疲劳强度
疲劳强度名词解释

疲劳强度名词解释
疲劳强度是指材料在反复加载下承受的应力值,使其发生疲劳破
坏的能力。
在工程实践中,很多物体会在实际应用中承受很多次反复
加载,如果其材料具有提高疲劳强度的特性,那么这样的物体可以更
加耐用,不易出现疲劳破坏。
具体来说,疲劳强度是通过一系列试验得出的,试验条件需要完
全符合实际应用场景。
在疲劳试验中,一般会采用不同应力水平下的
不同应变数进行试验,根据试验数据绘制S-N曲线,即应力-循环次数
曲线。
从曲线上可以得出不同应力水平下承受一定循环次数的应力值,这就是疲劳强度。
一般情况下,疲劳强度越高,材料承受疲劳破坏的
能力就越强。
疲劳强度的高低涉及到材料的许多因素,其中最重要的因素是材
料的强度、组织结构、显微组织和表面质量等。
一般来说,高强度材
料在疲劳试验中往往表现得比较明显,但是这并不是说只有高强度的
材料才能表现出高疲劳强度。
事实上,材料的组织结构和显微组织对
疲劳强度也有很大的影响,特别是对于低应力下的疲劳特性。
一般来说,细小、均匀的晶粒组织和优良的表面质量是提高疲劳强度的关键
因素之一。
疲劳强度还可以通过一些改进措施来提高。
例如,热处理、表面
处理等手段都可以改变材料的组织结构和性质,从而提高其疲劳强度。
另外,合理的设计和制造也可以提高疲劳强度,例如在零件设计中采
用倒角、圆弧等工艺措施可以避免应力集中,从而提高疲劳强度。
总之,疲劳强度对于很多工程材料来说都是一个重要的性能指标。
了解疲劳强度的意义和影响因素,可以帮助人们更好地理解材料的特
性和性能,提高材料的应用效能。
《材料力学》第十章 疲劳强度的概念

试件分为若干组,最大应力值由高到底,以电动 机带动试样旋转,让每组试件经历对称循环的交变应 力,直至断裂破坏。
记录每根试件中的最大应力(名义应力,即疲 劳强度)及发生破坏时的应力循环次数(又称疲劳 寿命),即可得S —N应力寿命曲线。
max
m ax,1 m ax,2
O
应力—寿命曲线,也称S—N曲线。
应力循环:应力每重复变化一次,称为一个应力循环。 完成一个应力循环所需的时间T ,称为一个周期。
o
t
max
o
min
:最大应力
max
:最小应力
min
a
a m
t
:平均应力
m
:应力幅值
a
max
m in
a
a m
循环特征:r min max
o
m
1 2
max
min
t
a
1 2
max
min
max
[ 1]
0 1
nf
其中: max 是构件危险点的最大工作应力;
nf 是疲劳安全系数。
或表示成:n
0
1
max
1 K max
同理,对扭转交变应力有:n
k
1 k
1 n f
max
max
nf
10.4 提高构件疲劳强度的措施
疲劳裂纹主要形成于构件表面和应力集中部位,故提高 构件疲劳极限的措施有:
表面加工质量愈低, 愈小, r 降低愈多。 一 般 1,但可通过对构件表面作强化处理而得到大于1 的 值。
综合上述三种因素,对称循环下构件的疲劳极限为:
0
1
K
1
或
0
金属材料疲劳强度

金属材料疲劳强度引言:金属材料在使用过程中经常会受到变形和应力的作用,长期使用后容易出现疲劳现象。
疲劳强度是评估材料在疲劳加载下的抗疲劳性能的重要指标。
本文将介绍金属材料疲劳强度的概念、影响因素以及测试方法。
一、疲劳强度的概念疲劳强度是指材料在循环加载下承受的最大应力,也称为疲劳极限。
其单位为MPa或N/mm²。
疲劳强度是金属材料的重要性能指标之一,对材料的使用寿命和可靠性有着重要影响。
二、影响因素1. 材料的组织结构:晶体结构的排列方式、晶粒大小和晶界的形态对疲劳强度有着显著影响。
晶粒越细小,晶界越强固,材料的疲劳强度越高。
2. 表面质量:表面缺陷如裂纹、划痕等会成为疲劳起始点,导致疲劳破坏的发生。
因此,良好的表面质量有助于提高疲劳强度。
3. 加工硬化:金属材料经过加工后,晶粒会细化,晶界也会变得更加强固,因此加工硬化能够提高材料的疲劳强度。
4. 温度:温度对金属材料的疲劳强度有一定影响。
