2019年湖北省十堰市中考数学试卷
2019年湖北省十堰中考数学试卷含答案解析

数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前2019年十堰市初中毕业生学业水平考试数 学一、选择题(本题有10个小题。
每小题3分。
共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内。
1.下列实数中,是无理数的是( )A .0B .3-C .13D2.如图,直线a b ∥,直线AB AC ⊥,若150∠=︒,则2∠=( )A .50︒B .45︒C .40︒D .30︒ 3.如图是一个L 形状的物体,则它的俯视图是( )ABCD4.下列计算正确的是( )A .222a a a +=B .()22a a -=- C .()2211a a -=-D .()222ab a b =5.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分6.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):组员 甲 乙 丙 丁 戊 平均成绩 众数 得分8177■80 82 80 ■ 则被遮盖的两个数据依次是( )A .80,80B .81,80C .80,2D .81,27.十堰即将跨入高铁时代,钢轨铺设任务也将完成。
现还有6 000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务。
设原计划每天铺设钢轨x 米,则根据题意所列的方程是( )A .6 000 6 0001520x x -=+B .6 000 6 0001520x x -=+C .6 00060002015x x -=-D .6 000 6 0002015x x-=-8.如图,四边形ABCD 内接于O ,AE CB ⊥交CB 的延长线于点E ,若BA 平分DBE ∠,5AD =,CE =,则AE = ( )A .3B. C. D.9.一列数按某规律排列如下:11,12,21,13,22,31,14,23,32,41,…,若第n 个数为57,则n = ( )A .50B .60C .62D .7110.如图,平面直角坐标系中,()-8,0A ,()8,4B -,()0,4C ,反比例函数ky x=的图象分别与线段AB ,BC 交于点D ,E ,连接DE 。
人教版2019年湖北十堰中考数学试题(解析版)

{来源}2019年十堰中考数学试卷{适用范围:3. 九年级}{标题}2019年湖北省十堰市中考数学试卷考试时间:120分钟 满分:120分{题型:1-选择题}一、选择题:本大题共 10小题,每小题3分,合计30分. {题目}1.(2019年十堰)下列实数中,是无理数的是( )A .0B .﹣3C .13D . 3{答案}D{解析}本题考查了无理数的识别,根据无理数是无限不循环小数,可得答案,因此本题选D .{分值}3{章节: }{章节:[1-6-3]实数}{考点:无理数}{类别:常考题}{难度:1-最简单}{题目}2.(2019年十堰)如图,直线a ∥b ,直线AB ⊥AC ,若∠1=50°,则∠2=( )A .50°B .45°C .40°D .30°{答案}C{解析}本题考查了垂线,平行线的性质根据垂直的定义和三角形内角和定理可得到∠B ,根据两直线平行,同位角相等可得∠2=∠B .因此本题选C .{章节:[1-5-3]平行线的性质}{考点:垂线定义}{类别:常考题}{考点:两直线平行同位角相等}{难度:1-最简单}{题目}3.(2019年十堰)如图是一个L形状的物体,则它的俯视图是()A. B. C.D.{答案}B{解析}本题考查了简单组合体的三视图,从上面看可得到两个左右相邻的长方形,并且左边的长方形的宽度远小于右面长方形的宽度.因此本题选B.{分值}3{章节:[1-29-2]三视图}{考点:简单组合体的三视图}{类别:常考题}{难度:2-简单}{题目}4.(2019年十堰)下列计算正确的是()A.2a+a=2a2B.(﹣a)2=﹣a2C.(a﹣1)2=a2﹣1 D.(ab)2=a2b2{解析}本题考查了合并同类项;幂的乘方与积的乘方;完全平方公式.直接利用合并同类项法则以及积的乘方运算法则、完全平方公式分别化简得出答案.解:A、2a+a=3a,故此选项错误; B、(﹣a)2=a2,故此选项错误;C、(a﹣1)2=a2﹣2a+1,故此选项错误;D、(ab)2=a2b2,正确.因此本题选D.{分值}3章节:[1-14-2]乘法公式}{考点:合并同类项}{考点:积的乘方}{考点:完全平方公式}{类别:常考题}{难度:2-简单}{题目}5.(2019年十堰)矩形具有而平行四边形不一定具有的性质是()A.对边相等 B.对角相等 C.对角线相等D.对角线互相平分{答案}C{解析}本题考查了平行四边形的性质和矩形的性质,矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.因此本题选C.{分值}3{章节:[1-18-2-1]矩形}{考点:平行四边形对角线的性质}{考点:矩形的性质}{类别:常考题}{难度:1-最简单}{题目}6.(2019年十堰)一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分81 77 ■80 82 80 ■则被遮盖的两个数据依次是()A.80,80 B.81,80 C.80,2 D.81,2{答案}A{解析}本题考查了平均数与众数,根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.因此本题选A.{分值}3{章节:[1-20-1-2]中位数和众数}{考点: 平均数}{考点: 众数}{类别:常考题}{难度:1-最简单}{题目}7.(2019年十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是()A.6000x﹣6000x+20=15 B.6000x+20﹣6000x=15C.6000x﹣6000x-15=20 D.6000x-15﹣6000x=20{答案}A{解析}本题考查了分式方程的应用,设原计划每天铺设钢轨x米,则实际施工时每天铺设(x+20)米,根据等量关系“实际时间=原计划时间-15”可列方程.因此本题选A.{分值}3{章节:[1-15-3]分式方程}{考点:分式方程的应用(工程问题)}{类别:常考题}{类别:易错题}{难度:2-简单}{题目}8.(2019年十堰)如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=13,则AE=()A.3 B.3 2 C.4 3 D.2 3{答案}D{解析}本题考查了勾股定理,垂径定理,圆内接四边形的性质.解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE=AC2-CE2=52-(13)2=23.,因此本题选D.{分值}3{章节:[1-24-1-4]圆周角}{考点: 勾股定理}{考点: 垂径定理}{考点: 圆周角定理}{类别:常考题}{类别:易错题}{难度:3-中等难度}{题目}9.(2019年十堰)一列数按某规律排列如下:11,12,21,13,22,31,14,23,32,41,…,若第n 个数为57,则n =( ) A .50B .60C .62D .71 {答案}B{解析}本题考查了数字的规律探究,解:11,12,21,13,22,31,14,23,32,41,…,可写为:11,(12,21),(13,22,31),(14,23,32,41),…,∴分母为11开头到分母为1的数有11个,分别为111,210,39,48,57,66,75,84,93,102,111,∴第n 个数为57,则n =1+2+3+4+…+10+5=60,因此本题选B . {分值}3{章节:[1-2-1]整式}{考点:规律-数字变化类}{类别:高度原创}{类别:发现探究}{类别:易错题}{难度:3-中等难度}{题目}10.(2019年十堰)如图,平面直角坐标系中,A (﹣8,0),B(﹣8,4),C (0,4),反比例函数y =k x 的图象分别与线段AB ,BC 交于点D ,E ,连接DE .若点B 关于DE 的对称点恰好在OA 上,则k =( )A .﹣20B .﹣16C .﹣12D .﹣8{答案}C{解析}本题考查了反比例函数图象上点的坐标特征,轴对称的性质.解:过点E 作EG ⊥OA ,垂足为G ,设点B 关于DE 的对称点为F ,连接DF 、EF 、BF ,如图所示: 则△BDE ≌△FDE ,∴BD =FD ,BE =FE ,∠DFE =∠DBE =90°, 易证△ADF ∽△GFE ,∴AF EG =DF EF ,∵A (﹣8,0),B (﹣8,4),C (0,4),∴AB =OC =EG =4,OA =BC =8,∵D 、E 在反比例函数y =k x 的图象上,∴E(k 4,4)、D (﹣8,-k 8),∴OG =EC =-k 4,AD =﹣k 8,∴BD =4+k 8,BE =8+k 4,∴BD BE =4+k 8 8+k 4=12=DF EF =AF EG ,∴AF =12EG=2,在Rt△ADF 中,由勾股定理:AD 2+AF 2=DF 2, 即:(﹣k 8)2+22=(4+k 8)2, 解得:k =﹣12. 因此本题选C .{分值}3{章节:[1-27-1-2]相似三角形的性质}{考点:双曲线与几何图形的综合}{考点:相似三角形的判定}{考点:相似三角形的性质}{类别:思想方法}{类别:易错题}{难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共 6小题,每小题3分,合计18分.{题目}11.(2019年十堰)分解因式:a2+2a=.{答案}a(a+2){解析}本题考查了因式分解,利用直接提公因式法,观察原式a2+2a,找到公因式a,提出即可得出答案,因此本题填a(a+2).{分值}3{章节:[1-14-3]因式分解}{考点:因式分解-提公因式法}{类别:常考题}{难度:1-最简单}{题目}12.(2019年十堰)(2019年十堰)如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为.{答案}24{解析}本题考查了直角三角形斜边上的中线,三角形中位线定理,菱形的性质,根据菱形的对角线互相平分可得BO=DO,即OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求出CD,然后根据菱形的周长公式计算即可得解.因此本题填24.{分值}3{章节:[1-18-2-2]菱形}{考点:直角三角形斜边上的中线}{考点:三角形中位线定理}{考点:菱形的性质}{类别:常考题}{难度:2-简单}{题目}13.我市“创建文明城市”活动正如火如荼的展开.某校为了做好“创文”活动的宣传,就本校学生对“创文”有关知识进行测试,然后随机抽取了部分学生的测试成绩进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:若该校有学生2000人,请根据以上统计结果估计成绩为优秀和良好的学生共有人.{答案}1400{解析}本题考查了用样本估计总体,扇形统计图,条形统计图.先根据及格人数及其对应百分比求得总人数,总人数乘以优秀对应的百分比求得其人数,再用总人数乘以样本中优秀、良好人数所占比例.因此本题填1400.