大学高等数学第四章 不定积分答案

合集下载

高等数学 第四章不定积分课后习题详解.doc

高等数学 第四章不定积分课后习题详解.doc

第4章不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路: 被积函数52x -=,由积分表中的公式(2)可解。

解:532223x dx x C --==-+⎰★(2)dx-⎰ 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰ ★(3)22x x dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:2232122ln 23x x x x dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰⎰ ★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰ 注:容易看出(5)(6)两题的解题思路是一致的。

一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。

★(7)x dx x x x⎰34134(-+-)2 思路:分项积分。

关于高等数学不定积分例题思路和答案超全

关于高等数学不定积分例题思路和答案超全

关于高等数学不定积分例题思路和答案超全This manuscript was revised on November 28, 2020第4章 不定积分习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路: 被积函数52x-=,由积分表中的公式(2)可解。

解:532223x dx x C --==-+⎰★(2)dx -⎰思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰★(3)22xx dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:2232122ln 23x xxx dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰注:容易看出(5)(6)两题的解题思路是一致的。

一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。

大学高等数学第四章 不定积分答案

大学高等数学第四章 不定积分答案

第四章 不定积分习 题 4-11.求下列不定积分: (1)解:C x x x x xx x x x+-=-=-⎰⎰-25232122d )5(d )51((2)解:⎰+x x xd )32(2C xx x ++⋅+=3ln 296ln 622ln 24 (3)略. (4) 解:⎰⎰⎰-+-=+-x x x x x x x d )1(csc d 11d )cot 11(2222=C x x x +--cot arcsin(5) 解:⎰x xxd 2103 C x x xxxx+===⎰⎰80ln 80d 80d 810 (6) 解:x x d 2sin2⎰=C x x x x ++=-=⎰sin 2121d )cos 1(21 (7)⎰+x x x xd sin cos 2cos C x x x x x x x x x x +--=-=+-=⎰⎰cos sin d )sin (cos d sin cos sin cos 22 (8) 解:⎰x xx xd sin cos 2cos 22⎰⎰-=-=x x x x x x x x d )cos 1sin 1(d sin cos sin cos 222222 C x x +--=tan cot(9) 解: ⎰⎰⎰-=-x x x x x x x x x d tan sec d sec d )tan (sec sec 2=C x x +-sec tan(10) 解:},,1max{)(x x f =设⎪⎩⎪⎨⎧>≤≤--<-=1,11,11,)(x x x x x x f 则.上连续在),()(+∞-∞x f Θ,)(x F 则必存在原函数,⎪⎪⎩⎪⎪⎨⎧>+≤≤-+-<+-=1,2111,1,21)(32212x C x x C x x C x x F 须处处连续,有又)(x F Θ)21(lim )(lim 12121C x C x x x +-=+-+-→-→ ,,21112C C +-=+-即)(lim )21(lim 21321C x C x x x +=+-+→→ ,,12123C C +=+即 ,1C C =联立并令.1,2132C C C C +==+可得.1,12111,211,21},1max{22⎪⎪⎪⎩⎪⎪⎪⎨⎧>++≤≤-++-<+-=⎰x C x x C x x C x dx x 故2. 解:设所求曲线方程为)(x f y =,其上任一点),(y x 处切线的斜率为3d d x xy=,从而 ⎰+==C x x x y 4341d 由0)0(=y ,得0=C ,因此所求曲线方程为 441x y =. 3.解:因为 x x x cos sin sin 212='⎪⎭⎫ ⎝⎛,x x x sin cos cos 212='⎪⎭⎫ ⎝⎛-x x x x cos sin 2sin 212cos 41=='⎪⎭⎫⎝⎛-所以x 2sin 21、 x 2cos 21-、 x 2cos 41-都是x x cos sin 的原函数.习 题 4-21.填空. (1)21xx d = d (x 1- + C) (2)x x d 1 = d (x ln + C) (3)x e xd = d (xe + C) (4) x x d sec 2= d (x tan + C) (5)x x d sin = d (x cos -+ C) (6) x x d cos = d (x sin + C) (7)x x d 112- = d (x arcsin + C) (8)x x x d 12- = d (21x -+ C)(9)x x x d sec tan = d (x sec + C) (10)x x d 112+ = d (x arctan + C)(11)x xx d )1(1+ = d (2x arctan + C) (12) x x d = d (22x + C)2.求下列不定积分: (1) 解:⎰+x x x d 42)4d()4(21)24d(41221222++=++=⎰⎰-x x x x=C x C x ++=++4)4(2212(2) 解:x x x d ln 4⎰C x x x +==⎰5ln )d(ln ln 54(3) 解:⎰x xexd 21C e x e x x +-=-=⎰11)1d((4) 解:⎰++x e e e x x x d )22(32C e e e e e ex x x x x x+++=++=⎰22131)d()22(4332(5) 解:⎰-294d x x C x x x x x +=-=-=⎰⎰23arcsin 31)23(1)23d(31)23(12d 22(6) 解:x x x x d )ln (ln 12⎰+C xx x x x x +-==⎰ln 1)ln d()ln (12 (7) 解:x x x x d ln ln ln 1⎰11d(ln )d(ln ln )ln |ln ln |ln ln ln ln ln x x x C x x x ===+⎰⎰(8) 解:⎰-+x e e x x d 1C e e e x x x +=+=⎰arctan )d(112 (9)解:2211()(12)24x x x C =--=--= (10)解:3222222133d d 3323x x x x x x dx x x x +-==+++⎰⎰⎰22222131131(3)ln(3)22322dx d x x x C x =-+=-+++⎰⎰ (11)解:3x x x =+2234)38x x =+-2arcsin3x C =+(12)解:211111d d d 2(2)(1)321x x x x x x x x x ⎛⎫==- ⎪---+-+⎝⎭⎰⎰⎰ 12ln 31x C x -=++ (13)解:2111sin ()d (1cos2())cos2()2()224t t t dt dt t d t ωϕωϕωϕωϕω+=-+=-++⎰⎰⎰⎰11sincos2()24t t C ωϕω=-++ (14)解:31d cos (arccos )x x arc x x ==-⎰ 21(cos )2arc x C -=+(15)解:2lncot lncot 1lncot 1lncot d d csc d dcot sin 22sin cos 2cot 2cot x x x xx x x x x x x x x x===-⎰⎰⎰⎰ 211ln cot dln cot (ln cot )24x x x C =-=-+⎰ (16)解:222x ==⎰2C =+(17) 解:⎰x x d cos 4x xx x x d 42cos 2cos 21d )22cos 1(22⎰⎰++=+= x x x d )42cos 22cos 41(2++=⎰ ++=42sin x x x x d 24cos 1⎰+++=42sin 3x x C x+44sin(18) 解:x xx xx d cos sin cos sin 3⎰-+C x x x x xx +-=--=⎰323)cos (sin 2)cos d(sin cos sin 1(19) 解:⎰x x d cos 3⎰=x x x d cos cos 2)d(sin sin 12⎰-=x x C xx +-=3sin sin 3 (20) 解:x xx d 1102arccos ⎰--=-=⎰)d(arccos 10arccos x xC x+10ln 10arccos (21) 解:x xxd 1arcsin 2⎰-C xx x +==⎰2arcsin )d(arcsin arcsin 2 (22) 解:⎰x xx d sin cos C x x x+==⎰sin 2)d(sin sin 1(23) 解:⎰x x x d cos sin 53⎰⎰--==x x x x x x cos d cos )cos 1(cos d cos sin 5252C x x +-=68cos 61cos 81 (24) 解:35tan sec d x x x =⎰⎰⎰-=x x x x x x sec d sec )1(sec sec d sec tan 4242C x x x +-=57sec 51sec 71 (25) 解:C x x x x x x x x ++-=-=⎰⎰cos 219cos 181d 2sin 9sin d 4sin 5cos(26) 解:⎰x x x d sec tan 43⎰⎰+==x x x x x x tan d )1(tan tan tan d sec tan 2323C x x x ++=56tan 41tan 61 (27) 解:令t x =6,则6t x =,t t x d 6d 5=,代入原式得C t t t t t t t t t x x x +-=+-+=+=+⎰⎰⎰arctan 66d 1116d 6)1(1d )1(1225233=C x x +-66arctan 66 (28) 解:设2tan ,sec x t dx tdt ==,则21td d sectx t t ==⎰sin t C C =+=+(29) 解:)1d(1)1(1)1d(1)1(1d 112222xxx xxx x x x⎰⎰⎰-=--±=-μ )1)1d((1)1(1222--=⎰xxμ1)1(22-=x μC x x +-=212(30)解:设3sec ,3sec tan x t dx t tdt ==,则2233tantdt tan (sec 1)22x tdt t dt =⨯==-⎰⎰333(tan 1)arccos )222t C x =-+=+(31)解:设2sin ,2cos x t dx tdt ==,则222=4sin dt x t =⎰12(1cos2)dt =22sin cos 2arcsin 22x t t t t C C =--+=-⎰(32)解: 22111d 2323313x dx x x x x =++++⎰⎰211111)()1833344()39x dx x C x +==+=+++⎰(33)解:1)4x x x =+14x C =+++ (34)解:1)2x x x ==-1)x C =-+习 题 4-3求下列不定积分 (1)解:⎰x x x d 2sin )2cos d(21⎰-=x x ⎰+-=x x x x d 2cos 212cos 2 C x x x ++-=2sin 412cos 2(2)解:⎰-x xe x d C e xe x e xe e x x x x x x +--=+-=-=-----⎰⎰d d(3)解:⎰x x x d ln 2⎰⎰⎰-=-==x x x x x x x x x x d 3ln 3)d(ln 3ln 3)3d(ln 23333C x x x +-=9ln 333 (4)略.(5)解:⎰x x x d cos 2⎰⎰⎰-=-==x x x x x x x x x x x d sin 2sin d sin sin sin d 2222x x x x x x x x x x d cos 2cos 2sin cos d 2sin 22⎰⎰-+=+=C x x x x x +-+=sin 2cos 2sin 2(6)解:因为⎰-x x exd 2sin ⎰--=xe x d 2sin )2d(sin 2sin ⎰--+-=x e x e x x)d(2cos 22sin ⎰----=x x e x x e )2d(cos 22cos 22sin ⎰---+--=x e x e x e x x x ⎰------=x x e x e x e x x x d 2sin 42cos 22sin于是⎰-x x e xd 2sin C xe x e x x +--=--52cos 22sin (7)解:⎰x x x d arctan 2⎰⎰-==x x x x x x arctan d 3arctan 33d arctan 333⎰+-=x x x x x d 131arctan 3233⎰+-+-=x x xx x x x d 131arctan 3233 C x x x x +++-=)1ln(31arctan 3223 (8)解:⎰x x x d cos 2⎰⎰+=+=x x x x x x x d )2cos (21d 22cos 1⎰+=x x x x d 2cos 2142 ⎰+=x x x 2sin d 4142⎰-+=x x x x x d 2sin 412sin 4142 C x x x x +-+=2cos 812sin 4142 (9)解:⎰x x xd arcsin 1⎰⎰-==x x x x x x arcsin d 2arcsin 2d arcsin 2⎰--=x xx x d 11arcsin 2C x x x +-+=12arcsin 2(10)解:⎰x e x xd 32x x xx x e x e x x xe e x e x 33233232d 923d 323d 31⎰⎰⎰-=-== C e xe e x x x x ++-=3332272923(11)解:因为⎰x x d ln cos ⎰⎰+=-=x x x x x x x x d ln sin ln cos ln cos d ln cos⎰-+=x x x x x x ln sin d ln sin ln cos ⎰-+=x x x x x x d ln cos ln sin ln cos于是⎰x x d ln cos C xx x x ++=2ln sin ln cos(12)解:⎰''x x f x d )(C x f x f x x x f x f x x f x +-'='-'='=⎰⎰)()(d )()()(d习 题 4-4求下列不定积分(1)解:⎰-x x x d 13⎰⎰⎰-+++=-+-=x x x x x x x x d 11d )1(d 11123 C x x x x +-+++=1ln 2323 (2)解:⎰--+x x x x x d 8345⎰⎰---+++=x xx x x x x x d 8d )1(322⎰⎰+---+++=x x x x x x x d )13148(d )1(2C x x x x x x ++---+++=1ln 31ln 4ln 82323 (3)解:⎰+-++x x x x x d )1)(2(1322222x x d 21⎰-=x x x x x x d )1(43d 12222⎰⎰+--++--+ x x x x x x x x x d )1(4)1()1d(23d 1121)1d(212ln 22222222⎰⎰⎰⎰+-++-+-++--= C x x xx x x x +-+-++-+--=arctan 212)1(23arctan 2)1ln(212ln 222(上式最后一个积分用积分表公式28)(4)解:⎰-+-x x x x x d )1(411622⎰---+=x x x x d ])1(1124[2 C x x x +-+-+=111ln 2ln 4C x x x +-+-=11)1(ln 22 (5)解:⎰-+-x x x xxd 123x x x x d )1)(1(2⎰+-=x x x x x d 11211d 212⎰⎰+---= C x x x +++--=arctan 21)1ln(411ln 212(6)解:⎰+x x 2sin 3d ⎰-=x x 2cos 7d 2x u tan =⎰+243d u u⎰+=2)32(1d 31u u C x +=3tan 2arctan 321(7)解:⎰++311d xx31x t +=⎰+t t t 1d 32t t t d )111(3⎰++-=C t t t +++-=1ln 232(8)解:x xx xd 11⎰-+x x t -+=11⎰+-t t t t d )1)(1(4222t t t t d )121111(2⎰+++--= C t t t +++-=arctan 211ln习 题 4-5利用积分表计算下列不定积分: (1)⎰+-245d xx x解:因为⎰+-245d xx x ⎰-+-=2)2(1)2d(x x在积分表中查得公式(73)C a x x a x x +++=+⎰)ln(d 2222现在1=a ,2-=x x ,于是⎰+-245d x x x C x x x +-+-+=)245ln(2(2)⎰x x d ln 3解:在积分表中查得公式(135)⎰⎰--=x x n x x x x n n n d ln )(ln d ln 1现在3=n ,重复利用此公式三次,得⎰x x d ln3C x x x x x x x +-+-=6ln 6ln 3ln 23.