一般情况下,随着温度的升高,材料的疲劳强度会降低。
5. 应力水平:应力水平是指材料在循环加载下所受到的应力大小。
较低的应力水平可以提高材料的疲劳强度。
三、测试方法1. S-N曲线法:该方法是目前应用最广泛的疲劳试验方法之一。
实验中通过不同应力水平下的循环加载,记录下材料的疲劳寿命,然后绘制S-N曲线,得出疲劳强度。
2. 破坏断口分析法:该方法通过观察材料的疲劳破坏断口来判断疲劳强度。
根据断口的形貌、特征来分析疲劳破坏的机制和强度。
3. 微观结构分析法:该方法通过显微镜、扫描电镜等工具对材料的微观结构进行观察和分析,进而推断疲劳强度。
结论:金属材料的疲劳强度是评估材料抗疲劳性能的重要指标。
疲劳强度受到多种因素的影响,如材料的组织结构、表面质量、加工硬化、温度和应力水平等。
为了准确评估材料的疲劳强度,可以采用S-N 曲线法、破坏断口分析法和微观结构分析法等测试方法。
通过研究和提高材料的疲劳强度,可以延长材料的使用寿命,提高产品的可靠性。
疲劳强度计算公式

疲劳强度计算公式疲劳是指在长时间的体力或脑力工作后,人体出现的生理和心理疲劳状态。
疲劳会导致身体的机能下降,影响工作和生活质量。
为了评估疲劳的程度,科学家们提出了疲劳强度计算公式。
疲劳强度计算公式是根据人体的生理反应和心理感受来评估疲劳程度的一种量化方法。
根据公式计算出的数值越大,表示疲劳程度越高。
疲劳强度计算公式的具体表达式如下:疲劳强度 = 工作负荷× 工作时间× 工作强度 / 休息时间其中,工作负荷指的是工作任务的难度和复杂程度,一般用单位时间内完成的工作量来表示;工作时间是指进行工作的持续时间;工作强度是指工作过程中消耗的体力和脑力;休息时间是指工作过程中的休息时间。
通过这个公式,我们可以计算出一个人在特定工作条件下的疲劳强度。
在实际应用中,我们可以根据这个数值来评估工作的疲劳程度,从而采取相应的措施来减轻疲劳对工作和生活的影响。
为了更好地理解疲劳强度计算公式的应用,我们可以通过一个实例来说明。
假设小明每天工作8个小时,工作负荷为每小时完成10个任务,工作强度为中等,休息时间为每小时休息10分钟。
那么,根据疲劳强度计算公式,我们可以计算出小明的疲劳强度为:疲劳强度= 10 × 8 × 2 / (8 × 10 / 60) = 2.4这个数值表示小明在这种工作条件下的疲劳程度较高。
为了减轻疲劳对小明的影响,他可以适当调整工作强度或增加休息时间,从而降低疲劳强度。
疲劳强度计算公式是一个较为简单的评估疲劳程度的方法,但是在实际应用中还需要考虑其他因素的影响。
例如,个体的体力和心理素质、工作环境的舒适度等都会对疲劳程度产生影响。
因此,在使用疲劳强度计算公式时,需要综合考虑这些因素,才能得出更准确的评估结果。
疲劳强度计算公式是一种用来评估疲劳程度的量化方法。
通过这个公式,我们可以计算出一个人在特定工作条件下的疲劳强度,从而采取相应的措施来减轻疲劳对工作和生活的影响。
疲劳强度资料

疲劳强度
疲劳强度是指材料在受到交变应力作用下所能承受的最大应力水平,是材料抗
疲劳性能的一个重要指标。
在工程实践中,疲劳强度的评定对于保证结构的可靠性和安全性至关重要。
疲劳的危害
疲劳是一种特殊的损伤形式,其分裂起点往往位于材料的内部缺陷或表面微小
裂纹的周围。
当材料受到交变应力作用时,这些缺陷和裂纹会逐渐扩展,导致材料的逐渐衰减和最终破坏。
这种疲劳损伤通常是隐蔽的、逐渐的,却又具有极其危险的特点。
影响疲劳强度的因素
疲劳强度受多种因素影响,其中最主要的包括材料的性能、应力水平、循环次数、环境条件等。
不同材料的疲劳强度差异很大,通常需要通过实验和试验来确定具体数值。
另外,应力水平和循环次数也是影响疲劳强度的重要因素,较高的应力水平和更多的循环次数会显著降低材料的疲劳寿命。
提高疲劳强度的方法
为了提高材料的疲劳强度,可以采取一系列措施。
首先是改善材料的内在质量,减少表面缺陷和微裂纹的存在,以增加材料的抗疲劳性能。
