a 5. 已知()f x =5(6)(4)(6)x x f x x -≥⎧⎨+<⎩,则(3)f 的值为 ( )(A)2 (B)5 (C)4 ( D)36.函数243,[0,3]y x x x =-+∈的值域为 ( )(A)[0,3] (B)[-1,0] (C)[-1,3] (D)[0,2] 7.函数y=(2k+1)x+b 在(-∞,+∞)上是减函数,则 ( )(A)k>12 (B)k<12 (C)k>12- (D).k<12- 8.若函数f(x)=2x +2(a-1)x+2在区间(,4]-∞内递减,那么实数a 的取值范围为( )(A)a ≤-3 (B)a ≥-3 (C)a ≤5 (D)a ≥39.函数2(232)xy a a a =-+是指数函数,则a 的取值范围是 ( )(A) 0,1a a >≠ (B) 1a = (C) 12a =( D)121a a ==或10.已知函数f(x)14x a -=+的图象恒过定点p ,则点p 的坐标是 ( )(A )( 1,5 ) (B )( 1, 4) (C )( 0,4) (D )( 4,0)11.函数y =的定义域是 ( )(A )[1,+∞] (B) (23,)+∞ (C) [23,1] (D) (23,1]12.设a,b,c都是正数,且346a b c==,则下列正确的是( )(A) 111c ab =+ (B) 221C a b =+ (C) 122C a b =+ (D) 212c a b =+二、填空题:(每小题4分,共16分,答案填在横线上)13.已知(x,y )在映射 f 下的象是(x-y,x+y),则(3,5)在f 下的象是 ,原象是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修1测试卷(第Ⅰ卷)一、选择题(共8小题,每小题5分,共50分)1.设集合{|1A x =-≤x ≤2},B={x |0≤x ≤4},则A ∩B= ( ) A .[0,2] B .[1,2] C .[0,4] D .[1,4]2.下列函数与y x =有相同图象的一个是 ( )A.y =.2x y x=C .log (0,a xy aa =>且1)a ≠ D .log (0,x a y a a =>且1)a ≠3.若函数(21)xy a =-在R 上为单调减函数,那么实数a 的取值范围是 ( ) A. 1a > B.112a << C. 1a ≤ D. 12a >4.根据表格中的数据,可以断定方程02=--x e x的一个根所在的区间是 ( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)5.设2log 13a>,则实数a 的取值范围是 ( ) A .0< a < 23 B .23 < a <1 C .0 < a < 23或a >1 D .a > 236.下列各个对应中, 从A 到B 构成映射的是 ( ) A B A B A B A BA B C D7.设3log 0.9a =,0.489b =, 1.51()2c =则,,a b c 的大小是 ( )A .c b a >>B .a c b >>C .b c a >>D .a b c >>8.已知函数()312f x ax a =+-在区间(-1,1)上有零点,则 ( )A .115a -<<B .15a >C .1a <-或15a > D .1a <-9.定义在R 上的函数)x (f 对任意两个不相等实数b a 、,总有0ba )b (f )a (f >--成立,则必有( )A . 函数)x (f 是先增加后减少 B. 函数)x (f 是先减少后增加 C . 函数)x (f 在R 上是减函数 D . 函数)x (f 在R 上是增函数10. 函数2)1(2)(2+-+=x a x x f 在区间)4,(-∞上是减函数,那么实数a 的取值范围是( ) A .),3[+∞ B .]3,(--∞ C .}3{ D .)5,(-∞二、填空题(共7小题,每小题4分,共28分)11.函数()lg(1)f x x =-+,则函数定义域为 .12.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩,则[(2)]f f -的值为13.函数()f x 是R 上的奇函数,且当[)0,x ∈+∞时,)1()(+=x x x f ,那么当(),0x ∈-∞时,()f x = 。

14.幂函数253(1)m y m m x -=-+在(0,)x ∈+∞时为减函数,则m 的值为 .15. 函数33x y a-=+恒过定点16.给定集合A 、B ,定义一种新运算:},|{B A x B x A x x B A I ∉∈∈=*但或.已知{0,1,2}A =,{1,2,3}B =,用列举法写出=*B A .17、关于函数22log (23)y x x =-+有以下4个结论:① 定义域为(,3)(1,);-∞-⋃+∞ ② 递增区间为[1,);+∞③ 最小值为1;④ 图象恒在x 轴的上方.其中正确结论的序号是三、解答题(12分×4+16分×2=80分)最新整理17.22{220},{320}A x x ax b x x x a =++==++=设{2}A B ⋂= (1)求a 的值及A 、B(2)设全集U A B =⋃,求()()U U C A U C B ; (3)写出()()U U C A U C B 的所有子集;18.计算(1)1255(log )23log [log ] (2)211511336622(2)(6)(3)ab a b a b -÷-19.已知函数(1)()log x a f x +=,(1)()log x a g x -=(其中a >1)(1)求函数()()f x g x +的定义域;(2)判断函数()()f x g x -的奇偶性,并予以证明; (3)求()()f x g x +<0成立的x 的集合。