(3)x x d )1(122⎰+解:在积分表中查得公式(28)⎰⎰+++=+bax xb b ax b x x ax b 2222d 21)(2d )(1 于是现在1=a ,1=b ,于是=+⎰x x d )1(122 C x x xx x x x +++=+++⎰arctan )1(21d 21)1(2222 (4)⎰-1d 2x xx解:在积分表中查得公式(51)C xaa x ax x+=-⎰arccos 1d 12 于是现在1=a ,于是⎰-1d 2x xx C x+=1arccos(5)x x x xd 222-⎰解:令1-=x t ,因为x x x x d 222-⎰x x x d 1)1(22--=⎰t t t t d 1)12(22-++=⎰ 由积分表中公式(56)、(55)、(54)C a x x a a x a x x x a x x+-+---=-⎰2222222222ln 8)2(8dC a x x a x x +-=-⎰32222)(31d C a x x a a x x x a x +-+--=-⎰2222222ln 22d于是x x x x d 222-⎰2222)1())1(2[81a x a x x -----=C a x a x x a +--+--+--322222])1[(31)1(1ln 85.(6)⎰-12d 2x xx解:在积分表中查得公式(16)、(15)⎰⎰+-+-=+b ax x xb a bx b ax b ax xxd 2d 2C bbax b bax xx +-+-=+⎰arctan2d 于是现在2=a ,1-=b ,于是=-⎰12d 2x xx⎰-+-12d 12x x xx x C x xx +-+-=12arctan 212 (7) ⎰x x d cos 6解:在积分表中查得公式(135)⎰⎰----=x x nn x x n x x n n nd cos 1sin cos 1d cos 21 现在6=n ,重复利用此公式三次,得⎰x x d cos 6C xx x x •x x ++++=)22sin 41(2415sin cos 245sin cos 6135. (8)x x e x d 3sin 2⎰-解:在积分表中查得公式(128)C bx b bx a e ba x bx e ax ax+-+=⎰)cos sin (1d sin 22 现在2-=a ,3=b ,于是C x x e x x e axx +--=⎰-)3cos 33sin 2(131d 3sin 2 C x x e ax++-=)3cos 33sin 2(131.本章复习题 A一、填空.(1)已知)(x F 是xx sin 的一个原函数,则))(d(2x F = x x x d sin 22. (2)已知函数)(x f y =的导数为x y 2=',且1=x 时2=y ,则此函数为 12+=x y .(3)如果⎰+=C x x x x f ln d )(,则)(x f = 1ln +x . (4)已知⎰++=C x x x x f sin d )(,则⎰+x e f e x x d )1(=C e e x x ++++1)1sin(.(5)如果⎰+=C x x x x f 2sin d cos )(sin ,则)(x f =x 2.二、求下列不定积分.(1)解:x x x d 2cos 1cos 12⎰++x x x d 1cos 21cos 122⎰-++=x xx d cos cos 12122⎰+=x x d )sec 1(2⎰+= C x x ++=tan(2)解:⎰+xex 1d ⎰⎰----++-=+=x x x x e e e x e 1)1d(1d C e x++-=)1ln( (3)解:x xxxd 42532⎰⋅-⋅x x xx d )21(5d )43(2⎰⎰-=C x x++-=-2ln 254ln 3ln )43(2 (4)解:x x d )(arcsin 2⎰x xx x x x d 1arcsin 2arcsin 22⎰-⋅-=221d arcsin 2arcsin x x x x --=⎰x x x x x x arcsin d 12arcsin 12arcsin 222⎰-+--=C x x x x x ++--=2arcsin 12arcsin 22(5)解:令1+=x t ,则12-=t x ,于是⎰+1d x xx C t t t t t t t t t t t ++-=+--=-=-=⎰⎰⎰11ln d )1111(1d 2)1(d 222 (6)解:x x x d )1(223⎰+x x x x x x x x x x x d )1(d 1d ])1(1[222222⎰⎰⎰+-+=+-+= C x x ++++=)1(21)1ln(2122 (7)解:⎰-221)(arcsin d x x xC xx x +-==-⎰arcsin 1)d(arcsin )(arcsin 2(8)解:x xx d 4912⎰--=x xx x xd 49d 49122⎰⎰---)49d(49181)32d()32(12331222x x x x --+-=⎰⎰C x x +-+=2494132arcsin 21 (9)解:⎰x x x d sec tan 45==⎰x x x sec d sec tan 34⎰-x x x sec d sec )1(sec 322⎰+-=x x x x sec d )sec sec 2(sec 357C xx x ++-=4sec 3sec 8sec 468 (10)解:令t x sin =,)2π,2π(-∈t ,于是 ⎰-+211d x x ⎰⎰⎰⎰-=+-=+-+=+=2cos)2d(cos 1d d cos 11cos 1cos 1d cos 2tt t t t t t t t t t t C x x x C t t t t x C t t +---=+-=+-=211arcsin 2sin2cos 22sin2sin 2arcsin 2tan(11)解:⎰x e x x d 23C e e x x e e x e x x x x x x +-=-==⎰⎰222222121d 2121d 212222(12)解:x xxd ln ln ⎰C x x x +=⎰ln ln ln d ln ln三、设 1100,2,1,1)(>≤≤<⎪⎩⎪⎨⎧+=x x x x x x f ,求⎰x x f d )(.解:上连续在),()(+∞-∞x f Θ,)(x F 则必存在原函数,使得1100,,21,)(32221>≤≤<⎪⎪⎩⎪⎪⎨⎧++++=x x x C x C x x C x x F , 须处处连续,有又)(x F Θ)21(lim )(lim 22010C x x C x x x ++=++--→-→ ,即,21C C = .)21(lim )(lim 221321C x x C x x x ++=+-+→→ ,即 23231C C +=+ ,1C C =联立并令.1,2132C C C C +==+可得故⎰x x f d )(1100,21,21,22>≤≤<⎪⎪⎪⎩⎪⎪⎪⎨⎧+++++=x x x C x C x x C x .四、若,d tan I ⎰=x x n n ,,3,2Λ=n 证明:21tan 11----=n n n x n I I . 证明:因为⎰=x x n n d tan I ⎰⎰-==--x x x x x x n n d )1(sec tan d tan tan 2222 ⎰⎰---=x x x x x n n d tan d sec tan 222⎰⎰---=x x x x n n d tan tan d tan 2221tan 11----=n n x n I 故 21tan 11----=n n n x n I I .本章复习题B一、填空.(1) xe x 121--; (2) c x x +-331; (3) 21232534154c x c x x +++ (4) c e x x +---2)12(2 二、求下列不定积分.(1)x ee xxd arctan 2⎰解:=⎰x ee x x d arctan 2xx e e 2d arctan 21-⎰-=]d 1)(11arctan [21222x e e e e e x x x x x ⎰+--- =]d )11(arctan [2122x e e e e e xx x xx ⎰+----=C e e e e x x x x +++---)arctan arctan (212。