其次是通过热处理、表面强化等工艺手段来改善材料的性能,提高疲劳强度。
此外,设计合理的结构和避免应力集中也是提高疲劳强度的有效途径。
结语
疲劳强度作为材料性能的重要指标之一,对于保证结构的安全性具有重要意义。
正确评定疲劳强度,合理设计结构,提高材料性能,可以有效延长材料的使用寿命,保证结构的可靠性和安全性。
材料的疲劳名词解释

材料的疲劳名词解释材料的疲劳是一个在材料科学和工程中广泛研究的现象。
它指的是当材料在受到持续或重复的载荷作用下,会逐渐失去其强度和耐久性,导致结构或部件的破坏。
疲劳强度和寿命是评估材料耐久性的关键参数,对于许多工程应用来说至关重要。
1. 疲劳裂纹疲劳破坏的关键特征是疲劳裂纹,它是材料中由于应力作用下的微裂纹扩展所致的一种裂纹。
疲劳裂纹通常在外部无法察觉到的微小缺陷处形成并逐渐扩展,最终导致材料破坏。
疲劳裂纹的形成和扩展是疲劳破坏的主要机制之一。
2. 疲劳寿命疲劳寿命是指材料在特定应力水平下能够承受多少个载荷循环,直到发生破坏的次数。
疲劳寿命取决于材料的性质、应力水平、载荷类型以及环境条件等因素。
通过研究疲劳寿命,可以评估材料的耐久性,并设计出更耐久的材料或结构。
3. 应力幅应力幅是指材料在疲劳循环中的应力变化范围。
应力幅越大,材料的疲劳寿命通常越短。
应力幅的大小对于设计和使用材料时至关重要,过大的应力幅会导致材料失效的风险增加。
4. 疲劳强度疲劳强度是指材料在特定应力幅条件下能够承受的循环载荷次数,直到产生疲劳破坏。
疲劳强度是一个重要的材料特性,可以通过实验测试和理论分析来确定。
5. 疲劳寿命预测疲劳寿命预测是指通过实验测试、数值模拟和统计方法等手段,预测材料在特定应力水平下的疲劳寿命。
疲劳寿命预测的准确性对于工程设计和结构安全至关重要,可以帮助延长材料和结构的使用寿命。
6. 疲劳强化疲劳强化是指通过特殊的处理方法,在不改变材料物理性质的前提下提高材料的疲劳寿命和疲劳强度。
常见的疲劳强化方法包括热处理、表面处理和应力处理等,通过这些方法可以改善材料的耐久性。
7. 循环载荷循环载荷是指材料在疲劳试验中受到的重复加载和卸载作用,以模拟实际工况下的循环荷载。
循环载荷的研究可以帮助了解材料在实际使用过程中的行为,提高结构的设计安全性。
总结:材料的疲劳是一个重要的材料学和工程学领域的研究课题。
通过研究疲劳裂纹、疲劳寿命、应力幅、疲劳强度、疲劳寿命预测、疲劳强化和循环载荷等相关参数和现象,可以深入理解材料疲劳行为,并为设计和改进工程结构提供更可靠、更耐久的材料。
疲劳强度的计算范文

疲劳强度的计算范文疲劳强度是指人体在长时间及高强度工作后所产生的疲劳程度大小。
疲劳强度的计算可以通过多种方法,下面将详细介绍其中的几种常见的计算方法。
1.负荷强度法负荷强度法是通过计算工作的负荷强度来评估疲劳强度。
工作负荷强度可以通过计算工作量与工作时间的比值来获得。
例如,一个工人在8小时工作时间内完成了10个任务,那么他的工作负荷强度为10/8=1.25、负荷强度越高,表示工作负荷越大,疲劳强度也越高。
2.心率变异性法心率变异性法是通过检测心率变化来评估疲劳强度。
正常情况下,心率的变异性较大,而在疲劳状态下,心率的变异性较小。
可以使用心率变异性分析仪来检测心率变化,并根据分析结果来评估疲劳强度。
3.功率频谱法功率频谱法是通过分析工作时人体肌肉的电信号来评估疲劳强度。
该方法可以通过肌电图仪或其他相关设备来记录肌肉的电信号,并通过分析电信号的频率和幅度来评估疲劳强度。
在疲劳状态下,肌肉电信号的频率会降低,幅度会增加。
4.主观评估法需要注意的是,以上所述的计算方法都有一定的局限性。
负荷强度法和主观评估法可能受到个体主观感受的影响,结果不够客观。
心率变异性法和功率频谱法需要使用专业设备,对于一般人群来说可能不太方便。
因此,在实际应用中,可以根据实际情况结合多种方法进行评估,以获得更准确的疲劳强度结果。
除了以上的计算方法,还有许多其他的疲劳强度计算方法,例如氧气摄取率法、二氧化碳产生率法等。
