第二章习题解答
03 力学:第二章 运动和力-课堂练习及部分习题解答

α α
N
沿斜面方向
mg+ma0
K K K 以地面为参照系,物体加速度 a = a′ + a0
建立如图所示坐标系,据加速度分量关系
( ma0 + mg ) sin α = ma′ a′ = ( a0 + g ) sin α
y K a0 x α K a′
ax = a′ cos α = ( a0 + g ) sin α cos α a y = a0 − ( a0 + g ) sin 2 α = a0 cos 2 α − g sin 2 α
(2) 小球将离开锥面时,支持力N=0,有
0 = mg sin θ − mω 2l sin θ cos θ ⇒ ωc = g l cos θ
练习册·第二章 运动和力·第3题
Zhang Shihui
题. 小球质量为m,在水中受的浮力为常力F。当它从静止 开始沉降时,受到水的粘滞阻力为 f = kv (k为常数)。证 明:小球在水中竖直沉降的速度v与时间t的关系为
2
O
θ
H r
l
r = l sin θ
竖直面内静止 T cos θ + N sin θ − mg = 0
学习指导·第二章 运动和力·习作题9
Zhang Shihui
2
⎧ ⎪ N = mg sin θ − mω l sin θ cos θ (1) 联立可得 ⎨ 2 2 T mg cos θ m ω l sin θ = + ⎪ ⎩
题. 已知一质量为m的质点在x轴上运动,质点只受到指 向原点的引力的作用,引力大小与质点离原点的距离x 的平方成反比,即f =-k/x2,k是比例常数。设质点在 x=A时的速度为零,求质点在x=A /4处的速度的大小.
《土力学》第二章习题集及详细解答.

《土力学》第二章习题集及详细解答第2章土的物理性质及分类一填空题1.粘性土中含水量不同,可分别处于、、、、四种不同的状态。
其界限含水量依次是、、。
2.对砂土密实度的判别一般采用以下三种方法、、。
3.土的天然密度、土粒相对密度、含水量由室内试验直接测定,其测定方法分别是、、。
4. 粘性土的不同状态的分界含水量液限、塑限、缩限分别用、、测定。
5. 土的触变性是指。
6.土的灵敏度越高,其结构性越强,受扰动后土的强度降低越。
7. 作为建筑地基的土,可分为岩石、碎石土砂土、、粘性土和人工填土。
8.碎石土是指粒径大于 mm的颗粒超过总重量50%的土。
9.土的饱和度为土中被水充满的孔隙与孔隙之比。
10. 液性指数是用来衡量粘性土的状态。
二、选择题1.作为填土工程的土料,压实效果与不均匀系数C u的关系:( )(A)C u大比C u小好(B) C u小比C u大好(C) C u与压实效果无关2.有三个同一种类土样,它们的含水率都相同,但是饱和度S r不同,饱和度S r越大的土,其压缩性有何变化?( )(A)压缩性越大(B) 压缩性越小(C) 压缩性不变3.有一非饱和土样,在荷载作用下,饱和度由80%增加至95%。
试问土样的重度γ和含水率怎样改变?( )(A)γ增加,减小(B) γ不变,不变(C)γ增加,增加4.土的液限是指土进入流动状态时的含水率,下述说法哪种是对的?( )(A)天然土的含水率最大不超过液限(B) 液限一定是天然土的饱和含水率(C)天然土的含水率可以超过液限,所以液限不一定是天然土的饱和含水率5. 已知砂土的天然孔隙比为e=0.303,最大孔隙比e max=0.762,最小孔隙比e min=0.114,则该砂土处于( )状态。
(A)密实(B)中密 (C)松散(D)稍密6.已知某种土的密度ρ=1.8g/cm3,土粒相对密度ds=2.70,土的含水量w=18.0%,则每立方土体中气相体积为( )(A)0.486m3 (B)0.77m3(C)0.16m3(D)0.284m37.在土的三相比例指标中,直接通过室内试验测定的是()。
概率论第二章习题参考解答1

概率论第二章习题参考解答1. 用随机变量来描述掷一枚硬币的试验结果. 写出它的概率函数和分布函数. 解: 假设ξ=1对应于"正面朝上",ξ=0对应于反面朝上. 则 P (ξ=0)=P (ξ=1)=0.5 . 其分布函数为⎪⎩⎪⎨⎧≥<≤<=11105.000)(x x x x F 2. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 写出ξ的分布律和分布函数.解: 根据题意有 P (ξ=1)=2P (ξ=0) (1) 并由概率分布的性质知 P (ξ=0)+P (ξ=1)=1 (2) 将(1)代入(2)得3P (ξ=0)=1, 即P (ξ=0)=1/3 再由(1)式得 P (ξ=1)=2/3因此分布律由下表所示ξ0 1 P 1/32/3而分布函数为⎪⎩⎪⎨⎧>=<≤<=11103/100)(x x x x F 3. 如果ξ的概率函数为P {ξ=a }=1, 则称ξ服从退化分布. 写出它的分布函数F (x ), 画出F (x )的图形. 解: ⎩⎨⎧≥<=ax a x x F 10)(, 它的图形为4. 一批产品分一,二,三级, 其中一级品是二级品的两倍, 三级品是二级品的一半, 从这批产品中随机地抽取一个检验质量, 用随机变量描述检验的可能结果, 写出它的概率函数. 解 设ξ取值1,2,3代表取到的产品为一,二,三级, 则根据题意有 P (ξ=1)=2P (ξ=2) (1)P (ξ=3)=P (ξ=2)/2 (2) 由概率论性质可知P (ξ=1)+P (ξ=2)+P (ξ=3)=1 (3)(1),(2)代入(3)得:2P (ξ=2)+P (ξ=2)+P (ξ=2)/2=1解得P (ξ=2)=2/7, 再代回到(1)和(2)得 P (ξ=1)=4/7, P (ξ=3)=1/7 则概率函数为)3,2,1(271)(3=⨯==-i i P i ξ或列表如下:5. 一批产品20个, 其中有5个次品, 从这批产品中随意抽取4个, 求这4个中的次品数ξ的分布律.