高等数学第四章不定积分课后习题详细讲解

高等数学第四章不定积分课后习题详细讲解

第4章不定积分习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)⎰思路: 被积函数52x-=,由积分表中的公式(2)可解。

解:532223x dx x C --==-+⎰★(2)dx-⎰思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰★(3)22xx dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:2232122ln 23x xxx dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰⎰★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 11x x dx x dx dx x x C x x++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰注:容易看出(5)(6)两题的解题思路是一致的。

一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。

★(7)x dx x x x ⎰34134(-+-)2 思路:分项积分。

解:3411342x dx xdx dx x dx x dx x x x x --=-+-⎰⎰⎰⎰⎰34134(-+-)2 223134ln ||.423x x x x C --=--++ ★(8)23(1dx x -+⎰思路:分项积分。

高数总复习题4参考答案

高数总复习题4参考答案

第四章不定积分参考答案一、填空题1.设()f x 是连续函数,则()_______df x dx dx=⎰. );(x f 2.设()f x 是连续函数,则()______.f x dx '=⎰ ;)(C x f +3.设C x F dx x f +=⎰)()(,则=⋅⎰dx x f x )(cos sin C x F +-)(cos5.设C x F dx x f +=⎰)()(,则=⎰dx x xf )(' C x F x xf +-)()(8.若2x e-是)(x f 的一个原函数,则()xf x dx '=⎰ 2221()xx e C ---+9.已知一曲线在各点的切线斜率为其切点横坐标的3倍,且通过点(0,1),此曲线方程为______________.2322.y x =+ 12.如果22)]([)(12x f dx d x f x=+,且0)0(=f ,则=)(x f x arctan 15.设x x f +='1)(ln (0>x ),则=)(x f C e x x++ 二、单项选择题1.下列函数中,是同一函数的原函数的是( C )A.212sin .x 与124cos ;x B. ln ln x 与2ln ;x C.212sin x 与124cos ;x - D. 22tan x与22csc .x2. 下列等式中正确的是( A )A.sin cos ;xdx x C =-+⎰ B. 344();x dx x C ---=+⎰ C. 23;x dx x C =+⎰ D. 33.x x dx C =+⎰3. 函数cos xex 是函数(B )的原函数A .sin ;xex - B. (cos sin );x e x x - C. sin ;x e x D. (cos sin ).x e x x +4. 在积分曲线族⎰中,过点(0,1)的积分曲线方程为( B )A. 1;B. 5215;+ C. D. 552.C +5. 若函数()f x 的导函数是sin x ,则()f x 的一个原函数为( B )A. 1sin ;x +B. 1sin ;x -C. 1cos ;x +D. 1cos .x -6.设()x f 是()x g 的原函数,则下列各式中正确的是 BA .()()C x g dx x f +=⎰B .()()C x f dx x g +=⎰ C .()()C x g dx x f +=⎰'D .()()C x f dx x g +=⎰'7.函数()x x f 2=是函数()xx g 21=的 CA .反函数B .导函数C .原函数D .不定积分8.下列各式中等于()x f 的是 D A .()⎰x df B .()dx x f d⎰ C .()dx x f ⎰' D .()()'dx x f ⎰’9.设C x dx x f ++=⎰12)(2,则=+⎰dx x xf )12(2DA .C x x ++122B .C x ++12212 C .C x ++12412 D .C x +++1)12(2412 10.设导数)(')('x f x g =,则下列各式中正确的是 BA .)()(x f x g =B .C x f x g +=)()(C .dx x f dx x g ⎰⎰=)()(D .C dx x f dx x g +=⎰⎰)()(11.函数x 2cos π的一个原函数是_______________ A A .x 2sin2ππB .x 2sin2ππC .x 2sin2ππ-D .x 2sin2ππ-14.设C x dx x f x++=⎰)1ln()(,则=⎰dx x x f )( D A .C x ++)1ln(1B .C x x ++)1ln( C .C x x ++3232D .C x x ++22 15.在区间),(b a 内,如果)(')('x g x f =,则下列各式中一定成立的是 A .)()(x g x f = B .1)()(+=x g x fC .[][]')(')(⎰⎰=dx x g dx x f D .dx x g dx x f ⎰⎰=)(')('16.若x 2sin 是)(x f 的一个原函数,则=⎰dx x f x )( D A .sin 2cos 2x x x C ++ B .sin 2cos 2x x x C -+C .C x x x +-2cos 212sinD .C x x x ++2cos 212sin 18.不定积分=⎰dx x22sin C A .C x+22cos 2 B .C x x ++sin C .Cx x +-)sin (21 D .C x+-22sin 21 19.对于不定积分()f x dx ⎰,在下列等式中正确的是 D .(A )[()]()d f x dx f x =⎰; (B )()()df x f x =⎰;(C )()()f x dx f x '=⎰; (D )()()df x dx f x dx=⎰. 20.f (x)在[a,b]连续,()()d xax f t t φ=⎰,则( A )。

