初一数学:用方程解决问题

合集下载

苏科版2024新版七年级数学上册教案:4.3.3 用一元一次方程解决问题——利用公式、规律解决问题

苏科版2024新版七年级数学上册教案:4.3.3 用一元一次方程解决问题——利用公式、规律解决问题

学校七年级数学教案课题4.3用一元一次方程解决问题(3)课型新授课编号时间主备复备审核教学目标1.会利用公式或找规律列方程解决实际问题,通过结合实际问题,创造有趣的情境,提高学习兴趣.2.能够根据实际问题中的数量关系列方程解决问题,培养数学建模能力,分析问题、解决问题的能力.教学重难点重点:会利用公式或找规律列方程解决实际问题.难点:能够根据实际问题中的数量关系列方程解决问题.教学环节教学过程师生活动个人复备知学1.揭示课题2.揭示目标课上板书课题;学生齐读目标.预学阅读课本P125、126 页,完成课本练习T1根据预学情况给各小组评分.互学如图,小明将一个正方形纸片剪去一个宽为4的长条后,再从剩下的长方形纸片上剪去一个宽为5的长条.如果两次剪下的长条面积正好相等,那么每一个长条的面积是多少?图形的公式构建等量关系.导学例1:已知三角形三个角的度数之比为2:3:5,判断这个三角形的形状.例2:用黑白两色棋子按如图所示的方式摆图形,依次规律,图形中黑色棋子的个数有可能是50吗?例3:制作一张桌子要用1个桌面和4条桌腿,1m3木材可制作20个桌面或制作400条桌腿,现有12m3木材,应怎样计划用料才能制作尽可能多的桌子?利用三角形内角和定理得到等量关系.引导学生从“数”和“形”两个方面找规律,注意理解为什么不可能.小组交流.检学1.宋代数学家杨辉称幻方为纵横图,传说最早出现的幻方是夏禹时代的“洛书”,杨辉在他的著作《续占摘奇算法》中总结了“洛书”的构造,在如图所示的三阶幻方中,每行,每列、每条对角线上的三个数之和都相等,则m+n的值是()A.7 B.1 C.2(1)(2)2.如图,涂色部分是正方形,图中最大的长方形的周长是厘米.独立完成,课堂交流.总结谈谈你这一节课有哪些收获.各抒己见.课后作业板书设计教后记。

七年级方程应用题解题技巧

七年级方程应用题解题技巧

七年级方程应用题解题技巧
七年级方程应用题是数学学习中的一个重要部分,掌握解题技巧对于提高解题速度和准确性非常重要。

以下是一些七年级方程应用题的解题技巧:
1. 理解题意:首先,要仔细阅读题目,理解其背景和要求,找出关键信息,明确未知数和已知条件。

2. 建立方程:根据题意,用数学语言描述问题,建立方程。

方程可以是一个或多个,这取决于问题的复杂性。

3. 简化方程:如果方程过于复杂,可以尝试将其简化。

例如,合并同类项、移项、去括号等。

4. 求解方程:使用代数方法(如代入法、消元法、因式分解等)求解方程。

注意解的合理性,例如,解不能是负数或无意义的数。

5. 检验答案:最后,将解代入原方程进行检验,确保答案的正确性。

6. 总结反思:回顾解题过程,总结经验教训,提高解题能力。

下面是一个具体的例子:
题目:某班有男生27人,女生21人,男生人数是女生人数的几倍?
解题步骤:
1. 理解题意:找出关键信息,男生27人,女生21人。

2. 建立方程:设男生人数是女生人数的$x$倍。

则有方程 $27 = 21x$。

3. 简化方程:移项得 $21x = 27$。

4. 求解方程:除以21得 $x = \frac{27}{21}$。

5. 检验答案:将解代入原方程进行检验,确保答案的正确性。

6. 总结反思:回顾解题过程,总结经验教训。

通过掌握这些技巧,学生可以更好地理解和解决七年级的方程应用题。

完整版)初一数学列方程解应用题归类含答案

完整版)初一数学列方程解应用题归类含答案

完整版)初一数学列方程解应用题归类含答案一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形状变化,但体积不变。