解: 基本事件总数为420C n =,有利于事件{ξ=i }(i =0,1,2,3,4)的基本事件数为ii i C C n -=4155, 则001.01731911718192051234)4(031.0171952121545171819201234)3(2167.01718191415231212141545171819201234)2(4696.01718191314151231314155171819201234)1(2817.01719137123412131415171819201234)0(445420115354202152542031515420415=⋅⋅=⋅⋅⋅⋅⋅⋅⋅====⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===C C P C C C P C C C P C C C P C C P ξξξξξ 6. 一批产品包括10件正品, 3件次品, 有放回地抽取, 每次一件, 直到取得正品为止, 假定每件产品被取到的机会相同, 求抽取次数ξ的概率函数.解: 每次抽到正品的概率相同, 均为p =10/13=0.7692, 则每次抽到次品的概率q =1-p =0.2308则ξ服从相应的几何分布, 即有),3,2,1(1331310)(1=⎪⎭⎫⎝⎛⋅===-i pq i P i i ξ7. 上题中如果每次取出一件产品后, 总以一件正品放回去, 直到取得正品为止, 求抽取次数ξ的分布律.解: 这样抽取次数就是有限的, 因为总共只有3件次品, 即使前面三次都抽到次品,第四次抽时次品 已经全部代换为正品, 因此必然抽到正品, 这样ξ的取值为1,2,3,4. 不难算出,0027.0131132133)4(0328.01312132133)3(1953.01311133)2(7692.01310)1(=⋅⋅===⋅⋅===⋅=====ξξξξP P P P8. 自动生产线在调整之后出现废品的概率为p , 当在生产过程中出现废品时立即重新进行调整, 求在两次调整之间生产的合格品数ξ的概率函数.解: 事件ξ=i 说明生产了i 次正品后第i +1次出现废品, 这是i +1个独立事件的交(1次发生i 次不发生, 因此有P (ξ=i )=p (1-p )i , (i =0,1,2,…)9. 已知随机变量ξ只能取-1,0,1,2四个值, 相应概率依次为cc c c 167,85,43,21, 确定常数c 并计算P {ξ<1|ξ≠0}.解: 根据概率函数的性质有1}2{}1{}0{}1{==+=+=+-=ξξξξP P P P即1167854321=+++cc c c 得2.3125163716710128167854321==+++=+++=c 设事件A 为ξ<1, B 为ξ≠0, (注: 如果熟练也可以不这样设)则32.0258167852121}2{}1{}1{}1{)0{}01{)()(}0|1{==++==+=+-=-==≠≠⋂<==≠<ξξξξξξξξξP P P P P P B P AB P P 10. 写出第4题及第9题中各随机变量的分布函数. 解: 第4题:⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=31327/6217/410)(x x x x x F第9题:当x <-1时: F (x )=P (ξ≤x )=0 当-1≤x <0时: F (x )=P (ξ≤x )=P (ξ=-1)=2162.03125.22121=⨯=c 当0≤x <1时: F (x )=P (ξ≤x )=P (ξ=-1)+P (ξ=0)=5405.03125.243214321=⎪⎭⎫ ⎝⎛+=+c c 当1≤x <2时: F (x )=P (ξ≤x )=P (ξ=-1)+P (ξ=0)+P (ξ=1)=8108.03125.2854321854321=⎪⎭⎫ ⎝⎛++=++c c c 当x ≥2时: F (x )=P (ξ≤x )=1 综上所述, 最后得:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤--<=21218108.0105405.0012162.010)(x x x x x x F 11. 已知ξ~⎪⎩⎪⎨⎧<<=其它1021)(x xx ϕ, 求ξ的分布函数F (x ), 画出F (x )的图形.解: 当x <0时: F (x )=0;当0≤x <1时:xx xt x t dt t dt t dt dt t x F xxx=-==+-⋅==+==+--∞-∞-⎰⎰⎰⎰00012112121210)()(12102100ϕ 当x ≥1时: F (x )=1 综上所述, 最后得⎪⎩⎪⎨⎧≥<≤<=111000)(x x xx x F 图形为12. 已知ξ~⎩⎨⎧<<=其它0102)(x x x ϕ, 求P {ξ≤0.5}; P (ξ=0.5);F (x ).解: 25.005.020)(}5.0{225.0025.005,0|=-==+==≤⎰⎰⎰∞-∞-x xdx dx dx x P ϕξ, 因ξ为连续型随机变量, 因此取任何点的概率均为零, 所以P {ξ=0.5}=0,求F (x ): 当x <0时, F (x )=0 当0≤x <1时, 220|20)()(x t tdt dt dt t x F xxx==+==⎰⎰⎰∞-∞-ϕ 当x ≥1时, F (x )=1 综上所述, 最后得:⎪⎩⎪⎨⎧≥<≤<=111000)(2x x x x x F 13. 某型号电子管, 其寿命(以小时计)为一随机变量, 概率密度⎪⎩⎪⎨⎧≥=其它0100100)(2x x x ϕ, 某一个电子设备内配有3个这样的电子管, 求电子管使用150小时都不需要更换的概率.解: 先求一个电子管使用150小时以上的概率P (ξ≥150)为:3215010012100100)()150(|150121502150==+-===≥∞++-+∞+∞⎰⎰x dx xdx x P ϕξ 则3个这样的电子管构成贝努里独立试验概型, 试验三次发生三次的概率为2963.027832)3(33==⎪⎭⎫⎝⎛=p14. 