{分值}3{章节:[1-10-1]统计调查}{考点:扇形统计图}{考点:条形统计图}{考点:用样本估计总体}{类别:常考题}{难度:2-简单}{题目}14.(2019年十堰)对于实数a,b,定义运算“◎”如下:a◎b =(a+b)2﹣(a﹣b)2.若(m+2)◎(m﹣3)=24,则m=.{答案}﹣3或4{解析}本题考查了实数的运算及新定义问题,利用因式分解法解一元二次方程,利用新定义得到[(m+2)+(m﹣3)]2﹣[(m+2)﹣(m﹣3)]2=24,整理得到(2m﹣1)2﹣49=0,然后利用因式分解法解方程.因此本题填﹣3或4.{分值}3{章节:[1-21-2-3] 因式分解法}{考点:解一元二次方程-因式分解法}{考点:新定义}{类别:易错题}{类别:新定义}{难度:3-中等难度}{题目}15.(2019年十堰)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C的位置,则图中阴影部分的面积为.{答案}6π{解析}本题考查了扇形的面积计算和图形的旋转.根据图形可知,阴影部分的面积是半圆的面积与扇形ABC的面积之和减去半圆的面积.因此本题填6π.{分值}3{章节:[1-24-4]弧长和扇形面积}{考点:扇形的面积}{考点:旋转的性质}{类别:常考题}{类别:易错题}{难度:3-中等难度}{题目}16.(2019年十堰)如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF最大时,S△ADE=.{答案}6{解析}本题考查了等腰直角三角形,正方形的性质,旋转的性质.作DH⊥AE于H,如图,由于AF=4,则△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,当BF为此圆的切线时,∠ABF最大,即BF⊥AF,利用勾股定理计算出BF=3,接着证明△ADH≌△ABF得到DH=BF=3,然后根据三角形面积公式求解.解:作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF=3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,又∵∠AHD=∠AFB,AD=AB,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=12AE•DH=12×3×4=6.因此本题填6.{分值}3{章节:[1-24-2-2]直线和圆的位置关系}{考点:旋转的性质}{考点:正方形的性质}{考点:等腰直角三角形的性质}{类别:高度原创}{类别:发现探究}{类别:易错题}{难度:3-中等难度}{题型:4-解答题}三、解答题:本大题共9小题,合计72分.{题目}17.(2019年十堰)计算:(﹣1)3+|1﹣2|+38.{解析}本题考查了.{答案}解:原式=﹣1+2﹣1+2=2.{分值}5{章节:[1-6-3]实数}{难度:2-简单}{类别:常考题}{类别:易错题}{考点:实数的运算}{题目}18.(2019年十堰)先化简,再求值:(1﹣1a )÷(a 2+1a﹣2),其中a =3+1.{解析}本题考查了分式的化简求值,根据分式的减法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.{答案}解:(1﹣1a )÷(a 2+1a ﹣2)=a-1a ÷a 2+1-2a a =a-1a ·a (a-1)2=1a-1, 当a =3+1时,原式=1 3+1-1=33. {分值}6{考点:分式的混合运算}{难度:2-简单}{类别:常考题}{类别:易错题}{考点:一元二次方程的应用—增长率问题}{考点:二次根式的混合运算}{题目}19.(2019年十堰)如图,拦水坝的横断面为梯形ABCD ,AD =3m ,坝高AE =DF =6m ,坡角α=45°,β=30°,求BC 的长.{解析}本题考查了解直角三角形的应用﹣坡度坡角问题.过A 点作AE ⊥BC 于点E ,过D 作DF ⊥BC 于点F ,得到四边形AEFD 是矩形,根据矩形的性质得到AE=DF=6,AD=EF=3,解直角三角形即可得到结论.{答案}解:过A点作AE⊥BC于点E,过D作DF⊥BC于点F,则四边形AEFD是矩形,有AE=DF=6,AD=EF=3,∵坡角α=45°,β=30°,∴BE=AE=6,CF=3DF=63,∴BC=BE+EF+CF=6+3+63=9+63,∴BC=(9+63)m,答:BC的长(9+63)m.{分值}7{章节:[1-28-1-2]解直角三角形}{难度:3-中等难度}{类别:常考题}{{考点:解直角三角形的应用-坡度}{考点:矩形的性质}{题目}20.(2019年十堰)第一盒中有2个白球、1个黄球,第二盒中有1个白球、1个黄球,这些球除颜色外无其他差别.(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是.(2)若分别从每个盒中随机取出1个球,请用列表或画树状图的方法求取出的两个球中恰好1个白球、1个黄球的概率.{解析}本题考查了概率公式,列表法与树状图法.菁优网(1)直接利用概率公式计算可得;(2)先画出树状图展示所有6种等可能的结果数,再找出恰好1个白球、1个黄球的结果数,然后根据概率公式求解.{答案}解: (1)若从第一盒中随机取出1个球,则取出的球是白球的概率是23,故答案为:23; (2)画树状图为:,共有6种等可能的结果数,取出的两个球中恰好1个白球、1个黄球的有3种结果,所以取出的两个球中恰好1个白球、1个黄球的概率为12. {分值}7{章节:[1-25-2]用列举法求概率}{难度:3-中等难度}{类别:常考题}{考点:两步事件不放回}{题目}21.(2019年十堰)已知于x 的元二次方程x 2﹣6x+2a+5=0有两个不相等的实数根x 1,x 2.(1)求a 的取值范围;(2)若x 12+x 22﹣x 1x 2≤30,且a 为整数,求a 的值.{解析}本题考查了一元二次方程根的判别式,根与系数的关系及一元一次不等式的解法.(1)根据根的判别式,可得到关于a 的不等式,则可求得a 的取值范围;(2)由根与系数的关系,用a 表示出两根积、两根和,由已知条件可得到关于a 的不等式,则可求得a 的取值范围,再求其值即可.{答案}解: (1)∵关于x 的一元二次方程x 2﹣6x+2a+5=0有两个不相等的实数根x 1,x 2,∴△>0,即(﹣6)2﹣4(2a+5)>0,解得a <2;(2)由根与系数的关系知:x 1+x 2=6,x 1x 2=2a+5,∵x 1,x 2满足x 12+x 22﹣x 1x 2≤30,∴(x 1+x 2)2﹣3x 1x 2≤30,∴36﹣3(2a+5)≤30,∴a ≥﹣32,∵a 为整数, ∴a 的值为﹣1,0,1.{分值}7{章节:[1-21-3] 一元二次方程根与系数的关系}{难度:3-中等难度}{类别:常考题}{类别:易错题}{考点:根的判别式}{考点:根与系数关系}{考点:解一元一次不等式}{题目}22.(2019年十堰)如图,△ABC 中,AB =AC ,以AC 为直径的⊙O交BC 于点D ,点E 为C 延长线上一点,且∠CDE =12∠BAC . (1)求证:DE 是⊙O 的切线;(2)若AB =3BD ,CE =2,求⊙O 的半径.{解析}本题考查了等腰三角形的性质,圆周角定理,切线的判定与性质.(1)根据圆周角定理得出∠ADC =90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE 为直角即可;(2)通过证得△CDE ∽△DAE ,根据相似三角形的性质即可求得.{答案}解:(1)如图,连接OD ,AD ,∵AC 是直径,∴∠ADC =90°,∴AD ⊥BC ,∵AB =AC ,∴∠CAD =∠BAD =12∠BAC , ∵∠CDE =12∠BAC . ∴∠CDE =∠CAD ,∵OA =OD ,∴∠CAD =∠ADO ,∵∠ADO+∠ODC =90°,∴∠ODC+∠CDE =90°∴∠ODE =90°又∵OD 是⊙O 的半径∴DE 是⊙O 的切线;(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD=AC2-DC2=22x,∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴CEDE=DCAD=DEAE,即2DE=x22x=DE3x+2∴DE=42,x=14 3,∴AC=3x=14,∴⊙O的半径为7.{分值}8{章节:[1-27-1-2]相似三角形的性质} {难度:3-中等难度}{类别:常考题}{类别:易错题}{考点:相似三角形的判定(两角相等)} {考点: 相似三角形的性质}{考点: 等腰三角形的性质}{考点: 圆周角定理}{考点:切线的判定}{考点:切线的性质}{题目}23.(2019年十堰)某超市拟于中秋节前50天里销售某品牌月饼,其进价为18元/kg .设第x 天的销售价格为y (元/kg ),销售量为m(kg ).该超市根据以往的销售经验得出以下的销售规律:①当1≤x ≤30时,y =40;当31≤x ≤50时,y 与x 满足一次函数关系,且当x =36时,y =37;x =44时,y =33.②m 与x 的关系为m =5x+50.(1)当31≤x ≤50时,y 与x 的关系式为 ;(2)x 为多少时,当天的销售利润W (元)最大?最大利润为多少?(3)若超市希望第31天到第35天的日销售利润W (元)随x 的增大而增大,则需要在当天销售价格的基础上涨a 元/kg ,求a 的最小值.{解析}本题考查了一次函数与二次函数的应用.(1)依据题意利用待定系数法,易得出当31≤x ≤50时,y 与x 的关系式为:y =-12x+55,(2)根据销售利润=销售量×(售价﹣进价),列出每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.(3)要使第31天到第35天的日销售利润W (元)随x 的增大而增大,则对称轴=-b 2a≥35,求得a 即可. {答案}解: (1)依题意,当x =36时,y =37;x =44时,y =33, 当31≤x ≤50时,设y =kx+b ,则有⎩⎨⎧36k+b=3744k+b=33,解得⎩⎨⎧k=-12b=55∴y 与x 的关系式为:y =-12x+55 (2)依题意,∵W =(y ﹣18)•m∴W=⎩⎨⎧(40-18)·(5x+50), (1≤x ≤30)( -12x+55)(5x+50), (31≤x ≤50) 整理得,W=⎩⎨⎧110x+1100, (1≤x ≤30)( -52x+160x+1850), (31≤x ≤50) 当1≤x ≤30时,∵W 随x 增大而增大,∴x =30时,取最大值W =30×110+1100=4400,当31≤x ≤50时,W =-52x 2+160x+1850=-52(x-32)2+4410, ∵-52<0, ∴x =32时,W 取得最大值,此时W =4410,综上所述,x 为32时,当天的销售利润W (元)最大,最大利润为4410元(3)依题意,W =(y+a ﹣18)•m =-52x 2+(160+5a)x+1850+50a , ∵第31天到第35天的日销售利润W (元)随x 的增大而增大,∴对称轴x =-b 2a =-160+5a 2×(-52)≥35,得a ≥3, 故a 的最小值为3.{分值}10{章节:[1-22-3]实际问题与二次函数}{难度:4-较高难度}{类别:常考题}{类别:易错题}{考点:待定系数法求一次函数的解析式}{考点:商品利润问题}{考点:二次函数y=ax2+bx+c的性质}{题目}24.