①圆柱体的体积公式为V=底面积×高=S·h=πrh②长方体的体积为V=长×宽×高=abc1.一段铁丝围成长方形,发现长比宽多2cm;围成正方形时,边长刚好为4cm。

求所围成的长方形的长和宽各是多少?解:设长方形的长为x,宽为x-2,则有x+x-2+4=4x,解得x=6,所以长方形的长为6cm,宽为4cm。

2.用一个底面半径为40mm,高为120mm的圆柱形玻璃杯向一个底面半径为100mm的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm,大玻璃杯的高度是多少?解:由于10杯水的体积为10×40×40×π×120=π mm³,而大玻璃杯的底面积为100×100×π=π mm²,所以大玻璃杯的高度为π/π-10=22mm。

3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成。

现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米。

你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?解:设鸡场的长为x,宽为y,则有x+y=35,x-14=y+5或x-14=y+2,解得x=24,y=11或x=21,y=14.所以小王的设计符合实际,鸡场的面积为24×11=264平方米。

4.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14)。

解:长方体铁盒中的水的体积为300×300×80=xxxxxxxmm³,而圆柱形水桶的体积为π×100×100×h=πh,所以h=xxxxxxx/(π)=229.18mm。

七年级数学方程应用题

七年级数学方程应用题

七年级数学方程应用题一、行程问题1. 例题:甲、乙两人从相距36千米的两地相向而行。

如果甲比乙先走2小时,那么他们在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后3小时相遇。

甲、乙两人每小时各走多少千米?解析:设甲每小时走公式千米,乙每小时走公式千米。

根据“甲比乙先走2小时,他们在乙出发后2.5小时相遇”,可得到方程公式,即公式。

根据“乙比甲先走2小时,他们在甲出发后3小时相遇”,可得到方程公式,即公式。

将第一个方程公式两边同时乘以2,得到公式。

用公式减去公式,即公式,得到公式,解得公式。

把公式代入公式,得到公式,公式,公式,解得公式。

2. 练习:A、B两地相距20千米,甲从A地向B地前进,同时乙从B地向A地前进,2小时后二人在途中相遇,相遇后,甲返回A地,乙仍向A地前进,甲回到A地时,乙离A地还有2千米,求甲、乙二人的速度。

解析:设甲的速度为公式千米/小时,乙的速度为公式千米/小时。

根据“A、B两地相距20千米,2小时后二人在途中相遇”,可得方程公式,化简为公式。

甲返回A地仍用2小时,这2小时乙走了公式千米,可得方程公式,化简为公式。

将公式与公式相加,公式,得到公式,解得公式。

把公式代入公式,得公式,解得公式。

二、工程问题1. 例题:一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?解析:设总工程为单位“1”,甲的工作效率为公式,乙的工作效率为公式。