设连续型随机变量ξ的分布函数为:⎪⎩⎪⎨⎧≥<≤<=111000)(2x x Ax x x F 求系数A ; P (0.3<ξ<0.7); 概率密度φ(x ).解: 因ξ是连续型随机变量, 因此F (x )也必是连续曲线, 则其在第二段(0,1)区间的曲线必能和第三段(1,+∞)的曲线接上, 则必有 A ×12=1, 即A =1. 则分布函数为⎪⎩⎪⎨⎧≥<≤<=111000)(2x x x x x F P (0.3<ξ<0.7)=F (0.7)-F (0.3)=0.72-0.32=0.49-0.09=0.4概率密度φ(x )为⎩⎨⎧<≤='=其它0102)()(x x x F x ϕ15. 服从柯西分布的随机变量ξ的分布函数是F (x )=A +B arctg x , 求常数A ,B ;P {|ξ|<1}以及概率密度φ(x ). 解: 由F (-∞)=0, 得A +Barctg (-∞)=02=-πB A(1)再由F (+∞)=1,得12)arctg(=+=+∞+πB A B A(2)综和(1),(2)两式解得π1,21==B A 即x x F arctg 121)(π+=5.0214411111)1()1()11()1|(|==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--==--=--=<<-=<πππππξξarctg arctg F F P P2111)()(x x F x +⋅='=πϕ16. 服从拉普拉斯分布的随机变量ξ的概率密度||)(x Ae x -=ϕ, 求系数A 及分布函数F (x ).解: 这实际上是一个分段函数, φ(x )可重新写为⎩⎨⎧<≥=-0)(x Aex Ae x xxϕ 根据性质1)(=⎰+∞∞-dx x ϕ, 又因φ(x )为偶函数, 因此有1222)(|==-==∞+-+∞-+∞∞-⎰⎰A Aedx Aedx x x xϕ, 则有A =1/2因此⎪⎩⎪⎨⎧<≥==--02102121)(||x e x e ex x x x ϕ.求分布函数F (x ). 当x <0时, 有xxtxt x e e dt e dt t x F 212121)()(====∞-∞-∞-⎰⎰ϕ当x ≥0时, 有x x xtxt t x e e e dt e dt e dt t x F ----∞-∞--=+-=-=+==⎰⎰⎰21121212121212121)()(00ϕ 综上所述, 最后得⎪⎩⎪⎨⎧≥-<=-0211021)(x e x e x F x x17. 已知⎩⎨⎧<<+-=其它01031212)(~2x x x x ϕξ, 计算P {ξ≤0.2|0.1<ξ≤0.5}解: 设事件A ={ξ≤0.2}, B ={0.1<ξ≤0.5}, 则要计算的是条件概率P (A |B ), 而)()()|(B P AB P B A P =, 而事件AB ={ξ≤0.2}∩{0.1<ξ≤0.5}={0.1<ξ≤0.2} 因此有148.03.006.0004.06.024.0032.0)1.0301.06001.04()2.0304.06008.04()364(d )31212()(}2.01.0{)(2.01.0232.01.022.01.0=-+-+-=⨯+⨯-⨯-⨯+⨯-⨯==+-=+-==≤<=⎰⎰x x x xx x dx x P AB P ϕξ256.03.006.0004.05.15.15.0)1.0301.06001.04()5.0325.06125.04()364(d )31212()(}5.01.0{)(5.01.0235.01.025.01.0=-+-+-=⨯+⨯-⨯-⨯+⨯-⨯==+-=+-===≤<=⎰⎰x x x xx x dx x P B P ϕξ最后得5781.0256.0148.0)()()|(}5.01.0|2.0{====≤<≤B P AB P B A P P ξξ18. 已知xxce x +-=2)(~ϕξ, 确定常数c .解: 首先证明普阿松广义积分π=⎰+∞∞--x e xd 2, 因为函数2x e -并不存在原函数, 因此需要一技巧. 令⎰+∞∞--=x eI x d 2, 则⎰⎰⎰+∞∞-+∞∞-+-+∞∞--=⎥⎦⎤⎢⎣⎡=y x e x e I y x x d d d )(22222作极坐标代换, 令θθsin ,cos r y r x ==, 则积分区间为全平面, 即θ从0积到2π, r 从0积到+∞, 且θd d d d r r y x =, 因此有πππθπ====∞+-+∞-+∞-⎰⎰⎰020202222)d(212rr r e r e rdr ed I , 所以I =π.现确定常数c , 由性质1)(=⎰+∞∞-dx x ϕ,1d d 41)21(414141212222====⎰⎰⎰+∞∞---+∞∞-+-⋅⋅+-+∞∞-+-πcedx ecex cex cex x x xx得421πe c =19. 已知⎩⎨⎧>>=-其它)0()(~λλϕξλa x e c x x, 求常数c 及P {a -1<ξ≤a +1}.解: 由性质1)(=⎰+∞∞-dx x ϕ得1d d 0)(|==-=+=-∞+-+∞-∞-+∞∞-⎰⎰⎰aax ax ace ce x e c x dx x λλλλϕ 解得 aec λ=, 因此有⎩⎨⎧>>=--其它)0()()(λλϕλa x e x a x则λλλλλλϕξ---+---+--=-==+==+≤<-⎰⎰⎰⎰e e due x ex x x a a P u u a aa x a a a a 1d d 0d )()11(|111)(111求边缘概率分布, 与是否独立?解: 按下表计算ξ与η的边缘分布:得的边缘分布如下表所示:当i =1及j =0时,因202.026.0}0{}1{0}0,1{)2(0)1(110⨯====≠====ηξηξP P p p P p因此ξ与η相互间不独立.21. 