高等数学第四章不定积分测试题(附答案)

高等数学第四章不定积分测试题(附答案)

x
2
f ( x) 13. 1 f 2 ( x) dx
15
df ( x) 1 f 2 (x)
arctan f ( x) C .
14. 8 x 8 15
C . 15. x
1 C.
x
二 . 计算题
16.(5 分)计算
dx x2 (1 x2 ) .
【解析】原式
=
1 ( x2
1 1 x2 )dx
17.(5 分)计算
B. xf ( x) f ( x) C
C. xf ( x) f (x) C
D. f (x) xf ( x) C
8.下列式子中正确的是(

A . dF x F x
B . d dF x F x C
d
C.
f x dx f x dx
dx
D . d f x dx
9.若 F x G x , k 为任意常数,则(
dx ,则 f ( x) _______ .
x
D. 2 f 2x C
12. d[ f 2 (x)] 2 f ( x)cos xdx ,且 f (0) 1,则 f (x) ______ ____.
13.
1
f
( x) f 2(x
dx )
____________ .
14. x x x dx ___________________.
dx 1 ex .
1 arctan x C .
x
【解析】原式
=
(1
1
ex ex
)
dx
x ln(1 ex ) C .
18.(5 分)计算
x3
x2
dx . 1
【解析】原式 = ( x

《高等数学》不定积分课后习题详解

《高等数学》不定积分课后习题详解

《高等数学》不定积分课后习题详解 篇一:高等数学第四章不定积分习题 第四章不 定 积 分 4 – 1 不定积分的概念与性质 一.填空题 1.若在区间上 F?(x)?f(x),则 F(x)叫做 f(x)在该区间上的一个 f(x)的 所有原函数叫做 f(x) 在该区间上的__________。

2.F(x)是 f(x)的一个原函数,则 y=F(x)的图形为?(x)的一条_________. 3.因为 d(arcsinx)? 1?x2 dx ,所以 arcsinx 是______的一个原函数。

4.若曲线 y=?(x)上点(x,y)的切线斜率与 x 成正比例,并且通过点 A(1,6)和 B(2,-9),则该曲线 方程为__________ 。

二.是非判断题 1. 若 f?x?的某个原函数为常数,则 f?x??0.[ ] 2. 一切初等函数在其定义区间上都有原 函数.[ ] 3. 3 ??f?x?dx???f??x?dx.[ ] ? 4. 若 f?x?在某一区间内不连续,则在这个区间内 f?x?必无原函数. [ ] 5.y?ln?ax?与 y?lnx 是同一函数的原函数.[ ] 三.单项选择题 1.c 为任意常数,且 F'(x)=f(x),下式成立的有 。

(A)?F'(x)dx?f(x)+c;(B)?f(x)dx=F(x)+c; (C)?F(x)dx?F'(x)+c;(D) ?f'(x)dx=F(x)+c. 2. F(x)和 G(x)是函数 f(x)的任意两个原函数,f(x)?0,则下式成立的有 。

(A)F(x)=cG(x); (B)F(x)= G(x)+c;(C)F(x)+G(x)=c;(D) F(x)?G(x)=c.3.下列各式中是 f(x)?sin|x|的原函数。

(A) y??cos|x| ;(B) y=-|cosx|;(c)y=? ?cosx,x?0,cosx?2,x?0; (D) y=? ?cosx?c1,x?0,cosx?c2,x?0. c1、c2 任意常数。