两人合作4天的工作量为公式先计算括号内的值:公式。

那么公式。

剩下的工作量为公式。

乙单独完成剩下部分需要的时间为公式根据除法运算法则,公式(天)。

2. 练习:某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,甲、乙两工程队再合作20天完成。

(1)求乙工程队单独做需要多少天完成?(2)将工程分两部分,甲做其中一部分用了x天,乙做另一部分用了y天,其中x、y均为正整数,且公式,求x、y的值。

用方程解决问题应用题50道

用方程解决问题应用题50道

用方程解决问题应用题用方程解决问题是数学的一种重要应用。

方程是描述数学关系的一种方式,它可以帮助我们理解和解决各种实际问题。

在本文中,我们将探讨一些常见的用方程解决问题的案例,并详细解释如何建立和求解这些方程。

第一部分:代数方程的应用问题1:购买水果假设你去市场购买了苹果和橙子,其中每个苹果的价格为x元,每个橙子的价格为y元。

你购买了5个苹果和3个橙子,总花费为20元。

现在,我们需要建立一个方程来计算每个水果的价格。

解答:令方程为5x + 3y = 20,其中x表示苹果的价格,y表示橙子的价格。

通过观察这个方程,我们可以发现,当x = 2和y = 4时,方程成立。

因此,每个苹果的价格为2元,每个橙子的价格为4元。

问题2:年龄之谜现在我们来考虑一个更复杂的问题。

假设有一个父子年龄之和为36岁的问题,父亲的年龄是儿子年龄的三倍。

我们需要建立一个方程,找到父亲和儿子的实际年龄。

解答:设父亲的年龄为x岁,儿子的年龄为y岁。

根据问题的描述,我们可以得到两个方程:x + y = 36 (年龄之和为36岁)x = 3y (父亲的年龄是儿子年龄的三倍)将第二个方程代入第一个方程,得到:3y + y = 364y = 36y = 9将y = 9代入第二个方程,可以求得:x = 3 * 9x = 27因此,父亲的年龄是27岁,儿子的年龄是9岁。

第二部分:几何方程的应用问题3:等腰三角形的高度假设我们有一个等腰三角形,其中底边的长度为x,斜边的长度为y。

我们需要建立一个方程,计算这个等腰三角形的高度。

解答:根据等腰三角形的性质,高度将从中点垂直于底边画出,并且它将把底边划分为两个相等的部分。

因此,我们可以将等腰三角形的高度表示为x / 2。

根据勾股定理,我们可以得到另一个方程:y = √((x / 2)^2 + h^2),其中h表示等腰三角形的高度。

解方程组:将x / 2代入y的方程,得到:y = √((x / 2)^2 + (x / 2)^2)y = √(x^2 / 4 + x^2 / 4)y = √(x^2 / 2)y = x / √2因此,等腰三角形的高度可以表示为x / 2或x / √2,具体取决于问题的要求和条件。

初一数学上册一元一次方程的应用12种经典题型汇总

初一数学上册一元一次方程的应用12种经典题型汇总

初一数学上册一元一次方程的应用12种经典题型汇总题型1:增长率问题某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率?解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1+x)x(1-5%)=1+14%解得x=0.2=20%答:这个月的石油价格相对上个月的增长率20%题型2:配套问题某服装厂要做一批某种型号的学生校服,已知某种布料每3m长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用600m长的这种布料做学生校服,应分别用多少米布料做上衣和裤子,才能恰好配套?解:设用x m布料做上衣,则用(600-x)m布料做裤子,则上衣共做2x/3件,裤子共做(600-x)条因为一件上衣配一条裤子,所以2x/3=600-x.解得x=360.所以600-360=240(m)答:应用360m布料做上衣,240m布料做裤子.题型3:销售问题某商品的进价是2000元,标价为3000元,商店将以利润率为5%的售价打折出售此商品,则该商店打几折出售此商品?解:设利润率为5%时售价为x元.根据题意(x-2000)/2000·100%=5%解得x=2100.所以2100/3000=7/10答:该商店打7折出售此商品.题型4:储蓄问题李明以两种方式储蓄了500元钱,一种方式储蓄的年利率是5%,另一种是4%,一年后共得利息23元5角,求两种储蓄各存了多少元钱?解:设年利率是5%的储蓄存了x元,则年利率是4%的储蓄存了(500-x)元.根据题意,得x·5%·1+(500-x)·4%·1=23.5解得x=350所以500-x=500-350=150答:年利率是5%和4%的储蓄分别存了350元和150元.题型5:等积变形问题用直径为4cm的圆钢,铸造3个直径为2cm,高为16cm的圆柱形零件,求需要截取多长的圆钢.解:设需要截取x cm长的圆钢.根据题意,得4·π·(4/2)^2=3·π·(2/2)^2·16解得x=12答:需要截取12cm长的圆钢。