假设电子显示牌上有3个灯泡在第一排, 5个灯泡在第二排. 令ξ,η分别表示在某一规定时间内第一排和第二排烧坏的灯泡数. 若ξ与η的联合分布如下表所示: 试计算在规定时间内下列事件的概率: (1) 第一排烧坏的灯泡数不超过一个; (2) 第一排与第二排烧坏的灯泡数相等;(3) 第一排烧坏的灯泡数不超过第二排烧坏的灯泡数.解: 假设事件A 为第一排烧坏的灯泡数不超过一个, B 为第一排与第二排烧坏的灯泡数相等, C 为第一排烧坏的灯光数不超过第二排烧坏的灯泡数. 则事件A 发生的概率为上表中头两排概率之和52.008.006.005.004.002.001.009.007.005.003.001.001.0)(104=++++++++++++==∑∑==i j ij p A P事件B 发生的概率为上表中从0行0列开始的斜对角线之和14.006.005.002.001.0)(3=+++==∑=i ii p B P事件C 发生的概率为上表中斜对角线上右的各个数相加(包括斜对角线上的数), 但为减少运算量, 也可以考虑其逆事件C 的概率, 然后用1减去它. 而C 的概率为上表中斜对角线的左下角的所有概率之和(不包括斜对角线):89.011.01)04.001.003.001.001.001.0(1)(1)(=-=+++++-=-=C P C P22. 袋中装有标上号码1,2,2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求(ξ,η)的分布律(袋中各球被取机会相同).解: 因为有两个2一个1, 因此第一次取到2号的概率为P (ξ=2)=2/3, 第一次取到1号的概率为P (ξ=1)=1/3. 第一次取到2号后还剩下一个2号一个1号, 则在此条件下第二次取到1号的概率P (η=1|ξ=2)=P (η=2|ξ=2)=1/2. 而第一次取到1号后还剩下两个2号, 因此这时P (η=1|ξ=1)=0, P (η=2|ξ=1)=1. 综上所述并用乘法法则可得312132)2|2()2()2,2(312132)2|1()2()1,2(31131)1|2()1()2,1(0031)1|1()1()1,1(22211211=⨯=========⨯=========⨯=========⨯========ξηξηξξηξηξξηξηξξηξηξP P P p P P P p P P P p P P P p23. (ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12. 列出(ξ,η)的概率分布表, 写出关于η的边缘分布. 解: 从上面数组可知ξ只取-1,0,2这三个值, 而η只取0,31,1这三个值, 因此总共可构成九个. 概率分布表及η的边缘分布计算如下即η的边缘分布率如下表所示24. 袋中装有标上号码1,2,2,3的4个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求(ξ,η)的分布律(袋中各球被取机会相同).解: 第一次取到号码1,2,3的概率为P{ξ=1}=P(ξ=3)=1/4P{ξ=2}=1/2在第一次取到号码i条件下,第二次取到号码j的概率各为P{η=1|ξ=1}=P{η=3|ξ=3}=0P{η=2|ξ=1}=P{η=2|ξ=3}=2/3P{η=3|ξ=1}=P{η=1|ξ=3}=1/3P{η=1|ξ=2}=P{η=3|ξ=2}=1/3P{η=2|ξ=2}=1/3则p11=P{ξ=1,η=1}=P{ξ=1}P{η=1|ξ=1}=0p12=P{ξ=1,η=2}=P{ξ=1}P{η=2|ξ=1}=1/6p13=P{ξ=1,η=3}=P{ξ=1}P{η=3|ξ=1}=1/12p21=P{ξ=2,η=1}=P{ξ=2}P{η=1|ξ=2}=1/6p22=P{ξ=2,η=2}=P{ξ=2}P{η=2|ξ=2}=1/6p23=P{ξ=2,η=3}=P{ξ=2}P{η=3|ξ=2}=1/6p31=P{ξ=3,η=1}=P{ξ=3}P{η=1|ξ=3}=1/12p32=P{ξ=3,η=2}=P{ξ=3}P{η=2|ξ=3}=1/6p33=P{ξ=3,η=3}=P{ξ=3}P{η=3|ξ=3}=025. 表示随机地在1-4的4个整数中取出的一个整数,η表示在1-ξ中随机地取出的一个整数值,求(ξ,η)的联合概率分布.解: 因ξ取四个数中的任何一个概率相等, 因此有P{ξ=i}=1/4, (i=1,2,3,4)而在ξ=i的条件下, (i=1,2,3,4), η取1到i的概率也相同,为1/i, 即P{η=j|ξ=i}=1/i, (i=1,2,3,4;j=1-i)因此有p ij=P{ξ=i,η=j}=P{ξ=i}P{η=j|ξ=i}=1/(4i), (i=1,2,3,4; j=1-i),联合概率分布如下表所示:26. 已知(ξ,η)~⎪⎩⎪⎨⎧≤≤+=其它04,0)sin(),(πϕy x y x c y x ,试确定常数c 并求η的边缘概率密度.解: 根据性质1),(=⎰⎰+∞∞-+∞∞-dydx y x ϕ, 有1)12(]220122[)]4sin([sin )]4cos([cos )]cos([)sin(40440404040=-=+--=+-=+-=+-=+⎰⎰⎰⎰c c x x c x x dx c y x dx c dydx y x c ππππππππ解得12)12)(12(12121+=+-+=-=c ,因此,⎪⎩⎪⎨⎧≤≤++=其它04,0)sin()12(),(πϕy x y x y x求η的边缘概率密度: 当40π≤≤y 时:)8sin(22)12()]4cos()[cos 12()cos()12()sin()12(),()(4042ππϕϕκπ+-+==+-+==++-=++==⎰⎰∞+∞-y y y y x dx y x dx y x y上式后一等式利用了三角函数公式2sin 2sin2cos cos A B A B B A -+=-, 而计算三角函数8sin π的值, 又是在已知224cos=π的前提下,利用半角公式2cos 12sin θθ-=得222222124cos18sin-=-=-=ππ当y 取区间]4,0[π之外的值时, 0)(1=y ϕ.