这些方法通常需要使用专业的设备和技术,适用于科研实验或专业机构使用。
在实际工作中,可以根据具体情况选择合适的疲劳强度计算方法,并结合工作环境、工作负荷、个体身体状况等因素进行综合评估。
疲劳强度 屈服强度

疲劳强度屈服强度疲劳强度和屈服强度是材料力学中两个重要的概念。
疲劳强度指的是材料在循环加载下所能承受的最大应力,而屈服强度则是指材料在静态加载下的最大应力。
本文将详细探讨这两个概念的定义、影响因素以及其在工程中的应用。
疲劳强度是指材料在循环加载下出现疲劳破坏的能力。
疲劳破坏是指材料在连续循环加载下,由于应力集中、微裂纹扩展等原因,最终导致材料失效的现象。
疲劳强度的大小取决于材料的性质、加载方式、加载频率等因素。
材料的疲劳强度可以通过疲劳试验来确定,常用的试验方法包括振动试验、拉伸-压缩试验等。
屈服强度是指材料在静态加载下发生塑性变形的最大应力。
屈服强度是材料的重要力学性能参数,用来评估材料的强度和可塑性。
材料的屈服强度可以通过拉压试验来确定,常用的试验方法包括拉伸试验、压缩试验等。
屈服强度的大小取决于材料的组织结构、晶粒大小、材料的处理状态等因素。
疲劳强度和屈服强度的大小一般是不相等的。
对于大多数材料来说,疲劳强度要低于屈服强度。
这是因为在循环加载下,材料容易产生微裂纹、应力集中等缺陷,从而导致疲劳破坏。
而在静态加载下,材料的应力分布相对均匀,缺陷对材料的影响较小,因此屈服强度一般要高于疲劳强度。
疲劳强度和屈服强度受多种因素的影响。
首先是材料本身的性质。
不同材料的疲劳强度和屈服强度差异很大。
一般来说,强度高、韧性好的材料具有较高的疲劳强度和屈服强度。
其次是加载方式和频率。
疲劳强度和屈服强度随着加载方式的不同而有所差异。
对于疲劳强度来说,循环加载下的振动载荷往往比静态加载下的单向载荷更容易引起疲劳破坏。
而对于屈服强度来说,加载速率较快时,材料的屈服强度往往较低。
最后是温度和环境因素。
高温环境下,材料的疲劳强度和屈服强度往往会降低。
疲劳强度和屈服强度在工程中具有重要的应用价值。
在设计和制造中,合理选择材料的疲劳强度和屈服强度是确保产品寿命和安全性的关键。
在结构设计中,需要对材料的疲劳强度进行评估,以确定结构在实际使用条件下的疲劳寿命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.2.1 材料的疲劳极限
疲劳极限(持久极限) ——试件可经无限次应力循环而不发 生疲劳破坏,交变应力最大值
疲劳极限测定方法
1.将被测材料按国家标准加工一组疲劳光滑小试件,至少7 根 (直径d=7~10mm、表面磨光)。 2.对这组试件分别在不同的σmax下施加交变应力(保持循环 特征r不变),直到破坏,记录下每根试件破坏前经历的循 环次数N(常称为疲劳寿命) 。 3.在以横轴为循环寿命,纵轴为应力的坐标系中,将试验所 得结果描点并拟合成曲线,该曲线称为疲劳极限曲线或称为 曲线(应力——寿命曲线)。
对称循环条件下,疲劳极限值记为σ-1
8.2.1 材料的疲劳极限
疲劳极限(持久极限) ——试件可经无限次应力循环而不发 生疲劳破坏,交变应力最大值
应力—疲劳寿命曲线含义:
•σmax >σr, 试件经历有限次循环就破坏
•σmax <σr, 试件经历无限次循环而不发生破坏
•σmax =σ-1, r=-1时材料的疲劳极限
脆性断裂
8.2 材料的疲劳极限
交变应力要素 应力循环 ——构件在交变应力下工作,应力每重复变化一次。 最大应力σmax 、最小应力σmin
循环特征(应力比) r
max 1 ( ) (1 r ) 平均应力 m 2 max min 2
min max
max 1 (1 r ) 应力幅度 a ( max min ) 2 2
轮轴45号钢,受弯曲交变应力,当σmax=-σmin=260MPa 时,大约经历107循环即可发生断裂,而45号钢在静载 荷下的强度极限是σb=600MPa。
1.疲劳破坏特点