(2019年十堰)如图1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α得到△CBE,点A,D 的对应点分别为点B,E,且A,D,E三点在同一直线上.(1)填空:∠CDE=(用含α的代数式表示);(2)如图2,若α=60°,请补全图形,再过点C作CF⊥AE于点F,然后探究线段CF,AE,BE之间的数量关系,并证明你的结论;(3)若α=90°,AC=52,且点G满足∠AGB=90°,BG=6,直接写出点C到AG的距离.{解析}本题考查了旋转的性质,旋转作图,等腰(边)三角形的性质,全等三角形的性质和判定,四点共圆,勾股定理,解一元二次方程.(1)由旋转的性质可得CD=CE,∠DCE=α,即可求解;(2)由旋转的性质可得AD=BE,CD=CE,∠DCE=60°,可证△CDE是等边三角形,由等边三角形的性质可得DF=EF=33CF,即可求解;(3)分点G在AB 的上方和AB 的下方两种情况讨论,利用勾股定理可求解.{答案}解:(1)∵将△CAD 绕点C 按逆时针方向旋转角α得到△CBE , ∴△ACD ≌△BCE ,∠DCE =α,∴CD =CE ,∴∠CDE =180-α2, 故答案为:180-α2; (2)AE =BE+233CF , 理由如下:如图,∵将△CAD 绕点C 按逆时针方向旋转角60°得到△CBE ,∴△ACD ≌△BCE ,∴AD =BE ,CD =CE ,∠DCE =60°,∴△CDE 是等边三角形,且CF ⊥DE ,∴DF =EF =33CF , ∵AE =AD+DF+EF ,∴AE =BE+233CF , (3)如图,当点G 在AB 上方时,过点C 作CE ⊥AG 于点E ,∵∠ACB=90°,AC=BC=52,∴∠CAB=∠ABC=45°,AB=10∵∠ACB=90°=∠AGB∴点C,点G,点B,点A四点共圆∴∠AGC=∠ABC=45°,且CE⊥AG ∴∠AGC=∠ECG=45°∴CE=GE∵AB=10,GB=6,∠AGB=90°∴AG=AB2-GB2=8∵AC2=AE2+CE2,∴(52)2=(8﹣CE)2+CE2,∴CE=7(不合题意舍去),CE=1 若点G在AB的下方,过点C作CF⊥AG,同理可得:CF=7∴点C到AG的距离为1或7.{分值}10{章节:[1-23-1]图形的旋转}{难度:4-较高难度}{类别:思想方法}{类别:发现探究} {考点: 分类讨论思想}{考点:全等三角形的性质}{考点: 等腰三角形}{考点: 等腰三角形}{考点:等边三角形的性质}{考点: 勾股定理}{考点: 旋转的性质}{考点: 旋转作图}{考点:解一元二次方程}{题目}25.(2019年十堰)已知抛物线y =a (x ﹣2)2+c 经过点A (2,0)和C (0,94),与x 轴交于另一点B ,顶点为D . (1)求抛物线的解析式,并写出D 点的坐标;(2)如图,点E ,F 分别在线段AB ,BD 上(E 点不与A ,B 重合),且∠DEF =∠A ,则△DEF 能否为等腰三角形?若能,求出BE 的长;若不能,请说明理由;(3)若点P 在抛物线上,且S △PBD S △CBD=m ,试确定满足条件的点P 的个数.{解析}本题考查了二次函数的图象与性质,等腰三角形的判定与性质及分类讨论思想.(1)利用待定系数法,转化为解方程组即可解决问题.(2)可能.分三种情形①当DE =DF 时,②当DE =EF 时,③当DF =EF 时,分别求解即可.(3)如图2中,连接BD ,当点P 在线段BD 的右侧时,作DH ⊥AB 于H ,连接PD ,PH ,PB .设P[n ,﹣316(n ﹣2)2+3],构建二次函数求出△PBD 的面积的最大值,再根据对称性即可解决问题. {答案}解:(1)由题意:⎩⎨⎧16a+c=04a+c=94,解得⎩⎨⎧a=-316c=3,∴抛物线的解析式为y =﹣316(x ﹣2)2+3, ∴顶点D 坐标(2,3).(2)可能.如图1,∵A (﹣2,0),D (2,3),B (6,0),∴AB =8,AD =BD =5,①当DE =DF 时,∠DFE =∠DEF =∠ABD ,∴EF ∥AB ,此时E 与B 重合,与条件矛盾,不成立.②当DE =EF 时,又∵△BEF ∽△AED ,∴△BEF ≌△AED ,∴BE =AD =5③当DF =EF 时,∠EDF =∠DEF =∠DAB =∠DBA ,△FDE ∽△DAB ,∴EF BD =DE AB, ∴EF DE =BD AB =58,∵△AEF ∽△BCE∴EB AD =EF DE =58,∴EB =58AD =258,答:当BE 的长为5或258时,△CFE 为等腰三角形.(3)如图2中,连接BD ,当点P 在线段BD 的右侧时,作DH ⊥AB 于H ,连接PD ,PH ,PB .设P[n ,﹣316(n ﹣2)2+3],则S △PBD =S △PBH +S △PDH ﹣S △BDH=12×4×[﹣316(n ﹣2)2+3]+ 12×3×(n ﹣2)﹣12×4×3=﹣38(n ﹣4)2+32,∵﹣38<0,∴n =4时,△PBD 的面积的最大值为32,∵S △PBDS △CBD=m ,∴当点P 在BD 的右侧时,m 的最大值= 32 5 =310,观察图象可知:当0<m<310时,满足条件的点P的个数有4个,当m=310时,满足条件的点P的个数有3个,当m>310时,满足条件的点P的个数有2个(此时点P在BD的左侧).{分值}12{章节:[1-27-1-2]相似三角形的性质}{难度:5-高难度}{类别:思想方法}{类别:高度原创}{类别:发现探究}{类别:易错题} {考点:二次函数中讨论等腰三角形}{考点:二次函数y=ax2+bx+c的性质}{考点:全等三角形的性质}{考点:相似三角形的性质}{考点:相似三角形的判定(两角相等)}。
湖北省十堰市2019年中考数学真题试题(含解析)

湖北省十堰市2019年中考数学真题试题一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内。
1.(3.00分)在0,﹣1,0.5,(﹣1)2四个数中,最小的数是()A.0 B.﹣1 C.0.5 D.(﹣1)22.(3.00分)如图,直线a∥b,将一直角三角形的直角顶点置于直线b上,若∠1=28°,则∠2的度数是()A.62° B.108°C.118°D.152°3.(3.00分)今年“父亲节”佳佳给父亲送了一个礼盒,该礼盒的主视图是()A.B.C.D.4.(3.00分)下列计算正确的是()A.2x+3y=5xy B.(﹣2x2)3=﹣6x6C.3y2•(﹣y)=﹣3y2 D.6y2÷2y=3y5.(3.00分)某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,246.(3.00分)菱形不具备的性质是()A.四条边都相等 B.对角线一定相等C.是轴对称图形 D.是中心对称图形7.(3.00分)我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,物品的价格为y元,可列方程(组)为()A.B.C.D.=8.(3.00分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A.2B. C.5 D.9.(3.00分)如图,扇形OAB中,∠AOB=100°,OA=12,C是OB的中点,CD⊥OB交于点D,以OC为半径的交OA于点E,则图中阴影部分的面积是()A.12π+18B.12π+36C.6D.610.(3.00分)如图,直线y=﹣x与反比例函数y=的图象交于A,B两点,过点B作BD∥x轴,交y轴于点D,直线AD交反比例函数y=的图象于另一点C,则的值为()A.1:3 B.1:2C.2:7 D.3:10二、填空题(本题共6小题,每小题3分,共18分)11.(3.00分)北京时间6月5日21时07分,中国成功将风云二号H气象卫星送入预定的高度36000km的地球同步轨道,将36000km用科学记数法表示为.12.(3.00分)函数的自变量x的取值范围是.13.(3.00分)如图,已知▱ABCD的对角线AC,BD交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为.14.(3.00分)对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为.15.(3.00分)如图,直线y=kx+b交x轴于点A,交y轴于点B,则不等式x(kx+b)<0的解集为.16.(3.00分)如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6,点D,E分别是边BC,AC 上的动点,则DA+DE的最小值为.三、解答题(本题有9个小题,共72分)17.(5.00分)计算:|﹣|﹣2﹣1+18.(6.00分)化简:﹣÷19.(7.00分)如图,一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔C的南偏东30°方向上的B处,求此时船距灯塔的距离(参考数据:≈1.414,≈1.732,结果取整数).20.(9.00分)今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n= ,C等级对应的扇形的圆心角为度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.21.(7.00分)已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.22.(8.00分)为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象如图所示:(1)求y与x之间的函数关系式;(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?23.(8.00分)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作FG⊥AC于点F,交AB的延长线于点G.(1)求证:FG是⊙O的切线;(2)若tanC=2,求的值.24.(10.00分)已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.(1)如图1,点E在CD上,点G在BC的延长线上,请判断DM,EM的数量关系与位置关系,并直接写出结论;(2)如图2,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论;(3)将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF的长.25.(12.00分)已知抛物线y=x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.(1)求抛物线的解析式;(2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求证:AP∥BC;(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内。
2019年湖北十堰中考数学试题(word版)(有答案)