因此最后得:⎪⎩⎪⎨⎧≤≤+-+=其它040)8sin(22)12()(2ππϕy y y27. 已知ξ服从参数p =0.6的0-1分布, 在ξ=0及ξ=1条件下, 关于η的条件分布分别如下二表所示:求二元随机变量(,)的联合概率分布, 以及在≠1时关于的条件分布. 解: 根据题意已知P {ξ=0}=1-p =1-0.6=0.4, P {ξ=1}=p =0.6 则根据乘法法则有:p 01=P {ξ=0,η=1}=P {ξ=0}P {η=1|ξ=0}=0.4×(1/4)=0.1 p 02=P {ξ=0,η=2}=P {ξ=0}P {η=2|ξ=0}=0.4×(1/2)=0.2 p 03=P {ξ=0,η=3}=P {ξ=0}P {η=3|ξ=0}=0.4×(1/4)=0.1 p 11=P {ξ=1,η=1}=P {ξ=1}P {η=1|ξ=1}=0.6×(1/2)=0.3 p 12=P {ξ=1,η=2}=P {ξ=1}P {η=2|ξ=1}=0.6×(1/6)=0.1 p 13=P {ξ=1,η=3}=P {ξ=1}P {η=3|ξ=1}=0.6×(1/3)=0.2由表中可以算出P {η≠1}=1-P {η=1}=1-(p 01+p 11)=1-0.4=0.6 P {ξ=0,η≠1}=p 02+p 03=0.2+0.1=0.3 P {ξ=1,η≠1}=p 12+p 13=0.1+0.2=0.3 因此有5.06.03.0}1{}1,1{}1|1{5.06.03.0}1{}1,0{}1|0{==≠≠==≠===≠≠==≠=ηηξηξηηξηξP P P P P P则在η≠1时关于ξ的条件分布律如下表所示:28. 第22题中的两个随机变量ξ与η是否独立?当ξ=1时η的条件分布是什么?: , 因为 P {ξ=1}=1/3, P {η=1}=1/3 而P {ξ=1,η=1}=0≠P {ξ=1}P {η=1} 在ξ=1条件下, 因13/13/1}1{}2,1{}1|2{03/10}1{}1,1{}1|1{================ξηξξηξηξξηP P P P P P因此在此条件下η服从单点分布或退化分布, 只取值为2, 取值为2的条件概率为1.=p i (1)p j (2), 算得联合分布律如下表所示 根据此联合分布律可算出43129611211)2/1,2/1()1,1(1)0(1)0(121484481161)1,0()3,2()1(==--==-==-=-=-==+-=≠+==+===+=-===+ηξηξηξηξηξηξηξP P P P P P P30. 测量一矩形土地的长与宽, 测量结果得到如下表所示的分布律(长与宽相互独立), 求周解: 因ζ=2ξ+2η, 可知ζ的取值为96,98,100,102,104, 又因ξ与η独立, 因此有 P {ζ=96}==P {ξ=29}P {η=19}=0.3×0.3=0.09P {ζ=98}=P {ξ=29}P {η=20}+P {ξ=30}P {η=19}=0.3×0.4+0.5×0.3=0.27 P {ζ=100}=P {ξ=29}P {η=21}+P {ξ=30}P {η=20}+P {ξ=31}}P {η=19}==0.3×0.3+0.5×0.4+0.2×0.3=0.35P {ζ=102}=P {ξ=30}P {η=21}+P {ξ=31}P {η=20}=0.3×0.5+0.2×0.4=0.23 P {ζ=104}=P {ξ=31}P {η=21}=0.2×0.3=0.06η的分布.解: 因周长=2πR , 面积=πR , 因此当半径R 取值10,11,12,13时, ξ的取值为62.83, 69.12,32. 一个商店每星期四进货, 以备星期五,六,日3天销售, 根据多周统计, 这3天销售件数 ξ问三天销售总量∑==31i iξη这个随机变量可以取哪些值?如果进货45件, 不够卖的概率是多少? 如果进货40件, 够卖的概率是多少?解: 因η的取值为ξ1,ξ2,ξ3三个随机变量可能取值之和, 因此可能的取值为从10+13+17=40到12+15+19=46之间的每一个整数值, 即40,41,42,43,44,45,46. 因此, 如进货15件, 不够卖的概率在η取值为46时出现, 即 P {η=46}=P {ξ1=12}P {ξ2=15}P {ξ3=19}=0.1×0.1×0.1=0.001 如进货40件, 够卖的概率发生在η取值为40时出现, 即P {η=40}=P {ξ1=10}P {ξ2=13}P {ξ3=17}=0.2×0.3×0.1=0.006 33. 求出第22题中ξ+η的分布律.ξ与η的联合分布律如下表: 则P {+=2}=P {=1,=1}=0P {ξ+η=3}=P {ξ=1,η=2}+P {ξ=2,η=1}=2/3 P {ξ+η=4}=P {ξ=2,η=2}=1/334. 求出第23题中ξ-η的分布律 解: 因(ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12.因此ξ-η也只取0-0=0, -1-1=-2, -1-1/3=-4/3, 2-0=2这四个值, 相应的概率也还是依次为1/6, 35. 已知P {ξ=k }=a /k , P {η=-k }=b /k (k =1,2,3), ξ与独立, 确定a ,b 的值; 求出(ξ,η)的联合概率分布以及ξ+η的概率分布. 