20.已知二次函数f(x)=ax 2+bx+c ,若f(x)+f(x+1)=2x 2-2x+13 (1)求函数f(x)的解析式; (2)画该函数的图象;(3)当x ∈[t ,5]时,求函数f(x)的最大值.21.有一批材料可以建成长为20m 的围墙,如果用材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图),问怎样设计,使围成的矩形的最大面积,最大面积是多少?22.函数()f x 的定义域{}0D x x =≠,且满足对于任意12,x x D ∈,有1212()()()f x x f x f x ⋅=+。

(1)求(1)f 与(1)f -的值; (2)判断函数的奇偶性并证明;(3)若1x >时,()0f x >,求证()f x 在区间(0,+∞)上是增函数; (4)在(3)的条件下,若(4)1f =,求不等式(31)2f x +≤的解集。

金湖二中高一数学必修1测试卷 2007.11 一、 题号 1 2 3 4 5 6 7 8 9 10 答案ADBCBDBCD二、填空题(每题8分共40分)9. (1,4] ; 10. 5 ; 11.(1x ; 12. 0 ;13. (3,4) ; 14. {0,3} ; 15. a c b << ;16. ②③④ 三、解答题(12分×4+16分×2=80分)17.(1).a=-5,A={1/2,2}B={-5,2} …………………………4分 (2). ()()U U C A U C B ={1/2,2,-5} …………………………8分 (3).空集、{1/2}、{-5}、{1/2,-5} …………………………12分18.解:(1)原式=323log (log )=12log =0 …………………………6分(2)原式2115113636222(6)(3)()()a a a b b b =⨯-÷-÷÷=4a …………… 12分 19.解:(1):由题意得:10x +>………………………….2分10x ->解得:11x -<< …………………………………………….3分 ∴所求函数的定义域为{x|-1<x<1} ………………………………………4分(2)是奇函数…………………………………5分(或者在题的最后写这个结论也给分)证明: 10x +>10x ->解得:11x -<< ………………………………..6分 令1(1)(1)1()()()logloglogx x x x aaaF x f x g x ++--=-=-= (-1<x<1)1(1)(1)1()()()log log logx x x x aaaF x f x g x --++-=---=-=1111log()log ()1x xax F x x+--+==-=-- …………………8分 ∴该函数为奇函数。

(3)∵2(1)()()log x a f x g x -+= ∴2(1)log 0x a-< 又∵1a > ∴211x -< 即 20x >所以所求x 的集合为:{x|-1<x<1且0x ≠} ……………..12分20.解:(1)f(x)+f(x+1)=ax 2+bx+c+a(x+1)2+b(x+1)+c=2ax 2+(2a+2b)x+a+b+2c ………………………………2分∵f(x)+f(x+1)=2x 2-2x+132a 2a 12a 2b 2b 2a b 2c 13c 7==⎧⎧⎪⎪∴+=-∴=-⎨⎨⎪⎪++==⎩⎩∴f(x)=x 2-2x+7……………… 6分最新整理(2)………………………8分(3)当-3≤t ≤5时,函数f(x)的最大值为22当t<-3时,函数f(x)的最大值为t 2-2t+7 ……………………… 12分 21.解:设长方形长为x m ,则宽为3420x- m , ……………………2分 所以,总面积34203x x s -⋅==x x 2042+- ……………10分=25)25(42+--x . ………………………13分所以,当25=x 时,总面积最大,为25m 2, ……………15分答:此时,长方形长为2.5 m ,宽为310m .………………16分22.解:(1)令x 1=x 2=1,有f(1×1)=f(1)+f(1),解得f(1)=0。

………………………2分令x 1=x 2=-1,有f[(-1)×(-1) ]=f(-1)+f(-1)=f(1)=0,解得f(-1)=0。

………………………4分(2)令x 1=-1,x 2=x ,有f(-x)=f(-1)+f(x)=f(x),∴f(x)是偶函数。

…………………… 8分 (3)设x 1,x 2∈(0,+∞)且x 1<x 2,则112>x x ,0)(12>x x f , 则)()()()()(11121122x f x f x xf x x x f x f >+=⋅=, ∴f(x)在区间(0,+∞)上是增函数。

………………………12分(4)f(16)=f(4×4)=f(4)+f(4)=2, 由f(3x+1)≤2变形为f(3x+1)≤f(16)。

∵f(x)为偶函数,∴f(-x)=f(x)=f(|x|),在(3)的条件下有f[|3x+1|]≤f(16) ∴|3x+1|≤16且3x+1≠0,解得]1711,)(,5333⎡--⋃-⎢⎣. ………………………16分。

相关文档
最新文档