绝密*启用前:湖北省十堰市2019年初中毕业生学业考试数学试题卷注意事项:本试卷分为试题卷和答题卡两部分,考试时间为120分钟,满分120分.一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填在答题卷中相应的格子内.注意可以用多种不同的方法选取正确答案. 1.(2019.十堰)-3的绝对值是( C )A .13B .-13C .3D .-32.(2019.十堰)下列运算中正确的是( D )A .a 3a 2=a 6B .(a 3)4= a 7C .a 6 ÷ a 3 = a 2D .a 5 + a 5 =2 a 53.(2019.十堰))据人民网5月20日电报道:中国森林生态系统年涵养水源量4947.66亿立方米,相当于12个三峡水库2019年蓄水至175米水位后库容量,将4947.66亿用科学记数法表示为( C )A .4.94766×1013B .4.94766×1012C .4.94766×1011D .4.94766×10104.(2019.十堰)若一个几何体的三视图如图所示,则这个几何体是( A ) A .三棱柱 B .四棱柱 C .五棱柱 D .长方体5.要了解哪种品牌最畅销,公司经理最关心的是上述数据找( B ) A .平均数 B .众数 C .中位数D.方差6.(2019.十堰)如图,将△ABC 绕点C 顺时针方向旋转40°得△A ’CB ’,若AC ⊥A ’B ’,则∠BAC 等于( A )A .50°B .60°C .70°D .80°主视图 俯视图 左视图(第4题)7.(2019.十堰)如图,已知梯形ABCD 的中位线为EF ,且△AEF 的面积为6cm 2,则梯形ABCD的面积为( C )A .12 cm2B .18 cm 2C .24 cm 2D .30 cm 28.(2019.十堰)下列命题中,正确命题的序号是( D )①一组对边平行且相等的四边形是平行四边形 ②一组邻边相等的平行四边形是正方形 ③对角线相等的四边形是矩形 ④对角互补的四边形内接于圆A .①②B .②③C .③④D .①④ 9.(2019.十堰)方程x 2+2x -1=0的根可看成函数y =x +2与函数1y x=的图象交点的横坐标,用此方法可推断方程x 3+x -1=0的实根x 所在范围为( C ) A . 102x -<< B .102x << C .112x << D .312x << 10.(2019.十堰)如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB =4,点E 、F 分别是线段CD ,AB 上的动点,设AF =x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( C )(第10题)C DE FABA D BC E F (第7题) (第6题)AA ′CBB ′二、认真填一填(本题有6个小题,每小题3分,共18分)11.(2019.十堰)分解因式:a 2-4b 2= (a +2b )(a -2b ) . 12.(2019.十堰)函数3y x =-的自变量x 的取值范围是 x ≥2且x ≠3 . 13.(2019湖北十堰,13,3分)如图,直线l 1∥l 2被直线l 3所截,∠1=∠2=35°,∠P =90°,则∠3= 55° .14.(2019.十堰)在平面直角坐标系中,若点P 的坐标(m ,n ),则点P 关于原点O 对称的点P ’的坐标为 (-m ,-n ) .15.(2019.十堰) 下图是根据某中学为地震灾区玉树捐款的情况而制作的统计图,已知该校在校学生3000人,请根据统计图计算该校共捐款 37770 元.16.(2019.十堰)如图,n +1个上底、两腰长皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P 1M 1N 1N 2面积为S 1,四边形P 2M 2N 2N 3的面积为S 2,……,四边形P n M n N n N n+1的面积记为S n ,通过逐一计算S 1,S 2,…,可得S n =14214n -⋅+ .l 1l 2 l 3 3 12P(第13题)初一 初二初三(图1) 人数统计 (图2) 初一 初二 初三(第15题)三、全面答一答(本题有9个小题,满分72分)本大题解答应写出文字说明,证明过程或推理步骤,如果觉得有的题目有点困难,那么把自己能写的解答写出一部分也可以. 17.(2019.十堰)(本小题满分7分)计算:30(2)|5|2)2sin 30-+--+︒解:原式=-8 + 5-1+ 2×12 =-3.18.(2019.十堰)(本小题满分7分)先化间,再求值:211(1)(2)11x x x -÷+-+-,其中x =解:原式=111x x +-⋅+(x +1)(x -1)+(x -2) =x (x -1)+(x -2) =x 2-2当x = 6 时,原式=( 6 )2-2=4.19.(2019.十堰)(本小题满分7分)如图,△ABC 中,AB =AC ,BD ⊥AC ,CE ⊥AB . 求证:BD =CE .证明:∵BD ⊥AC ,CE ⊥AB ∴∠ADB =∠AEC =90°在△ABD 和△AEC 中,∠ADB =∠AEC =90°,∠A =∠A ,AB =AC ∴△ABD ≌△AEC ∴BD =CE .20.(2019.十堰)(本小题满分8分)某乡镇中学数学活动小组,为测量数学楼后面的山高AB ,用了如下的方法.如图所示,在教学楼底C 处测得山顶A 的仰角为60°,在教学楼顶D 处,测得山顶A 的仰角为45°.已知教学楼高CD =12米,求山高AB .(参考数据 3 =1.73, 2ABC D E(第19题)(第16题)N 1N 2N 3N 4N 5=1.41,精确到0.1米,化简后再代入参考数据运算)解:过D 作DE ⊥AB 于E ,而AB ⊥BC ,DC ⊥BC ,故四边形DEBC 为矩形, 则CD =BE ,∠ADE =45°,∠ACB =60°.设AB =h 米,在Rt △A BC 中,BC =h ·cot 60°=h ·tan 30°=3h 在Rt △AED 中,AE =DE ·tan 45°=BC ·tan 45°=3h 又AB -AE =BE =CD =12 ∴h=12 ∴h18=+=18+6×1.73=18+10.38≈28.4(米)答:山高AB 是28.4米.21.(2019.十堰)(本小题满分8分)暑假快到了,老家在十堰的大学生张明与王艳打算留在上海,为世博会做义工.学校争取到6个义工名额,分别安排在中国馆园区3个名额,世博轴园区2个名额,演义中心园区1个名额. 学校把分别标号为1、2、3、4、5、6的六个质地大小均相同的小球,放在不透明的袋子里,并规定标号1、2、3的到中国馆,标号4、5到世博轴,标号6的到演艺中心,让张明、王艳各摸1个. (1)求张明到中国馆做义工的概率;(2)求张明、王艳各自在世博轴、演艺中心做义工的概率(两人不同在一个园区内).解:(1)如表所示,张明、王艳各摸一球可能出现的结果有6×5=30个,它们出现的可能性相等,张明到中国馆的结果有15个,∴P (张明到中国馆做义务)=151=.A(2)张明、王艳各自在世博轴、演艺中心的结果共4个,其概率P=3015=. 22.(2019.十堰)(本小题满分8分)如图所示,直线AB 与反比例函数图像相交于A ,B 两点,已知A (1,4).(1)求反比例函数的解析式;(2)连结OA ,OB ,当△AOB 的面积为152 时,求直线AB 的解析式.解:(1)设反比例函数解析式为y= kx ,∵点A (1,4)在反比例函数的图象上 ∴4=1k ,∴k =4,∴反比例函数的解析式为y =4x. (2)设直线AB 的解析式为y =ax +b (a >0,b >0),则当x =1时,a +b =4即b =4-a .联立4y x y ax b⎧=⎪⎨⎪=+⎩,得ax 2 +bx -4=0,即ax 2+(4-a方法1:(x -1)(ax +4)= 0,解得x 1=1或x =-4a, 设直线AB 交y 轴于点C ,则C (0,b ),即C (0,4-a ) 由S △AOB =S △AOC +S △BOC =11415(4)1(4)222a a a -⨯+-⨯=,整理得 a 2+15a -16=0,∴a =1或a =-16(舍去) ∴b =4-1=3 ∴ 直线AB 的解析式为y =x +3 方法2:由S △AOB = 12 |OC |·|x 2-x 1|=152而|x 2-x 14()a =4||a a +=4a a+(a >0), |OC |=b =4-a ,可得1415(4)()22a a a +-=,解得a =1或a =-16(舍去). 23.(2019.十堰)(本小题满分8分)如图所示,某地区对某种药品的需求量y 1(万件),供应量y 2(万件)与价格x (元/件)分别近似满足下列函数关系式:y 1=-x + 70,y 2=2x -38,需求量为0时,即停止供应.当y 1=y 2时,该药品的价格称为稳定价格,需求量称为稳定需求量. (1)求该药品的稳定价格与稳定需求量.(2)价格在什么范围内,该药品的需求量低于供应量?(3)由于该地区突发疫情,政府部门决定对药品供应方提供价格补贴来提高供货价格,以利提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.解:(1)由题可得1270238y x y x =-+⎧⎨=-⎩,当y 1=y 2时,即-x +70=2x -38 ∴3x =108,∴x =36当x =36时,y 1=y 2=34,所以该药品的稳定价格为36元/件,稳定需求量为34万件.(2)令y 1=0,得x =70,由图象可知,当药品每件价格在大于36元小于70元时,该药品的需求量低于供应量.(3)设政府对该药品每件价格补贴a 元,则有346703462()38x x a +=-+⎧⎨+=+-⎩,解得309x a =⎧⎨=⎩ 元/件)所以政府部门对该药品每件应补贴9元.24.(2019.十堰)(本小题满分9分)如图,已知⊙O 1与⊙O 2都过点A ,AO 1是⊙O 2的切线,⊙O 1交O 1O 2于点B ,连结AB 并延长交⊙O 2于点C ,连结O 2C . (1)求证:O 2C ⊥O 1O 2;(2)证明:AB ·BC =2O 2B ·BO 1;(3)如果AB ·BC =12,O 2C =4,求AO 1的长.解:(1)∵AO 1是⊙O 2的切线,∴O 1A ⊥AO 2 ∴∠O 2AB +∠BAO 1=90° 又O 2A =O 2C ,O 1A =O 1B ,∴∠O 2CB =∠O 2AB ,∠O 2BC =∠ABO 1=∠BAO 1 ∴∠O 2CB +∠O 2BC =∠O 2AB +∠BAO 1=90°,∴O 2C ⊥O 2B ,即O 2C ⊥O 1O 2 (2)延长O 2O 1交⊙O 1于点D ,连结AD . ∵BD 是⊙O 1直径,∴∠BAD =90° 又由(1)可知∠BO 2C =90°∴∠BAD =∠BO 2C ,又∠ABD =∠O 2BC ∴△O 2BC ∽△ABD ∴2O B BCAB BD=∴AB ·BC =O 2B ·BD 又BD =2BO 1 ∴AB ·BC =2O 2B ·BO 1(3)由(2)证可知∠D =∠C =∠O 2AB ,即∠D =∠O 2AB ,又∠AO 2B =∠DO 2A ∴△AO 2B ∽△DO 2A ∴2222AO O BDO O A= ∴AO 22=O 2B ·O 2D ∵O 2C =O 2A∴O 2C 2=O 2B ·O 2D ① 又由(2)AB ·BC =O 2B ·BD ②由①-②得,O 2C 2-AB ·BC = O 2B 2 即42-12=O 1B 2 ∴O 2B =2,又O 2B ·BD =AB ·BC =12 ∴BD =6,∴2AO 1=BD =6 ∴AO 1=325.