初一数学上册:一元一次方程解决应用题【利润问题】

初一数学上册:一元一次方程解决应用题【利润问题】

初一数学上册:一元一次方程解决应用题【利润问题】知识点关键点:进价,售价,标价,利润,利润率,折扣单件利润=标价-进价;销售总额=售价×销售数量;成本=进价×购买数量;总利润=销售总额-成本;利润=成本价×利润率;定价=成本价+利润;售价=定价×折扣。

专项练习【例一】某名牌西装进价是1000元,标价是1500元,某商场要以利润率不低于5%的价格销售,问售货员可以打几折出售此商品?解:设售货员可打x折出售此商品,根据题意得:(1500·x/10-1000)/1000=5%解之得:x=7答:打7折出售该商品。

【例二】某商品的进价是250元,按标价的9折销售时,利润率为15.2%,商品的标价是多少?解:设商品的标价是x元,根据题意得:(90%x-250)/250=15.2%解之得:x=320答:商品的标价是320元【例三】脑产品的进价是10000元,售价为12000元,此商品的利润率是多少?解:设此商品利润率为x%,根据题意得:(12000-10000)/10000=x%解之得:x=20答:此商品的利润率为20%。

【例四】商场对某一商品作调价,按原价的8折出售,此时商品的利润率是10%,已知商品标价为1375元,求进价。

解这一题如果还要套用"利润率=(商品售价-商品进价)/商品进价",那么方程的分母上就会出现未知数,变成分式方程,为避免出现这种情况,我们可以把关系式改为"利润率×商品进价=商品售价-商品进价"。

解:设进价为x元,根据题意得:10%x=1375×80%-x解之得:x=1000答:商品进价1000元。

【例五】一商场将每台VCD先按进价提高40%标出销售价,然后再以八五折优惠价出售,结果还赚了228元,那么每台VCD进价多少元?本题只能利用"商品利润=商品售价-商品进价"这一关系式,利润为228元,售价为进价,提高40%后以八五折出售,即(1+40%)·85%x。

初一方程式解题方法和技巧

初一方程式解题方法和技巧

初一方程式解题方法和技巧
以下是 6 条关于初一方程式解题方法和技巧的内容:
1. 嘿,解方程第一步,那就是要学会找等量关系呀!就像你找宝藏一样,得先找到线索。

比如说,“小明有 5 个苹果,比小红多 2 个,那小红有几
个苹果呀?”这等量关系不就很明显嘛,用小明的苹果数减去多的就是小红的呀!别小看这第一步哦,找对了,后面就顺啦。

2. 哇塞,去分母可太重要啦!想想看,就像给方程式洗了个澡,让它变得干干净净,好处理呀。

比如这个方程“(2x+1)/3 = 5”,咱们就得把分母 3 去掉,两边同时乘 3,这不就简单多啦?不这样做,那可真是寸步难行呀!
3. 移项啊,这简直是方程式的乾坤大挪移呀!把项从一边挪到另一边,符号还得变呢。

就像“3x = 10 - 2x”,把 2x 移过去就变成 5x = 10 啦。

试一试,你会发现很神奇哟!
4. 合并同类项可是关键的一步呀!好比把同类的小伙伴聚集在一起。

像“2x + 3x = 15”,合并一下5x = 15,多清楚呀!不合并的话,那不就乱套啦?
5. 系数化为 1 啦,这就是最后的临门一脚呀!眼看就要成功啦。

比如说
“5x = 25”,那赶紧两边除以 5 呀,x 不就等于 5 啦?这一步可不能马虎哟!
6. 哎呀呀,检验可不能忘呀!你想想,好不容易解出来,要是错了多可惜呀!就像你做好了一件事,得检查检查才放心对吧?把解代到方程里看看等式成不成立,要是成立,那才叫完美呀!
我的观点结论:初一方程式解题,掌握这些方法和技巧很重要,每一步都精心对待,解题就会变得轻松又有趣!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学:用方程解决问题
1、学校组织学生步行去文昌阁参观,半小时后,崔老师骑自行车用20min从原路赶上队伍,崔老师骑自行车的速度比学生队伍行进的速度快10km/h。