解: 由概率分布的性质有131211}{31=⎪⎭⎫⎝⎛++==∑=a k P k ξ, 解得 5455.0116312111==++=a,191411}{31=⎪⎭⎫⎝⎛++=-=∑=b k P k η 解得 7347.04936914111==++=b 因此有P {ξ=1}=0.5455, P {ξ=2}=0.5455/2=0.2727, P {ξ=3}=0.1818 P {η=-1}=0.7347, P {η=-2}=0.1837, P {η=-3}=0.0816 因ξ与η独立, 则有p 11=P {ξ=1,η=-1}=P {ξ=1}P {η=-1}=0.5455×0.7347=0.4008 p 12=P {ξ=1,η=-2}=P {ξ=1}P {η=-2}=0.5455×0.1837=0.1002 p 13=P {ξ=1,η=-3}=P {ξ=1}P {η=-3}=0.5455×0.0816=0.0445 p 21=P {ξ=2,η=-1}=P {ξ=2}P {η=-1}=0.2727×0.7347=0.2004 p 22=P {ξ=2,η=-2}=P {ξ=2}P {η=-2}=0.2727×0.1837=0.0501 p 23=P {ξ=2,η=-3}=P {ξ=2}P {η=-3}=0.2727×0.0816=0.0223 p 31=P {ξ=3,η=-1}=P {ξ=3}P {η=-1}=0.1818×0.7347=0.1336 p 32=P {ξ=3,η=-2}=P {ξ=3}P {η=-2}=0.1818×0.1837=0.0333 p 33=P {ξ=3,η=-3}=P {ξ=3}P {η=-3}=0.1818×0.0816=0.0148计算+的概率分布: P {ξ+η=-2}=p 13=0.0445P {ξ+η=-1}=p 12+p 23=0.1002+0.0223=0.1225P {ξ+η=0}=p 11+p 22+p 33=0.4008+0.0501+0.0148=0.4657 P {ξ+η=1}=p 21+p 32=0.2004+0.0333=0.2337 P{ξ+η=2}=p 31=0.1336即ξ+η的概率分布率如下表所示36. 已知服从区间[0,1]上的均匀分布, 求的函数=3+1的概率分布. 解: 根据题意知ξ的概率密度φξ(x )为⎩⎨⎧≤≤=其它0101)(x x ξϕ 则η的分布函数为)31(}31{}13{}{)(-=-≤=≤+=≤=x F x P x P x P x F ξηξξη 对其求导得η的概率密度与ξ的概率密度间的关系为⎪⎩⎪⎨⎧≤≤=⎪⎩⎪⎨⎧≤-≤=-=-'='=其它其它041310131031)31(31)31(31)()(x x x x F x F x ϕϕξηη即η服从在区间[1,4]上的均匀分布.37. 已知ξ~⎪⎩⎪⎨⎧>+=其它0)1(2)(2x x x πϕ, ξηln =, 求η的概率密度.解: 求η的分布函数F η(x )为)(}{}{ln }{)(x x e F e P x P x P x F ξηξξη=≤=≤=≤=因e x 总大于0, 而当x 大于0时F ξ(x )为x t t t dt t x F x xxarctg 2arctg 2d )1(2)()(|002πππϕξ==+==⎰⎰∞- 因此有x x e e F x F arctg 2)()(πξη==则η的概率密度为其分布函数的求导:xxee x F x 212)()(+⋅='=πϕηη。
第2章 部分习题答案

-7.2812510=-111.010012 然后移动小数点,使其在第1,2位之间
111.01001=1.1101001×22
e=2
于是得到: e =E – 127
S=1,E=2+127=129=1000,0001,M=1101001
最后得到32位浮点数的二进制存储格式为
1100 0000 1110 1001 0000 0000 0000 0000
第二章 习题解答
7.若浮点数 x 的IEEE754标准32位存储格式为(8FEFC000 )16, 求其浮点数的十进制值。 【解】: 将x展开成二进制:
1000 , 1111, 1110 ,1111 ,1100,0000,0000,0000 数符:1 阶码:0001,1111 尾数:110,1111,1100,0000,0000,0000 指数e=阶码-127=00011111-01111111 =(-96)10 包括隐藏位1的尾数:
符号位为01,故运算结果未溢出。 x-y=1101
.
第5页
第二章 习题解答
20. 已知x和y,分别用带求补器的原码阵列乘法器、带求补器的补码阵 列乘法器和直接补码阵列乘法器计算x×y。
(1) x=0.10111 y=-0.器
[x]原=0.10111 [y]原=1.10011 乘积的符号位为: xf⊕yf=0⊕1=1 因符号位单独考虑,算前求补器的使能控制信号为0,经算前求补
+ [y]补 1 1. 0 0 1 0 1 1 1. 1 1 1 0 0
符号位出现“11”,表示无溢出,x-y=-0.00100
.
第3页
第二章 习题解答
13. 已知[x]补=1.1011000,[y]补=1.0100110,用变形补码计算 2[x]补+1/2[y]补=?,同时指出结果是否发生溢出。
应用多元统计分析课后习题答案高惠璇(第二章部分习题解答

2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
注意:由D(X)≥0,可知 (Σ1-Σ2) ≥0.
8
第二章 多元正态分布及参数的估计
2-11 已知X=(X1,X2)′的密度函数为
f
( x1 ,
x2 )
1
2
exp
1 2
(2 x12
x22
2 x1 x2
22 x1
14 x2
65)
试求X的均值和协方差阵.
解一:求边缘分布及Cov(X1,X2)=σ12
应用多元统计分析
第二章部分习题解答
第二章 多元正态分布及参数的估计
2-1 设3维随机向量X~N3(μ,2I3),已知
002,
A
0.5 0.5
1 0
00.5.5, d 12.
试求Y=AX+d的分布.