高等数学本科第四章 不定积分例题讲解附答案

高等数学本科第四章 不定积分例题讲解附答案
例5求
解:思路:幂函数与指数函数乘积的积分总是先把指数函数和微分号结合起来,再应用分部积分公式。
例6求 .
解:思路:幂函数与三角函数乘积的积分总是先把三角函数和微分号结合起来,再应用分部积分公式。
高等数学本科第四章不定积分例题思路:幂函数与对数函数乘积的积分总是先把幂函数和微分号结合起来,再应用分部积分公式。
例2求 。
解:思路:这是应用第一类换元法的情形。
例3求 。
解:思路:这是应用第二类换元法的情形,目的为了去根号。
令 ,所以,
例4求 。
解:思路:幂函数与三角函数乘积的积分总是先把三角函数和微分号结合起来,再应用分部积分公式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 不定积分习 题 4-11.求下列不定积分: (1)解:C x x x x xx x x x+-=-=-⎰⎰-25232122d )5(d )51((2)解:⎰+x x xd )32(2C xx x ++⋅+=3ln 296ln 622ln 24 (3)略. (4) 解:⎰⎰⎰-+-=+-x x x x x x x d )1(csc d 11d )cot 11(2222=C x x x +--cot arcsin(5) 解:⎰x xxd 2103 C x x xxxx+===⎰⎰80ln 80d 80d 810 (6) 解:x x d 2sin2⎰=C x x x x ++=-=⎰sin 2121d )cos 1(21 (7)⎰+x x x xd sin cos 2cos C x x x x x x x x x x +--=-=+-=⎰⎰cos sin d )sin (cos d sin cos sin cos 22 (8) 解:⎰x xx xd sin cos 2cos 22⎰⎰-=-=x x x x x x x x d )cos 1sin 1(d sin cos sin cos 222222 C x x +--=tan cot(9) 解: ⎰⎰⎰-=-x x x x x x x x x d tan sec d sec d )tan (sec sec 2=C x x +-sec tan(10) 解:},,1max{)(x x f =设⎪⎩⎪⎨⎧>≤≤--<-=1,11,11,)(x x x x x x f 则.上连续在),()(+∞-∞x f Θ,)(x F 则必存在原函数,⎪⎪⎩⎪⎪⎨⎧>+≤≤-+-<+-=1,2111,1,21)(32212x C x x C x x C x x F 须处处连续,有又)(x F Θ)21(lim )(lim 12121C x C x x x +-=+-+-→-→ ,,21112C C +-=+-即)(lim )21(lim 21321C x C x x x +=+-+→→ ,,12123C C +=+即 ,1C C =联立并令.1,2132C C C C +==+可得.1,12111,211,21},1max{22⎪⎪⎪⎩⎪⎪⎪⎨⎧>++≤≤-++-<+-=⎰x C x x C x x C x dx x 故2. 解:设所求曲线方程为)(x f y =,其上任一点),(y x 处切线的斜率为3d d x xy=,从而 ⎰+==C x x x y 4341d 由0)0(=y ,得0=C ,因此所求曲线方程为 441x y =. 3.解:因为 x x x cos sin sin 212='⎪⎭⎫ ⎝⎛,x x x sin cos cos 212='⎪⎭⎫ ⎝⎛-x x x x cos sin 2sin 212cos 41=='⎪⎭⎫⎝⎛-所以x 2sin 21、 x 2cos 21-、 x 2cos 41-都是x x cos sin 的原函数.习 题 4-21.填空. (1)21xx d = d (x 1- + C) (2)x x d 1 = d (x ln + C) (3)x e xd = d (xe + C) (4) x x d sec 2= d (x tan + C) (5)x x d sin = d (x cos -+ C) (6) x x d cos = d (x sin + C) (7)x x d 112- = d (x arcsin + C) (8)x x x d 12- = d (21x -+ C)(9)x x x d sec tan = d (x sec + C) (10)x x d 112+ = d (x arctan + C)(11)x xx d )1(1+ = d (2x arctan + C) (12) x x d = d (22x + C)2.求下列不定积分: (1) 解:⎰+x x x d 42)4d()4(21)24d(41221222++=++=⎰⎰-x x x x=C x C x ++=++4)4(2212(2) 解:x x x d ln 4⎰C x x x +==⎰5ln )d(ln ln 54(3) 解:⎰x xexd 21C e x e x x +-=-=⎰11)1d((4) 解:⎰++x e e e x x x d )22(32C e e e e e ex x x x x x+++=++=⎰22131)d()22(4332(5) 解:⎰-294d x x C x x x x x +=-=-=⎰⎰23arcsin 31)23(1)23d(31)23(12d 22(6) 解:x x x x d )ln (ln 12⎰+C xx x x x x +-==⎰ln 1)ln d()ln (12 (7) 解:x x x x d ln ln ln 1⎰11d(ln )d(ln ln )ln |ln ln |ln ln ln ln ln x x x C x x x ===+⎰⎰(8) 解:⎰-+x e e x x d 1C e e e x x x +=+=⎰arctan )d(112 (9)解:2211()(12)24x x x C =--=--= (10)解:3222222133d d 3323x x x x x x dx x x x +-==+++⎰⎰⎰22222131131(3)ln(3)22322dx d x x x C x =-+=-+++⎰⎰ (11)解:3x x x =+2234)38x x =+-2arcsin3x C =+(12)解:211111d d d 2(2)(1)321x x x x x x x x x ⎛⎫==- ⎪---+-+⎝⎭⎰⎰⎰ 12ln 31x C x -=++ (13)解:2111sin ()d (1cos2())cos2()2()224t t t dt dt t d t ωϕωϕωϕωϕω+=-+=-++⎰⎰⎰⎰11sincos2()24t t C ωϕω=-++ (14)解:31d cos (arccos )x x arc x x ==-⎰ 21(cos )2arc x C -=+(15)解:2lncot lncot 1lncot 1lncot d d csc d dcot sin 22sin cos 2cot 2cot x x x xx x x x x x x x x x===-⎰⎰⎰⎰ 211ln cot dln cot (ln cot )24x x x C =-=-+⎰ (16)解:222x ==⎰2C =+(17) 解:⎰x x d cos 4x xx x x d 42cos 2cos 21d )22cos 1(22⎰⎰++=+= x x x d )42cos 22cos 41(2++=⎰ ++=42sin x x x x d 24cos 1⎰+++=42sin 3x x C x+44sin(18) 解:x xx xx d cos sin cos sin 3⎰-+C x x x x xx +-=--=⎰323)cos (sin 2)cos d(sin cos sin 1(19) 解:⎰x x d cos 3⎰=x x x d cos cos 2)d(sin sin 12⎰-=x x C xx +-=3sin sin 3 (20) 解:x xx d 1102arccos ⎰--=-=⎰)d(arccos 10arccos x xC x+10ln 10arccos (21) 解:x xxd 1arcsin 2⎰-C xx x +==⎰2arcsin )d(arcsin arcsin 2 (22) 解:⎰x xx d sin cos C x x x+==⎰sin 2)d(sin sin 1(23) 解:⎰x x x d cos sin 53⎰⎰--==x x x x x x cos d cos )cos 1(cos d