3)材料呈脆性断裂。即使是塑性材料,材料在断裂 前也无明显的塑性变形。
4)疲劳破坏断口,有两个明显区域:光滑区与粗糙 区,其中粗糙区又称为瞬断区,断口呈颗粒状
1985年日航波音747客机惊心动魄的撞山事件 - ---世界民航史上单机发生的最大空难事件
• 1985年8月12日晚上7时许.日本航空公司的一 架波音747宽体客机,执行国内航线的123正常 航班任务。在暮蔼沉沉之中,摇摇晃晃,以45 度的倾斜角度撞在群马县境内上野村附近的山 岗上,机上509名乘客和15名机组人员仅4人获 救外。其余520人全部罹难,这是日本民航史 上最大空难事件,也是世界民航史上单机发生 的最大空难事件、消息传出,日本全国震惊, 世界各国瞩目。
光滑试滑试件的疲劳 1 有效应力集中系数 k 1 同尺寸、 有应力集中试件的疲劳 极限
1 1 K , K 1, K 1, K
一般地,N0=107
二、材料的疲劳极限图
一种材料的不同r下的σr,在σm—σa坐标系中有 一曲线ABC与之对应,即材料的疲劳极限曲线(图)。
二、材料的疲劳极限图
在σm—σa坐标系中,材料 疲劳极限(σr,r)有对应点
m
1 r 1 r max r 2 2 1 r 1 r a max r 2 2 max m a r
最大应力 最小应力
max m a
min m a
交变应力分类
① 对称循环交变应力r=-1
② 非对称循环交变应力r≠-1 • 脉动循环交变应力r=0 ③ 静应力(静载荷)r=1 交变应力的描述: •σmax和σmin •σm和σa σ(任何交变应力)=σm(静应力)+σa(对称循环应力)
疲劳破坏实例
疲劳破坏实例
疲劳源
疲劳破坏实例
疲劳破坏典型断口
同一疲劳断口, 一般都有明显的 光滑区域和颗粒 状区域料的累积塑性变形是疲劳破坏 的主要原因。 3.疲劳破坏过程
初始缺陷
(应力集中)
滑
移
滑移带
宏观裂纹
初始裂纹(微裂纹)
宏观裂纹扩展
8.1 概述 交变载荷——随时间作周期性变化的载荷 交变应力——随时间作周期性变化的应力
My Fad A sin t I 2I
1.疲劳破坏特点
疲劳破坏——在交变应力作用下构件发生的破坏 1)抵抗断裂的极限应力低。疲劳破坏是构件在工作应 力低于强度极限,甚至低于屈服极限的情况下突然发 生的断裂,往往具有突发性。 2)破坏有一个过程。构件在一定的应力水平下,需要 经过一定周次的应力循环次数后,才突然断裂。
8.3 构件的疲劳极限 在实验测定材料疲劳极限的基础上,将构件的形 状、尺寸及表面加工质量等因素的影响分别独立地以 系数的形式修正材料的疲劳极限,得到构件的疲劳劳 极限。影响构件疲劳极限的因素:
8.3.1 构件外形的影响 由于结构与工艺的要求,工程构件的形状与光滑试件有很 大的差异,如传动轴上会有键槽、轴肩、横孔等。构件此种外 形的变化,将会引起应力集中,在应力集中的局部区域较易形 成疲劳裂纹,使构件的疲劳极限显著低于材料的疲劳极限 。
1.对任意一个循环应力σmax=σm+σa,在σm——σa坐标系中有 一对应点H(σm,σa) 2.OH射线斜率
tg
a 1 r m 1 r
仅与r有关,射线上的点代表循环特征为r的所有循环应力。
疲劳极限图的含义
•
若任意循环应力σmax=σm+σa对应点H(σm,σa), 位于材料疲劳极限曲线ABC内时,即,材料有 N=N0=107寿命,不会发生疲劳破坏, σmax=σm+σa<σr ; • 若循环应力σmax=σm+σa 对应点H(σm,σa), H (σm,σa) 在曲线ABC之外时, σmax=σm+σa>σr,材料 有有限次寿命, 就会发生疲劳破坏.
第8章 疲劳强度
交变载荷下材料的疲劳破坏
构件在交变应力(alternative stress) 作用下发生的破坏,称为疲劳失效,简称为 疲劳(fatigue)。对于矿山、冶金、动力、 运输机械以及航空航天等工业部门,疲劳是 零件或构件的主要失效形式。统计结果表明, 在各种机械的断裂事故中,大约有 80%以上 是由于疲劳失效引起的。