求崔老师骑自行车的速度?
2、学校运动场跑道800m,大伟跑步的速度是爸爸的5/3倍,他们从同一起跑点沿跑道的同一方向出发,5分钟后大伟第一次追上了爸爸,你知道他们的跑步速度吗?如果大伟追上爸爸后立即转身沿相反方向跑,几分钟后大伟又一次与爸爸相遇?
3、甲骑自行车从A到B,乙骑自行车从B到A,甲每小时比乙多走4千米。

两人在早晨9点同时出发,到上午11点两人还相距42千米,到中午1:00两人又相距42千米,求A、B两地的距离?
4、旅游者游览水库景区,乘坐摩托艇顺水而下,然后返回登艇处,水流速度是4千米/小时,摩托艇在静水中的速度是18千米/小时,为了使游览时间不超过4分钟,旅游者驶出多远就应回头?
5、甲、乙两人练习200米赛跑,甲每秒跑8米,乙每秒跑7.5米,如果甲让乙先跑2秒,那么甲经过几秒可以追上乙?
6、甲、乙两架飞机同时从相距1000公里的两个机场相向飞行,飞了半小时到达同一中途机场,如果甲飞机的速度是乙飞机的2.5倍,求乙飞机的速度?
7、甲、乙两列火车,长为188米和260米,甲车比乙车每秒多行6米,两列火车相向而行,从相遇到错开需要9秒钟,问两车的速度各是多少?
8、从甲地到乙地,海路比陆地近60千米,上午8点,一艘轮船从甲地驶往乙地,中午12点,一辆汽车从甲地开往乙地,它们同时到达乙地,轮船的速度是每小时36千米,汽车的速度是每小时48千米,那么从甲地到乙地海路与陆地各是多少千米?
9、实验学生去校外进行春游,他们以每小时6千米的速度行进,走了26分钟,学校要将一个重要通知传给队长,通讯员从学校出发,骑自行车以每小时18千米的速度按原路追上去,通讯员需要多长时间可以追上学生队伍?
10、一房屋爆破为了确保安全,点燃引火线后人要在爆破前转移到4500米以外的安全地带,引火线燃烧的速度是0.6厘米/秒,人离开的速度的是7米/秒,问引火线至少需要多少厘米?
11、一项工作,甲单独做15小时完成,已单独做8小时完成,现在先由甲独做3小时,剩下的部分由甲、乙合做,剩下的部分需要几小时完成?
12、现有一个水池,用两个水管注水,如果单开甲管,3小时40分钟注满水池,如果单开乙管,需要6小时注满水池。

如果甲、乙两管先同时注水30分钟,然后由乙单独注水,问还需要多长时间才能把水池注满?假设在水池下面安装了水管丙管,单开丙管5小时可以把一满池水放完,如果三管同时开放,多少分钟才能把一空池注满水?
13、一架飞机飞行在两城市之间,风速为36千米/小时,顺风飞行需要3小时20分钟,逆风飞行需要4小时,求两个城市之间的
飞行路程?
14、甲乙两人在公路上同方向匀速前进,甲的速度为4千米/小时,乙的速度为6千米/小时,甲中午1点通过A地,乙于下午3点才经过A地,问下午几点乙才能追上甲?追及地距A地多远?
15、月亮圆到石油新村相距39千米,小萱步行从月亮圆出发,分三段以不同的速度走完全程,共用4小时。

第【一】第【二】第三段的速度分别是3千米/小时,5千米/小时,6千米/小时,第三段路程为12千米,求第一段和第二段的路程?
16、一双球鞋原售价是80元,因销售不好打8折出售,后因球鞋紧俏好卖又提价假设干,没双球鞋售价为100元,问提价的百分率是多少?。

相关文档
最新文档