解:利用性质2,即得二维随机向量Y~N2(y,y),
其中:
2
第二章 多元正态分布及参数的估计
2-2 设X=(X1,X2)′~N2(μ,Σ),其中
物理化学 答案 第二章_习题解答

=
(0.3 × 48.66 +
0.7 ×12) KJ·mol-1
=
23.0KJ·mol-1
B
∑ ∑ ∑ S
2-2 已知当 NaCl 溶液在 1kg 水中含物质的量为 n(单位为 mol)的 NaCl 时,体积 V 随 n 的变化关系为:
V/m3 = 1.00138×10-3 + 1.66253×10-5n/mol +1.7738×10-3(n/mol)3/2 + 1.194×10-7(n/mol)2
求当 n 为 2mol 时 H2O 和 NaCl 的偏摩尔体积为多少? 解:设水用“A”表示,NaCl 用“B”表示,由题意得:
1
⎜⎜⎝⎛
∂V ∂n B
⎟⎟⎠⎞ = 1.66253 ×10−5
+ 1.7738 ×10−3
×
3 2
1
× (n / mol) 2
+ 1.194 × 10−7
× 2(n / mol)
那么当 n=2 时,NaCl 的偏摩尔体积
VB
= 1.66253 × 10−5
+ 1.7738 × 10−3
×
3
×
2
1 2
mol·dm3 = 0.547mol·dm-3
bB
=
nB mA
=
wB M (1 − wB )
=
0.095 0.18 × (1 − 0.095)
mol·kg-1 = 0.583mol·kg-1
2-4 若将 25℃、101.325KPa 纯理想气体的状态定为气体的标准状态,则氧气的标准
熵 S1O =205.03J·K-1·mol-1,现改为 25℃、100Kpa 的纯理想气体作为气体的标准态,氧气
运筹学习题答案(第二章)

School of Management
运筹学教程
第二章习题解答
2.4 给出线性规划问题
min Z = 2 x1 + 3 x 2 + 5 x 3 + 6 x 4 x1 + 2 x 2 + 3 x 3 + x 4 ≥ 2 st . − 2 x1 + x 2 − x 3 + 3 x 4 ≤ − 3 x j ≥ 0 , ( j = 1, L , 4 )
page 14 30 December 2010
School of Management
运筹学教程
第二章习题解答
是原问题的可行解。 解:x1=1,x2=x3=0是原问题的可行解。原问题的对 是原问题的可行解 偶问题为: 偶问题为:
min W = 2 y1 + y 2 − y1 − 2 y 2 ≥ 1 (1) y + y ≥1 (2) 1 2 st . ( 3) y1 − y 2 ≥ 0 y1 , y 2 ≥ 0 (4)
运筹学教程
第二章习题解答
2.1 写出下列线性规划问题的对偶问题。 写出下列线性规划问题的对偶问题。
min Z = 2 x1 + 2 x 2 + 4 x 3 x1 + 3 x 2 + 4 x 3 ≥ 2 2 x + x + 3x ≤ 3 2 3 st 1 x1 + 4 x 2 + 3 x 3 = 5 x1 , x 2 , ≥ 0 , x 3 无约束
School of Management
运筹学教程
第二章习题解答
max Z = 5 x1 + 6 x2 + 3 x3 x1 + 2 x2 + 2 x3 = 5 − x + 5 x − 3 x ≥ 3 2 3 st 1 4 x1 + 7 x2 + 3 x3 ≤ 8 x1无约束 , x2 , ≥ 0, x3 ≤ 0
应用多元统计分析课后习题答案详解北大高惠璇(第二章部分习题解答)

P { X 2 x } P { X 1 x } ( x )
当x≥1时, P{X2x}
P{X2 1}P{1X2 1}P{1X2 x}
P{X11}P{1X11}P{1X1x}
P{X1x}(x) . 17
第二章 多元正态分布及参数的估计
当-1≤x≤1时,
P{X2 x}P{X2 1}P{1X2 x} P{X1 1}P{xX1 1} P{X1 1}P{1X1 x} P{X1 x}(x)
1lili(x) b 2
i 1 i
p
i1
1
i
yi2ห้องสมุดไป่ตู้
b2
.
21
第二章 多元正态分布及参数的估计
y1b122y2b222ypb2 p2 1
故概率密度等高面 f(x;μ,Σ)= a是一个椭球面.
(2)当p=2且
2
1
1
(ρ>0)时,
||4(12).
由 |Ip|22 22(2)242
(22)(22)0
2
1
1
(ρ>0)时,
概率密度等高面就是平面上的一个椭圆,试求该椭圆
的方程式,长轴和短轴.
证f( 明x ; (1), :任 ) 给 a>a 0 ,记a ( 0x (2)) p/ 2| 1 ( |1/x 2, 当 ) 0a b a12 0时
其 b 2 2 中 la n ( 2 ) p / [ 2 . | |1 / 2 ] 2 la n 0 ] 0 a [ ,20
所以 X(1)X(2)~Np((1)(2),2(12)); X(1)X(2) ~Np((1)(2),2(12)).
注意:由D(X)≥0,可知 (Σ1-Σ2) ≥0.
. 8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 谓词逻辑习题与解答⒈ 将下列命题符号化:⑴ 所有的火车都比某些汽车快。
⑵ 任何金属都可以溶解在某种液体中。
⑶ 至少有一种金属可以溶解在所有液体中。
⑷ 每个人都有自己喜欢的职业。
⑸ 有些职业是所有的人都喜欢的。
解 ⑴ 取论域为所有交通工具的集合。
令x x T :)(是火车, x x C :)(是汽车, x y x F :),(比y 跑得快。
“所有的火车都比某些汽车快”可以符号化为))),()(()((y x F y C y x T x ∧∃→∀。
⑵ 取论域为所有物质的集合。
令x x M :)(是金属, x x L :)(是液体, x y x D :),(可以溶解在y 中。
“任何金属都可以溶解在某种液体中” 可以符号化为))),()(()((y x D y L y x M x ∧∃→∀。
⑶ 论域与谓词与(2)同。
“至少有一种金属可以溶解在所有液体中” 可以符号化为))),()(()((y x D y L y x M x →∀∧∃。
⑷ 取论域为所有事物的集合。
令x x M :)(是人, x x J :)(是职业, x y x L :),(喜欢y 。
“每个人都有自己喜欢的职业” 可以符号化为))),()(()((y x L y J y x M x ∧∃→∀⑸论域与谓词与(4)同。
“有些职业是所有的人都喜欢的”可以符号化为))),()(()((x y L y M y x J x →∀∧∃。
⒉ 取论域为正整数集,用函数+(加法),∙(乘法)和谓词<,=将下列命题符号化:⑴ 没有既是奇数,又是偶数的正整数。