(2019.十堰)(本小题满分10分)已知关于x 的方程mx 2-(3m -1)x +2m -2=0(1)求证:无论m 取任何实数时,方程恒有实数根.(2)若关于x 的二次函数y= mx 2-(3m -1)x +2m -2的图象与x 轴两交点间的距离为2时,求抛物线的解析式.(3)在直角坐标系xoy 中,画出(2)中的函数图象,结合图象回答问题:当直线y =x +b 与(2)中的函数图象只有两个交点时,求b 的取值范围. 【答案】解:(1)分两种情况讨论:①当m =0 时,方程为x -2=0,∴x =2 方程有实数根 ②当m ≠0时,则一元二次方程的根的判别式△=[-(3m -1)]2-4m (2m -2)=m 2+2m +1=(m +1)2≥0 不论m 为何实数,△≥0成立,∴方程恒有实数根综合①②,可知m 取任何实数,方程mx 2-(3m -1)x +2m -2=0恒有实数根.(2)设x 1,x 2为抛物线y= mx 2-(3m -1)x +2m -2与x 轴交点的横坐标. 则有x 1+x 2=31m m -,x 1·x 2=22m m- 由| x 1-x 21||m m +, 由| x 1-x 2|=2得1||m m +=2,∴1m m +=2或1m m+=-2 ∴m =1或m =13-∴所求抛物线的解析式为:y 1=x 2-2x 或y 2=13-x 2+2x -83即y 1= x (x -2)或y 2=13-(x -2)(x -4)其图象如右图所示.(3)在(2)的条件下,直线y =x +b 与抛物线y 1,y 2组成的图象只有两个交点,结合图象,求b 的取值范围.212y x x y x b ⎧=-⎨=+⎩,当y 1=y 时,得x 2-3x -b =0,△=9+4b =0,解得b =-94; 同理2218233y x x y x b ⎧=-+-⎪⎨⎪=+⎩,可得△=9-4(8+3b )=0,得b =-2312. 观察函数图象可知当b <-94 或b >-2312时,直线y =x +b 与(2)中的图象只有两个交点.由2122218233y x x y x x ⎧=-⎪⎨=-+-⎪⎩当y 1=y 2时,有x =2或x =1 当x =1时,y =-1所以过两抛物线交点(1,-1),(2,0)的直线y =x -2,综上所述可知:当b <-94 或b >-2312 或b =-2时,直线y =x +b 与(2)中的图象只有两个交点.。
2019年湖北省十堰中考数学试卷-答案

2019年十堰市初中毕业生学业水平考试数学答案解析2.【答案】C【解析】解:直线AB AC ⊥,2390∴∠+∠=︒。
150∠=︒,390140∴∠=︒-∠=︒,直线a b ,1340∴∠=∠=︒,故选:C 。
【提示】根据垂直的定义和余角的定义列式计算得到3∠,根据两直线平行,内错角相等可得31∠=∠。
【考点】平行线的性质,余角的定义。
3.【答案】B【解析】解:从上面看可得到两个左右相邻的长方形,并且左边的长方形的宽度远小于右面长方形的宽度。
故选:B 。
【提示】找到从上面看所得到的图形即可。
【考点】三视图的知识。
4.【答案】D【解析】解:A .23a a a +=,故此选项错误;B .()22a a -=,故此选项错误;C .()22121a a a -=-+,故此选项错误;D .()222ab a b =,正确。
故选:D 。
【提示】直接利用合并同类项法则以及积的乘方运算法则、完全平方公式分别化简得出答案。
【考点】合并同类项以及积的乘方运算、完全平方公式。
5.【答案】C【解析】解:矩形的对角线相等,而平行四边形的对角线不一定相等。
故选:C 。
【提示】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等。
【考点】矩形的性质。
6.【答案】A【解析】解:根据题意得: ()()8058177808280⨯-+++=分,则丙的得分是80分;众数是80,故选:A 。
【提示】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案。
【考点】概率的意义.7.【答案】A【解析】解:设原计划每天铺设钢轨x 米,可得:6 000 6 0001520x x -=+,故选:A 。
【提示】设原计划每天铺设钢轨x 米,根据如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务可列方程。
【考点】由实际问题抽象出分式方程。
8.【答案】D【解析】解:连接AC ,如图,BA 平分DBE ∠,12∴∠=∠,1CDA ∠=∠,23∠=∠,3CDA ∴∠=∠,5AC AD ∴==,AE CB ⊥,90AEC ∴∠=︒,AE ∴。
2019年湖北省十堰中考数学试卷含答案解析

2019年十堰市初中毕业生学业水平考试数 学一、选择题(本题有10个小题。
每小题3分。
共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内。
1.下列实数中,是无理数的是( )A.0B.3-C.132.如图,直线a b ∥,直线AB AC ⊥,若150∠=︒,则2∠=( )A.50︒B.45︒C.40︒D.30︒ 3.如图是一个L 形状的物体,则它的俯视图是( )ABC D 4.下列计算正确的是( )A.222a a a +=B.()22a a -=-C.()2211a a -=-D.()222ab a b =5.矩形具有而平行四边形不一定具有的性质是( )A.对边相等B.对角相等C.对角线相等D.对角线互相平分6.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):组员 甲 乙 丙 丁 戊 平均成绩 众数 得分8177■80 82 80 ■ 则被遮盖的两个数据依次是( )A.80,80B.81,80C.80,2D.81,27.十堰即将跨入高铁时代,钢轨铺设任务也将完成。
现还有6 000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务。
设原计划每天铺设钢轨x 米,则根据题意所列的方程是( )A.6 000 6 0001520x x -=+B.6 000 6 0001520x x -=+C.6 00060002015x x -=-D.6 000 6 0002015x x-=- 8.如图,四边形ABCD 内接于O e ,AE CB ⊥交CB 的延长线于点E ,若BA 平分DBE ∠,5AD =,13CE =,则AE =( )A.3B.32C.43D.239.一列数按某规律排列如下:11,12,21,13,22,31,14,23,32,41,…,若第n 个数为57,则n = ( ) A.50B.60C.62D.7110.如图,平面直角坐标系中,()-8,0A ,()8,4B -,()0,4C ,反比例函数ky x=的图象分别与线段AB ,BC 交于点D ,E ,连接DE 。
2019年湖北省十堰市中考数学真题(解析版)

2019年湖北省十堰市中考数学试卷一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列实数中,是无理数的是()A.0 B.﹣3 C.D.【答案】D【解析】A.0是有理数,故A错误;B.﹣3是有理数,故B错误;C.是有理数,故C错误;D.是无理数,故D正确;故选:D.2.如图,直线a∥b,直线AB⊥AC,若∠1=50°,则∠2=()A.50°B.45°C.40°D.30°【答案】C【解析】∵直线AB⊥AC,∴∠2+∠3=90°.∵∠1=50°,∴∠3=90°﹣∠1=40°,∵直线a∥b,∴∠1=∠3=40°,故选:C.3.如图是一个L形状的物体,则它的俯视图是()A.B.C.D.【答案】B【解析】从上面看可得到两个左右相邻的长方形,并且左边的长方形的宽度远小于右面长方形的宽度.故选:B.4.下列计算正确的是()A.2a+a=2a2B.(﹣a)2=﹣a2C.(a﹣1)2=a2﹣1 D.(ab)2=a2b2【答案】D【解析】A.2a+a=3a,故此选项错误;B.(﹣a)2=a2,故此选项错误;C.(a﹣1)2=a2﹣2a+1,故此选项错误;D.(ab)2=a2b2,正确.故选:D.5.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分【答案】C【解析】矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.6.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分81 77 ■80 82 80 ■则被遮盖的两个数据依次是()A.80,80 B.81,80 C.80,2 D.81,2【答案】A【解析】根据题意得:80×5﹣(81+77+80+82)=80(分),则丙的得分是80分;众数是80,故选:A.7.十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是()A.﹣=15 B.﹣=15C.﹣=20 D.﹣=20【答案】A【解析】设原计划每天铺设钢轨x米,可得:,故选:A.8.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A.3 B.3C.4D.2【答案】D【解析】连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE===2.故选:D.9.一列数按某规律排列如下:,,,,,,,,,,…,若第n个数为,则n=()A.50 B.60 C.62 D.71【答案】B【解析】,,,,,,,,,,…,可写为:,(,),(,,),(,,,),…,∴分母为11开头到分母为1的数有11个,分别为,∴第n个数为,则n=1+2+3+4+…+10+5=60,故选:B.10.如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20 B.﹣16 C.﹣12 D.﹣8【答案】C【解析】过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°,易证△ADF∽△GFE,∴,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,),∴OG=EC=,AD=﹣,∴BD=4+,BE=8+,∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2,即:(﹣)2+22=(4+)2,解得:k=﹣12,故选:C.二、填空题(本题有6个小题,每小题3分,共18分)11.分解因式:a2+2a=a(a+2).【解析】a2+2a=a(a+2).12.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为24.【解析】∵四边形ABCD是菱形,∴AB=BC=CD=AD,BO=DO,∵点E是BC的中点,∴OE是△BCD的中位线,∴CD=2OE=2×3=6,∴菱形ABCD的周长=4×6=24;故答案为:24.13.我市“创建文明城市”活动正如火如荼的展开.某校为了做好“创文”活动的宣传,就本校学生对“创文”有关知识进行测试,然后随机抽取了部分学生的测试成绩进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:若该校有学生2000人,请根据以上统计结果估计成绩为优秀和良好的学生共有1400人.