cos sin 5252C x x +-=68cos 61cos 81 (24) 解:35tan sec d x x x =⎰⎰⎰-=x x x x x x sec d sec )1(sec sec d sec tan 4242C x x x +-=57sec 51sec 71 (25) 解:C x x x x x x x x ++-=-=⎰⎰cos 219cos 181d 2sin 9sin d 4sin 5cos(26) 解:⎰x x x d sec tan 43⎰⎰+==x x x x x x tan d )1(tan tan tan d sec tan 2323C x x x ++=56tan 41tan 61 (27) 解:令t x =6,则6t x =,t t x d 6d 5=,代入原式得C t t t t t t t t t x x x +-=+-+=+=+⎰⎰⎰arctan 66d 1116d 6)1(1d )1(1225233=C x x +-66arctan 66 (28) 解:设2tan ,sec x t dx tdt ==,则21td d sectx t t ==⎰sin t C C =+=+(29) 解:)1d(1)1(1)1d(1)1(1d 112222xxx xxx x x x⎰⎰⎰-=--±=-μ )1)1d((1)1(1222--=⎰xxμ1)1(22-=x μC x x +-=212(30)解:设3sec ,3sec tan x t dx t tdt ==,则2233tantdt tan (sec 1)22x tdt t dt =⨯==-⎰⎰333(tan 1)arccos )222t C x =-+=+(31)解:设2sin ,2cos x t dx tdt ==,则222=4sin dt x t =⎰12(1cos2)dt =22sin cos 2arcsin 22x t t t t C C =--+=-⎰(32)解: 22111d 2323313x dx x x x x =++++⎰⎰211111)()1833344()39x dx x C x +==+=+++⎰(33)解:1)4x x x =+14x C =+++ (34)解:1)2x x x ==-1)x C =-+习 题 4-3求下列不定积分 (1)解:⎰x x x d 2sin )2cos d(21⎰-=x x ⎰+-=x x x x d 2cos 212cos 2 C x x x ++-=2sin 412cos 2(2)解:⎰-x xe x d C e xe x e xe e x x x x x x +--=+-=-=-----⎰⎰d d(3)解:⎰x x x d ln 2⎰⎰⎰-=-==x x x x x x x x x x d 3ln 3)d(ln 3ln 3)3d(ln 23333C x x x +-=9ln 333 (4)略.(5)解:⎰x x x d cos 2⎰⎰⎰-=-==x x x x x x x x x x x d sin 2sin d sin sin sin d 2222x x x x x x x x x x d cos 2cos 2sin cos d 2sin 22⎰⎰-+=+=C x x x x x +-+=sin 2cos 2sin 2(6)解:因为⎰-x x exd 2sin ⎰--=xe x d 2sin )2d(sin 2sin ⎰--+-=x e x e x x)d(2cos 22sin ⎰----=x x e x x e )2d(cos 22cos 22sin ⎰---+--=x e x e x e x x x ⎰------=x x e x e x e x x x d 2sin 42cos 22sin于是⎰-x x e xd 2sin C xe x e x x +--=--52cos 22sin (7)解:⎰x x x d arctan 2⎰⎰-==x x x x x x arctan d 3arctan 33d arctan 333⎰+-=x x x x x d 131arctan 3233⎰+-+-=x x xx x x x d 131arctan 3233 C x x x x +++-=)1ln(31arctan 3223 (8)解:⎰x x x d cos 2⎰⎰+=+=x x x x x x x d )2cos (21d 22cos 1⎰+=x x x x d 2cos 2142 ⎰+=x x x 2sin d 4142⎰-+=x x x x x d 2sin 412sin 4142 C x x x x +-+=2cos 812sin 4142 (9)解:⎰x x xd arcsin 1⎰⎰-==x x x x x x arcsin d 2arcsin 2d arcsin 2⎰--=x xx x d 11arcsin 2C x x x +-+=12arcsin 2(10)解:⎰x e x xd 32x x xx x e x e x x xe e x e x 33233232d 923d 323d 31⎰⎰⎰-=-== C e xe e x x x x ++-=3332272923(11)解:因为⎰x x d ln cos ⎰⎰+=-=x x x x x x x x d ln sin ln cos ln cos d ln cos⎰-+=x x x x x x ln sin d ln sin ln cos ⎰-+=x x x x x x d ln cos ln sin ln cos于是⎰x x d ln cos C xx x x ++=2ln sin ln cos(12)解:⎰''x x f x d )(C x f x f x x x f x f x x f x +-'='-'='=⎰⎰)()(d )()()(d习 题 4-4求下列不定积分(1)解:⎰-x x x d 13⎰⎰⎰-+++=-+-=x x x x x x x x d 11d )1(d 11123 C x x x x +-+++=1ln 2323 (2)解:⎰--+x x x x x d 8345⎰⎰---+++=x xx x x x x x d 8d )1(322⎰⎰+---+++=x x x x x x x d )13148(d )1(2C x x x x x x ++---+++=1ln 31ln 4ln 82323 (3)解:⎰+-++x x x x x d )1)(2(1322222x x d 21⎰-=x x x x x x d )1(43d 12222⎰⎰+--++--+ x x x x x x x x x d )1(4)1()1d(23d 1121)1d(212ln 22222222⎰⎰⎰⎰+-++-+-++--= C x x xx x x x +-+-++-+--=arctan 212)1(23arctan 2)1ln(212ln 222(上式最后一个积分用积分表公式28)(4)解:⎰-+-x x x x x d )1(411622⎰---+=x x x x d ])1(1124[2 C x x x +-+-+=111ln 2ln 4C x x x +-+-=11)1(ln 22 (5)解:⎰-+-x x x xxd 123x x x x d )1)(1(2⎰+-=x x x x x d 11211d 212⎰⎰+---= C x x x +++--=arctan 21)1ln(411ln 212(6)解:⎰+x x 2sin 3d ⎰-=x x 2cos 7d 2x u tan =⎰+243d u u⎰+=2)32(1d 31u u C x +=3tan 2arctan 321(7)解:⎰++311d xx31x t +=⎰+t t t 1d 32t t t d )111(3⎰++-=C t t t +++-=1ln 232(8)解:x xx xd 11⎰-+x x t -+=11⎰+-t t t t d )1)(1(4222t t t t d )121111(2⎰+++--= C t t t +++-=arctan 211ln习 题 4-5利用积分表计算下列不定积分: (1)⎰+-245d xx x解:因为⎰+-245d xx x ⎰-+-=2)2(1)2d(x x在积分表中查得公式(73)C a x x a x x +++=+⎰)ln(d 2222现在1=a ,2-=x x ,于是⎰+-245d x x x C x x x +-+-+=)245ln(2(2)⎰x x d ln 3解:在积分表中查得公式(135)⎰⎰--=x x n x x x x n n n d ln )(ln d ln 1现在3=n ,重复利用此公式三次,得⎰x x d ln3C x x x x x x x +-+-=6ln 6ln 3ln 23.