【解析】∵被调查的总人数为28÷28%=100(人),∴优秀的人数为100×20%=20(人),∴估计成绩为优秀和良好的学生共有2000×=1400(人),故答案为:1400.14.对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+2)◎(m ﹣3)=24,则m=﹣3或4.【解析】根据题意得[(m+2)+(m﹣3)]2﹣[(m+2)﹣(m﹣3)]2=24,(2m﹣1)2﹣49=0,(2m﹣1+7)(2m﹣1﹣7)=0,2m﹣1+7=0或2m﹣1﹣7=0,所以m1=﹣3,m2=4.故答案为﹣3或4.15.如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C 的位置,则图中阴影部分的面积为6π.【解析】由图可得,图中阴影部分的面积为:=6π,故答案为:6π.16.如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF最大时,S△ADE=6.【解析】作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.三、解答题(本题有9个小题,共72分)17.(5分)计算:(﹣1)3+|1﹣|+.解:原式=﹣1+﹣1+2=.18.(6分)先化简,再求值:(1﹣)÷(﹣2),其中a=+1.解:(1﹣)÷(﹣2)===,当a=+1时,原式=.19.(7分)如图,拦水坝的横断面为梯形ABCD,AD=3m,坝高AE=DF=6m,坡角α=45°,β=30°,求BC的长.解:过A点作AE⊥BC于点E,过D作DF⊥BC于点F,则四边形AEFD是矩形,有AE=DF=6,AD=EF=3,∵坡角α=45°,β=30°,∴BE=AE=6,CF=DF=6,∴BC=BE+EF+CF=6+3+6=9+6,∴BC=(9+6)m,答:BC的长(9+6)m.20.(7分)第一盒中有2个白球、1个黄球,第二盒中有1个白球、1个黄球,这些球除颜色外无其他差别.(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是.(2)若分别从每个盒中随机取出1个球,请用列表或画树状图的方法求取出的两个球中恰好1个白球、1个黄球的概率.解:(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是,故答案为:;(2)画树状图为:,共有6种等可能的结果数,取出的两个球中恰好1个白球、1个黄球的有3种结果,所以取出的两个球中恰好1个白球、1个黄球的概率为.21.(7分)已知于x的元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.解:(1)∵关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2,∴△>0,即(﹣6)2﹣4(2a+5)>0,解得a<2;(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5,∵x1,x2满足x12+x22﹣x1x2≤30,∴(x1+x2)2﹣3x1x2≤30,∴36﹣3(2a+5)≤30,∴a≥﹣,∵a为整数,∴a的值为﹣1,0,1.22.(8分)如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为C延长线上一点,且∠CDE=∠BAC.(1)求证:DE是⊙O的切线;(2)若AB=3BD,CE=2,求⊙O的半径.解:(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=∠BAC,∵∠CDE=∠BAC.∴∠CDE=∠CAD,∵OA=OD,∴∠CAD=∠ADO,∵∠ADO+∠ODC=90°,∴∠ODC+∠CDE=90°∴∠ODE=90°又∵OD是⊙O的半径∴DE是⊙O的切线;(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD==2x,∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴=,即==∴DE=4,x=,∴AC=3x=14,∴⊙O的半径为7.23.(10分)某超市拟于中秋节前50天里销售某品牌月饼,其进价为18元/kg.设第x天的销售价格为y(元/kg),销售量为m(kg).该超市根据以往的销售经验得出以下的销售规律:①当1≤x≤30时,y=40;当31≤x≤50时,y与x满足一次函数关系,且当x=36时,y=37;x=44时,y=33.②m与x的关系为m=5x+50.(1)当31≤x≤50时,y与x的关系式为;(2)x为多少时,当天的销售利润W(元)最大?最大利润为多少?(3)若超市希望第31天到第35天的日销售利润W(元)随x的增大而增大,则需要在当天销售价格的基础上涨a元/kg,求a的最小值.解:(1)依题意,当x=36时,y=37;x=44时,y=33,当31≤x≤50时,设y=kx+b,则有,解得,∴y与x的关系式为:y=x+55.(2)依题意,∵W=(y﹣18)•m,∴,整理得,,当1≤x≤30时,∵W随x增大而增大,∴x=30时,取最大值W=30×110+1100=4400,当31≤x≤50时,W=x2+160x+1850=,∵<0,∴x=32时,W取得最大值,此时W=4410.综上所述,x为32时,当天的销售利润W(元)最大,最大利润为4410元.(3)依题意,W=(y+a﹣18)•m=,∵第31天到第35天的日销售利润W(元)随x的增大而增大,∴对称轴x==≥35,得a≥3,故a的最小值为3.24.(10分)如图1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α得到△CBE,点A,D的对应点分别为点B,E,且A,D,E三点在同一直线上.(1)填空:∠CDE=(用含α的代数式表示);(2)如图2,若α=60°,请补全图形,再过点C作CF⊥AE于点F,然后探究线段CF,AE,BE之间的数量关系,并证明你的结论;(3)若α=90°,AC=5,且点G满足∠AGB=90°,BG=6,直接写出点C到AG的距离.解:(1)∵将△CAD绕点C按逆时针方向旋转角α得到△CBE,∴△ACD≌△BCE,∠DCE=α,∴CD=CE,∴∠CDE=,故答案为:.(2)AE=BE+CF,理由如下:如图,∵将△CAD绕点C按逆时针方向旋转角60°得到△CBE,∴△ACD≌△BCE,∴AD=BE,CD=CE,∠DCE=60°,∴△CDE是等边三角形,且CF⊥DE,∴DF=EF=,∵AE=AD+DF+EF,∴AE=BE+CF.(3)如图,当点G在AB上方时,过点C作CE⊥AG于点E,∵∠ACB=90°,AC=BC=5,∴∠CAB=∠ABC=45°,AB=10,∵∠ACB=90°=∠AGB,∴点C,点G,点B,点A四点共圆,∴∠AGC=∠ABC=45°,且CE⊥AG,∴∠AGC=∠ECG=45°,∴CE=GE,∵AB=10,GB=6,∠AGB=90°,∴AG==8,∵AC2=AE2+CE2,∴(5)2=(8﹣CE)2+CE2,∴CE=7(不合题意舍去),CE=1,若点G在AB的下方,过点C作CF⊥AG,同理可得:CF=7,∴点C到AG的距离为1或7.25.(12分)已知抛物线y=a(x﹣2)2+c经过点A(2,0)和C(0,),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠A,则△DEF能否为等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)若点P在抛物线上,且=m,试确定满足条件的点P的个数.解:(1)由题意:,解得,∴抛物线的解析式为y=﹣(x﹣2)2+3,∴顶点D坐标(2,3).(2)可能.如图1,∵A(﹣2,0),D(2,3),B(6,0),∴AB=8,AD=BD=5,①当DE=DF时,∠DFE=∠DEF=∠ABD,∴EF∥AB,此时E与B重合,与条件矛盾,不成立.②当DE=EF时,又∵△BEF∽△AED,∴△BEF≌△AED,∴BE=AD=5,③当DF=EF时,∠EDF=∠DEF=∠DAB=∠DBA,△FDE∽△DAB,∴=,∴==,∵△AEF∽△BCE,∴==,∴EB=AD=,答:当BE的长为5或时,△CFE为等腰三角形.(3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,PB.设P[n,﹣(n﹣2)2+3],则S△PBD=S△PBH+S△PDH﹣S△BDH=×4×[﹣(n﹣2)2+3]+×3×(n﹣2)﹣×4×3=﹣(n﹣4)2+,∵﹣<0,∴n=4时,△PBD的面积的最大值为,∵=m,∴当点P在BD的右侧时,m的最大值==,观察图象可知:当0<m<时,满足条件的点P的个数有4个,当m=时,满足条件的点P的个数有3个,当m>时,满足条件的点P的个数有2个(此时点P在BD的左侧).。
2019年湖北省十堰市中考数学试题(原卷+解析)

2019年湖北省十堰市中考数学试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.(3分)下列实数中,是无理数的是()A.0 B.﹣3 C.D.【解答】解:A、0是有理数,故A错误;B、﹣3是有理数,故B错误;C、是有理数,故C错误;D、是无理数,故D正确;故选:D.2.(3分)如图,直线a∥b,直线AB⊥AC,若∠1=50°,则∠2=()A.50°B.45°C.40°D.30°【解答】解:∵直线AB⊥AC,∴∠2+∠3=90°.∵∠1=50°,∴∠3=90°﹣∠1=40°,∵直线a∥b,∴∠1=∠3=40°,故选:C.3.(3分)如图是一个L形状的物体,则它的俯视图是()A.B.C.D.【解答】解:从上面看可得到两个左右相邻的长方形,并且左边的长方形的宽度远小于右面长方形的宽度.故选:B.4.(3分)下列计算正确的是()A.2a+a=2a2B.(﹣a)2=﹣a2C.(a﹣1)2=a2﹣1 D.(ab)2=a2b2【解答】解:A、2a+a=3a,故此选项错误;B、(﹣a)2=a2,故此选项错误;C、(a﹣1)2=a2﹣2a+1,故此选项错误;D、(ab)2=a2b2,正确.故选:D.5.(3分)矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.6.(3分)一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分81 77 ■80 82 80 ■则被遮盖的两个数据依次是()A.80,80 B.81,80 C.80,2 D.81,2【解答】解:根据题意得:80×5﹣(81+77+80+82)=80(分),则丙的得分是80分;众数是80,故选:A.7.(3分)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是()A.﹣=15 B.﹣=15C.﹣=20 D.﹣=20【解答】解:设原计划每天铺设钢轨x米,可得:,故选:A.8.(3分)如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD =5,CE=,则AE=()A.3 B.3C.4D.2【解答】解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE===2.故选:D.9.(3分)一列数按某规律排列如下:,,,,,,,,,,…,若第n个数为,则n=()A.50 B.60 C.62 D.71【解答】解:,,,,,,,,,,…,可写为:,(,),(,,),(,,,),…,∴分母为11开头到分母为1的数有11个,分别为,∴第n个数为,则n=1+2+3+4+…+10+5=60,故选:B.10.(3分)如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20 B.﹣16 C.﹣12 D.﹣8【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.二、填空题(本题有6个小题,每小题3分,共18分)11.(3分)分解因式:a2+2a=a(a+2).【解答】解:a2+2a=a(a+2).12.(3分)如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为24 .【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,BO=DO,∵点E是BC的中点,∴OE是△BCD的中位线,∴CD=2OE=2×3=6,∴菱形ABCD的周长=4×6=24;故答案为:24.13.(3分)我市“创建文明城市”活动正如火如荼的展开.某校为了做好“创文”活动的宣传,就本校学生对“创文”有关知识进行测试,然后随机抽取了部分学生的测试成绩进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:若该校有学生2000人,请根据以上统计结果估计成绩为优秀和良好的学生共有1400 人.【解答】解:∵被调查的总人数为28÷28%=100(人),∴优秀的人数为100×20%=20(人),∴估计成绩为优秀和良好的学生共有2000×=1400(人),故答案为:1400.14.(3分)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+2)◎(m﹣3)=24,则m=﹣3或4 .【解答】解:根据题意得[(m+2)+(m﹣3)]2﹣[(m+2)﹣(m﹣3)]2=24,(2m﹣1)2﹣49=0,(2m﹣1+7)(2m﹣1﹣7)=0,2m﹣1+7=0或2m﹣1﹣7=0,所以m1=﹣3,m2=4.故答案为﹣3或4.15.(3分)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C的位置,则图中阴影部分的面积为6π.【解答】解:由图可得,图中阴影部分的面积为:=6π,故答案为:6π.16.(3分)如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF最大时,S△ADE= 6 .【解答】解:作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.三、解答题(本题有9个小题,共72分)17.(5分)计算:(﹣1)3+|1﹣|+.【解答】解:原式=﹣1+﹣1+2=.18.(6分)先化简,再求值:(1﹣)÷(﹣2),其中a=+1.【解答】解:(1﹣)÷(﹣2)===,当a=+1时,原式=.19.(7分)如图,拦水坝的横断面为梯形ABCD,AD=3m,坝高AE=DF=6m,坡角α=45°,β=30°,求BC的长.【解答】解:过A点作AE⊥BC于点E,过D作DF⊥BC于点F,则四边形AEFD是矩形,有AE=DF=6,AD=EF=3,∵坡角α=45°,β=30°,∴BE=AE=6,CF=DF=6,∴BC=BE+EF+CF=6+3+6=9+6,∴BC=(9+6)m,答:BC的长(9+6)m.20.(7分)第一盒中有2个白球、1个黄球,第二盒中有1个白球、1个黄球,这些球除颜色外无其他差别.(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是.(2)若分别从每个盒中随机取出1个球,请用列表或画树状图的方法求取出的两个球中恰好1个白球、1个黄球的概率.【解答】解:(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是,故答案为:;(2)画树状图为:,共有6种等可能的结果数,取出的两个球中恰好1个白球、1个黄球的有3种结果,所以取出的两个球中恰好1个白球、1个黄球的概率为.21.(7分)已知于x的元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.【解答】解:(1)∵关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2,∴△>0,即(﹣6)2﹣4(2a+5)>0,解得a<2;(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5,∵x1,x2满足x12+x22﹣x1x2≤30,∴(x1+x2)2﹣3x1x2≤30,∴36﹣3(2a+5)≤30,∴a≥﹣,∵a为整数,∴a的值为﹣1,0,1.22.(8分)如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为C延长线上一点,且∠CDE=∠BAC.(1)求证:DE是⊙O的切线;(2)若AB=3BD,CE=2,求⊙O的半径.【解答】解:(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=∠BAC,∵∠CDE=∠BAC.∴∠CDE=∠CAD,∵OA=OD,∴∠CAD=∠ADO,∵∠ADO+∠ODC=90°,∴∠ODC+∠CDE=90°∴∠ODE=90°又∵OD是⊙O的半径∴DE是⊙O的切线;(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD==2x,∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴=,即==∴DE=4,x=,∴AC=3x=14,∴⊙O的半径为7.23.(10分)某超市拟于中秋节前50天里销售某品牌月饼,其进价为18元/kg.设第x天的销售价格为y(元/kg),销售量为m(kg).该超市根据以往的销售经验得出以下的销售规律:①当1≤x≤30时,y=40;当31≤x≤50时,y与x满足一次函数关系,且当x=36时,y=37;x=44时,y=33.②m 与x的关系为m=5x+50.(1)当31≤x≤50时,y与x的关系式为;(2)x为多少时,当天的销售利润W(元)最大?最大利润为多少?(3)若超市希望第31天到第35天的日销售利润W(元)随x的增大而增大,则需要在当天销售价格的基础上涨a元/kg,求a的最小值.【解答】解:(1)依题意,当x=36时,y=37;x=44时,y=33,当31≤x≤50时,设y=kx+b,则有,解得∴y与x的关系式为:y=x+55(2)依题意,∵W=(y﹣18)•m∴整理得,当1≤x≤30时,∵W随x增大而增大∴x=30时,取最大值W=30×110+1100=4400当31≤x≤50时,W=x2+160x+1850=∵<0∴x=32时,W取得最大值,此时W=4410综上所述,x为32时,当天的销售利润W(元)最大,最大利润为4410元(3)依题意,W=(y+a﹣18)•m=∵第31天到第35天的日销售利润W(元)随x的增大而增大∴对称轴x==≥35,得a≥3故a的最小值为3.24.(10分)如图1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α得到△CBE,点A,D的对应点分别为点B,E,且A,D,E三点在同一直线上.(1)填空:∠CDE=(用含α的代数式表示);(2)如图2,若α=60°,请补全图形,再过点C作CF⊥AE于点F,然后探究线段CF,AE,BE 之间的数量关系,并证明你的结论;(3)若α=90°,AC=5,且点G满足∠AGB=90°,BG=6,直接写出点C到AG的距离.【解答】解:(1)∵将△CAD绕点C按逆时针方向旋转角α得到△CBE∴△ACD≌△BCE,∠DCE=α∴CD=CE∴∠CDE=故答案为:(2)AE=BE+CF理由如下:如图,∵将△CAD绕点C按逆时针方向旋转角60°得到△CBE∴△ACD≌△BCE∴AD=BE,CD=CE,∠DCE=60°∴△CDE是等边三角形,且CF⊥DE∴DF=EF=∵AE=AD+DF+EF∴AE=BE+CF(3)如图,当点G在AB上方时,过点C作CE⊥AG于点E,∵∠ACB=90°,AC=BC=5,∴∠CAB=∠ABC=45°,AB=10∵∠ACB=90°=∠AGB∴点C,点G,点B,点A四点共圆∴∠AGC=∠ABC=45°,且CE⊥AG∴∠AGC=∠ECG=45°∴CE=GE∵AB=10,GB=6,∠AGB=90°∴AG==8∵AC2=AE2+CE2,∴(5)2=(8﹣CE)2+CE2,∴CE=7(不合题意舍去),CE=1若点G在AB的下方,过点C作CF⊥AG,同理可得:CF=7∴点C到AG的距离为1或7.25.(12分)已知抛物线y=a(x﹣2)2+c经过点A(2,0)和C(0,),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠A,则△DEF能否为等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)若点P在抛物线上,且=m,试确定满足条件的点P的个数.【解答】解:(1)由题意:,解得,∴抛物线的解析式为y=﹣(x﹣2)2+3,∴顶点D坐标(2,3).(2)可能.如图1,∵A(﹣2,0),D(2,3),B(6,0),∴AB=8,AD=BD=5,①当DE=DF时,∠DFE=∠DEF=∠ABD,∴EF∥AB,此时E与B重合,与条件矛盾,不成立.②当DE=EF时,又∵△BEF∽△AED,∴△BEF≌△AED,∴BE=AD=5③当DF=EF时,∠EDF=∠DEF=∠DAB=∠DBA,△FDE∽△DAB,∴=,∴==,∵△AEF∽△BCE∴==,∴EB=AD=,答:当BE的长为5或时,△CFE为等腰三角形.(3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,PB.设P[n,﹣(n﹣2)2+3],则S△PBD=S△PBH+S△PDH﹣S△BDH=×4×[﹣(n﹣2)2+3]+×3×(n﹣2)﹣×4×3=﹣(n﹣4)2+,∵﹣<0,∴n=4时,△PBD的面积的最大值为,∵=m,∴当点P在BD的右侧时,m的最大值==,观察图象可知:当0<m<时,满足条件的点P的个数有4个,当m=时,满足条件的点P的个数有3个,当m>时,满足条件的点P的个数有2个(此时点P在BD的左侧).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.(3 分)我市“创建文明城市”活动正如火如荼的展开.某校为了做好“创文”活动的 宣传,就本校学生对“创文”有关知识进行测试,然后随机抽取了部分学生的测试成绩 进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:
若 该 校 有 学 生 2000 人 , 请 根 据 以 上 统 计 结 果 估 计 成 绩 为 优 秀 和 良 好 的 学 生 共 有
绕点 A 旋转,当∠ABF 最大时,S△ADE=
.