(3)x x d )1(122⎰+解:在积分表中查得公式(28)⎰⎰+++=+bax xb b ax b x x ax b 2222d 21)(2d )(1 于是现在1=a ,1=b ,于是=+⎰x x d )1(122 C x x xx x x x +++=+++⎰arctan )1(21d 21)1(2222 (4)⎰-1d 2x xx解:在积分表中查得公式(51)C xaa x ax x+=-⎰arccos 1d 12 于是现在1=a ,于是⎰-1d 2x xx C x+=1arccos(5)x x x xd 222-⎰解:令1-=x t ,因为x x x x d 222-⎰x x x d 1)1(22--=⎰t t t t d 1)12(22-++=⎰ 由积分表中公式(56)、(55)、(54)C a x x a a x a x x x a x x+-+---=-⎰2222222222ln 8)2(8dC a x x a x x +-=-⎰32222)(31d C a x x a a x x x a x +-+--=-⎰2222222ln 22d于是x x x x d 222-⎰2222)1())1(2[81a x a x x -----=C a x a x x a +--+--+--322222])1[(31)1(1ln 85.(6)⎰-12d 2x xx解:在积分表中查得公式(16)、(15)⎰⎰+-+-=+b ax x xb a bx b ax b ax xxd 2d 2C bbax b bax xx +-+-=+⎰arctan2d 于是现在2=a ,1-=b ,于是=-⎰12d 2x xx⎰-+-12d 12x x xx x C x xx +-+-=12arctan 212 (7) ⎰x x d cos 6解:在积分表中查得公式(135)⎰⎰----=x x nn x x n x x n n nd cos 1sin cos 1d cos 21 现在6=n ,重复利用此公式三次,得⎰x x d cos 6C xx x x •x x ++++=)22sin 41(2415sin cos 245sin cos 6135. (8)x x e x d 3sin 2⎰-解:在积分表中查得公式(128)C bx b bx a e ba x bx e ax ax+-+=⎰)cos sin (1d sin 22 现在2-=a ,3=b ,于是C x x e x x e axx +--=⎰-)3cos 33sin 2(131d 3sin 2 C x x e ax++-=)3cos 33sin 2(131.本章复习题 A一、填空.(1)已知)(x F 是xx sin 的一个原函数,则))(d(2x F = x x x d sin 22. (2)已知函数)(x f y =的导数为x y 2=',且1=x 时2=y ,则此函数为 12+=x y .(3)如果⎰+=C x x x x f ln d )(,则)(x f = 1ln +x . (4)已知⎰++=C x x x x f sin d )(,则⎰+x e f e x x d )1(=C e e x x ++++1)1sin(.(5)如果⎰+=C x x x x f 2sin d cos )(sin ,则)(x f =x 2.二、求下列不定积分.(1)解:x x x d 2cos 1cos 12⎰++x x x d 1cos 21cos 122⎰-++=x xx d cos cos 12122⎰+=x x d )sec 1(2⎰+= C x x ++=tan(2)解:⎰+xex 1d ⎰⎰----++-=+=x x x x e e e x e 1)1d(1d C e x++-=)1ln( (3)解:x xxxd 42532⎰⋅-⋅x x xx d )21(5d )43(2⎰⎰-=C x x++-=-2ln 254ln 3ln )43(2 (4)解:x x d )(arcsin 2⎰x xx x x x d 1arcsin 2arcsin 22⎰-⋅-=221d arcsin 2arcsin x x x x --=⎰x x x x x x arcsin d 12arcsin 12arcsin 222⎰-+--=C x x x x x ++--=2arcsin 12arcsin 22(5)解:令1+=x t ,则12-=t x ,于是⎰+1d x xx C t t t t t t t t t t t ++-=+--=-=-=⎰⎰⎰11ln d )1111(1d 2)1(d 222 (6)解:x x x d )1(223⎰+x x x x x x x x x x x d )1(d 1d ])1(1[222222⎰⎰⎰+-+=+-+= C x x ++++=)1(21)1ln(2122 (7)解:⎰-221)(arcsin d x x xC xx x +-==-⎰arcsin 1)d(arcsin )(arcsin 2(8)解:x xx d 4912⎰--=x xx x xd 49d 49122⎰⎰---)49d(49181)32d()32(12331222x x x x --+-=⎰⎰C x x +-+=2494132arcsin 21 (9)解:⎰x x x d sec tan 45==⎰x x x sec d sec tan 34⎰-x x x sec d sec )1(sec 322⎰+-=x x x x sec d )sec sec 2(sec 357C xx x ++-=4sec 3sec 8sec 468 (10)解:令t x sin =,)2π,2π(-∈t ,于是 ⎰-+211d x x ⎰⎰⎰⎰-=+-=+-+=+=2cos)2d(cos 1d d cos 11cos 1cos 1d cos 2tt t t t t t t t t t t C x x x C t t t t x C t t +---=+-=+-=211arcsin 2sin2cos 22sin2sin 2arcsin 2tan(11)解:⎰x e x x d 23C e e x x e e x e x x x x x x +-=-==⎰⎰222222121d 2121d 212222(12)解:x xxd ln ln ⎰C x x x +=⎰ln ln ln d ln ln三、设 1100,2,1,1)(>≤≤<⎪⎩⎪⎨⎧+=x x x x x x f ,求⎰x x f d )(.解:上连续在),()(+∞-∞x f Θ,)(x F 则必存在原函数,使得1100,,21,)(32221>≤≤<⎪⎪⎩⎪⎪⎨⎧++++=x x x C x C x x C x x F , 须处处连续,有又)(x F Θ)21(lim )(lim 22010C x x C x x x ++=++--→-→ ,即,21C C = .)21(lim )(lim 221321C x x C x x x ++=+-+→→ ,即 23231C C +=+ ,1C C =联立并令.1,2132C C C C +==+可得故⎰x x f d )(1100,21,21,22>≤≤<⎪⎪⎪⎩⎪⎪⎪⎨⎧+++++=x x x C x C x x C x .四、若,d tan I ⎰=x x n n ,,3,2Λ=n 证明:21tan 11----=n n n x n I I . 证明:因为⎰=x x n n d tan I ⎰⎰-==--x x x x x x n n d )1(sec tan d tan tan 2222 ⎰⎰---=x x x x x n n d tan d sec tan 222⎰⎰---=x x x x n n d tan tan d tan 2221tan 11----=n n x n I 故 21tan 11----=n n n x n I I .本章复习题B一、填空.(1) xe x 121--; (2) c x x +-331; (3) 21232534154c x c x x +++ (4) c e x x +---2)12(2 二、求下列不定积分.(1)x ee xxd arctan 2⎰解:=⎰x ee x x d arctan 2xx e e 2d arctan 21-⎰-=]d 1)(11arctan [21222x e e e e e x x x x x ⎰+--- =]d )11(arctan [2122x e e e e e xx x xx ⎰+----=C e e e e x x x x +++---)arctan arctan (212。

相关文档
最新文档