三、解答题(本题有 9 个小题,共 72 分) 17.(5 分)计算:(﹣1)3+|1﹣ |+ .
18.(6 分)先化简,再求值:(1﹣ )÷(
﹣2),其中 a= +1.
19.(7 分)如图,拦水坝的横断面为梯形 ABCD,AD=3m,坝高 AE=DF=6m,坡角α= 45°,β=30°,求 BC 的长.
A.对边相等
B.对角相等
C.对角线相等
D.对角线互相平分
6.(3 分)一次数学测试,某小组 5 名同学的成绩统计如下(有两个数据被遮盖):
组员 甲 乙
丙
丁
戊 平均成绩
众数
得分
81
77
■
80
82
80
■
则被遮盖的两个数据依次是( )
A.80,80
B.81,80
C.80,2
D.81,2
7.(3 分)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有 6000 米的钢轨需要铺
右面长方形的宽度.
故选:B.
【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.
4.(3 分)下列计算正确的是( ) A.2a+a=2a2 C.(a﹣1)2=a2﹣1
B.(﹣a)2=﹣a2 D.(ab)2=a2b2
【考点】35:合并同类项;47:幂的乘方与积的乘方;4C:完全平方公式.菁优网版权所有
A.3
B.3
C.4
D.2
【考
点】
KQ
:勾
股定
理;
M2
:垂
径定
理;
M6
:圆
内接
四边
形的
性质
. 菁优网版
权所有
【分析】连接 AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2
=∠3,从而得到∠3=∠CDA,所以 AC=AD=5,然后利用勾股定理计算 AE 的长.
【解答】解:连接 AC,如图,
点在同一直线上.
(1)填空:∠CDE=
(用含α的代数式表示);
(2)如图 2,若α=60°,请补全图形,再过点 C 作 CF⊥AE 于点 F,然后探究线段 CF,
AE,BE 之间的数量关系,并证明你的结论;
(3)若α=90°,AC=5 ,且点 G 满足∠AGB=90°,BG=6,直接写出点 C 到 AG
﹣
=20
D.
﹣
=20
【考点】B6:由实际问题抽象出分式方程.菁优网版权所有 【分析】设原计划每天铺设钢轨 x 米,根据如果实际施工时每天比原计划多铺设 20 米, 就能提前 15 天完成任务可列方程.
【解答】解:设原计划每天铺设钢轨 x 米,可得:
,
故选:A. 【点评】本题考查由实际问题抽象出分式方程,关键是设出未知数以时间为等量关系列 出方程. 8.(3 分)如图,四边形 ABCD 内接于⊙O,AE⊥CB 交 CB 的延长线于点 E,若 BA 平分∠ DBE,AD=5,CE= ,则 AE=( )
A.0
B.﹣3
C.
D.
【考点】22:算术平方根;26:无理数.菁优网版权所有 【分析】根据无理数是无限不循环小数,可得答案. 【解答】解:A、0 是有理数,故 A 错误; B、﹣3 是有理数,故 B 错误; C、 是有理数,故 C 错误;
D、 是无理数,故 D 正确; 故选:D. 【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环 小数. 2.(3 分)如图,直线 a∥b,直线 AB⊥AC,若∠1=50°,则∠2=( )
规律:①当 1≤x≤30 时,y=40;当 31≤x≤50 时,y 与 x 满足一次函数关系,且当 x=
36 时,y=37;x=44 时,y=33.②m 与 x 的关系为 m=5x+50.
(1)当 31≤x≤50 时,y 与 x 的关系式为
;
(2)x 为多少时,当天的销售利润 W(元)最大?最大利润为多少?
A.50°
B.45°
C.40°
D.30°
【考点】J3:垂线;JA:平行线的性质.菁优网版权所有
【分析】根据垂直的定义和余角的定义列式计算得到∠3,根据两直线平行,内错角相等
可得∠3=∠1.
【解答】解:∵直线 a∥b,∠1=50°,
∴∠1=∠3=50°,
∵直线 AB⊥AC,
∴∠2+∠3=90°.
∴∠2=40°.
设,为确保年底通车,如果实际施工时每天比原计划多铺设 20 米,就能提前 15 天完成
第 1页(共 26页)
任务.设原计划每天铺设钢轨 x 米,则根据题意所列的方程是( )
A.
﹣
=15
B.
﹣
=15
C.
﹣
=20
D.
﹣
=20
8.(3 分)如图,四边形 ABCD 内接于⊙O,AE⊥CB 交 CB 的延长线于点 E,若 BA 平分∠ DBE,AD=5,CE= ,则 AE=( )
(3)若点 P 在抛物线上,且
=m,试确定满足条件的点 P 的个数.
第 5页(共 26页)
2019 年湖北省十堰市中考数学试卷
参考答案与试题解析
一、选择题(本题有 10 个小题,每小题 3 分,共 30 分)下面每小题给出的四个选项中, 只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内. 1.(3 分)下列实数中,是无理数的是( )
在 OA 上,则 k=( )
A.﹣20
B.﹣16
C.﹣12
D.﹣8
二、填空题(本题有 6 个小题,每小题 3 分,共 18 分)
11.(3 分)分解因式:a2+2a=
.
12.(3 分)如图,已知菱形 ABCD 的对角线 AC,BD 交于点 O,E 为 BC 的中点,若 OE=
3,则菱形的周长为
.
第 2页(共 26页)
第 3页(共 26页)
20.(7 分)第一盒中有 2 个白球、1 个黄球,第二盒中有 1 个白球、1 个黄球,这些球除颜 色外无其他差别.
(1)若从第一盒中随机取出 1 个球,则取出的球是白球的概率是
.
(2)若分别从每个盒中随机取出 1 个球,请用列表或画树状图的方法求取出的两个球中
恰好 1 个白球、1 个黄球的概率.
的距离.
25.(12 分)已知抛物线 y=a(x﹣2)2+c 经过点 A(﹣2,0)和 C(0, ),与 x 轴交于
另一点 B,顶点为 D. (1)求抛物线的解析式,并写出 D 点的坐标; (2)如图,点 E,F 分别在线段 AB,BD 上(E 点不与 A,B 重合),且∠DEF=∠A, 则△DEF 能否为等腰三角形?若能,求出 BE 的长;若不能,请说明理由;
2019 年湖北省十堰市中考数学试卷
一、选择题(本题有 10 个小题,每小题 3 分,共 30 分)下面每小题给出的四个选项中, 只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内. 1.(3 分)下列实数中,是无理数的是( )
A.0
B.﹣3
C.
D.
2.(3 分)如图,直线 a∥b,直线 AB⊥AC,若∠1=50°,则∠2=( )
丙
丁
戊 平均成绩
众数
得分
81
77
■
80
82
80
■
则被遮盖的两个数据依次是( )
A.80,80
B.81,80
C.80,2
D.81,2
【考点】W5:众数.菁优网版权所有
【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答
案.
【解答】解:根据题意得:
80×5﹣(81+77+80+82)=80(分), 则丙的得分是 80 分; 众数是 80, 故选:A. 【点评】考查了众数及平均数的定义,解题的关键是根据平均数求得丙的得分,难度不
A.3
B.3
C.4
D.2
9.(3 分)一列数按某规律排列如下: , , , , , , , , , ,…,若第
n 个数为 ,则 n=( )
A.50
B.60
C.62
D.71
10.(3 分)如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数
y= 的图象分别与线段 AB,BC 交于点 D,E,连接 DE.若点 B 关于 DE 的对称点恰好
A.50°
B.45°
C.40°
3.(3 分)如图是一个 L 形状的物体,则它的俯视图是( )
D.30°
A.
B.
C.
D.
4.(3 分)下列计算正确的是( )
A.2a+a=2a2
B.(﹣a)2=﹣a2
C.(a﹣1)2=a2﹣1
D.(ab)2=a2b2
5.(3 分)矩形具有而平行四边形不一定具有的性质是( )
线上一点,且∠CDE= ∠BAC.
(1)求证:DE 是⊙O 的切线; (2)若 AB=3BD,CE=2,求⊙O 的半径.
23.(10 分)某超市拟于中秋节前 50 天里销售某品牌月饼,其进价为 18 元/kg.设第 x 天的
销售价格为 y(元/kg),销售量为 m(kg).该超市根据以往的销售经验得出以下的销售