⑵ 任何两个正整数都有最小公倍数。
⑶ 没有最大的素数。
⑷ 并非所有的素数都不是偶数。
解 先引进一些谓词如下:x y x D :),(能被y 整除,),(y x D 可表示为)(y x v v =∙∃。
x x J :)(是奇数,)(x J 可表示为)2(x v v =∙⌝∃。
x x E :)(是偶数,)(x E 可表示为)2(x v v =∙∃。
x x P :)(是素数,)(x P 可表示为)1)(()1(x u u x u v v u x =∨=↔=∙∃∀∧=⌝。
⑴ “没有既是奇数,又是偶数的正整数”可表示为))()((x E x J x ∧⌝∃,并可进一步符号化为))2()2((x v v x v v x =∙∃∧=∙⌝∃⌝∃。
⑵ “任何两个正整数都有最小公倍数”可表示为))),(),((),(),((u z u z y u D x u D u y z D x z D z y x =∨<→∧∀∧∧∃∀∀,并可进一步符号化为)))()(()()((u z u z u y v v u x v v u z y v v z x v v z y x =∨<→=∙∃∧=∙∃∀∧=∙∃∧=∙∃∃∀∀⑶ “没有最大的素数”可表示为)))(()((x y x y y P y x P x =∨<→∀∧⌝∃,并可进一步符号化为)1)(()1(()1)(()1((y y u u y u v v u y y x u u x u v v u x x <→=∨=↔=∙∃∀∧=⌝∀∧=∨=↔=∙∃∀∧=⌝⌝∃⑷ “并非所有的素数都不是偶数”可表示为))()((x E x P x ⌝→⌝∀,并可进一步符号化为))2()(()1((x v v x u v v u x x =∙⌝∃→=∙∃∀∧=⌝⌝∀⒊ 取论域为实数集合,用函数+,-(减法)和谓词<,=将下列命题符号化:⑴ 没有最大的实数。
⑵ 任何两不同的实数之间必有另一实数。
⑶ 函数)(x f 在点a 处连续。
⑷ 函数)(x f 恰有一个根。
⑸ 函数)(x f 是严格单调递增函数。
解 ⑴ “没有最大的实数”符号化为)(x y x y y x =∨<∀⌝∃。
⑵ “任何两不同的实数之间必有另一实数”符号化为))((y z z x z y x y x <∧<∃→<∀∀。
⑶“函数)(x f 在点a 处连续”的定义是:任给0>ε,总可以找到0>δ,使得只要δ<-||a x 就有ε<-|)()(|a f x f 。
“函数)(x f 在点a 处连续”符号化为))))()()()((0(0(εεδδδδεε+<∧<-→+<∧<-∀∧<∃→<∀a f x f x f a f a x x a x⑷ “函数)(x f 恰有一个根”符号化为))0)((0)((x y y f y x f x =→=∀∧=∃。
⑸ “函数)(x f 是严格单调递增函数”符号化为))()((y f x f y x y x <→<∀∀。
⒋ 指出下列公式中变元的约束出现和自由出现,并对量词的每次出现指出其辖域。
(1) )),(),((a x P x y P x →∀(2) ),()(y x zQ x xP ∀→∀(3) )()())()((x Q x xP x R x P x ∧∀→∧∀(4) ))),(,()),,(((y x g z xP x y x f P y ∀→∀(5) )())()()((x R x xR x Q x P x ∧∃∧→∀5. 归纳证明:若t ,t '是项,则x t t '也是项。
证明 ① 若t 是x ,则x t t '是t ',x t t '是项。
② 若t 是不同于x 的变元y ,则x t t '仍是y ,x t t '是项。
③若t 是常元a ,则x t t '仍是a ,x t t '是项。
④若t 是),,(1n t t f ,则x t t '是))(,,)((1x t n x t t t f '' ,由归纳假设知x t n x t t t '')(,,)(1 都是项,所以x t t '是项。
6. 归纳证明:若t 是项,A 是公式,则x t A 也是公式。
证明 ①若A 是),,(1n t t P ,则x t A 是))(,,)((1x t n x t t t P ,由上题知x t n x t t t )(,,)(1 都是项,所以x t A 是公式。
②若A 是B ⌝,则x t A 是x t B ⌝,由归纳假设知x t B 是公式,所以x t A 是公式。
③若A 是C B →,则x t A 是x t x t C B →,由归纳假设知x t B 和x t C 都是公式,所以x t A 是公式。
④若A 是xB ∀,则x t A 仍是A ,x t A 是公式。
⑤若A 是yB ∀,其中y 是不同于x 的变元,则x t A 是x t yB ∀,由归纳假设知x t B 是公式,所以x t A 是公式。
7. 给定解释I 和I 中赋值v 如下:}2,1{=I D ,1=I a ,2=I b ,2)1(=I f ,1)2(=I f1)2,1()1,1(==I I P P ,0)2,2()1,2(==I I P P ,1)(=x v ,1)(=y v计算下列公式在解释I ,赋值v 下的真值。
(1) )),(())(,())(,(x y f P b f x P x f a P ∧∧(2) ),(x y yP x ∃∀(3) )))(),((),((y f x f P y x P y x →∀∀解 (1))))(),(())(,())(,((v x y f P b f x P x f a P I ∧∧))()),((())(),(()))((,(x v y v f P b f x v P x v f a P I I I I I I I I ∧∧=)1),1(())2(,1())1(,1(I I I I I I f P f P f P ∧∧=0011)1,2()1,1()2,1(=∧∧=∧∧=I I I P P P (2))))(,((v x y yP x I ∃∀])2/[))(,((])1/[))(,((x v x y yP I x v x y yP I ∃∧∃=]))2/][1/[))(,((])1/][1/[))(,(((y x v x y P I y x v x y P I ∨=]))2/][2/[))(,((])1/][2/[))(,(((y x v x y P I y x v x y P I ∨∧))2,2()2,1(())1,2()1,1((I I I I P P P P ∨∧∨= 1)01()01(=∨∧∨=(3) )))))((),((),(((v y f x f P y x P y x I →∀∀)))2(,)1(()2,1(()))1(,)1(()1,1((I I I I I I I I f f P P f f P P →∧→=)))2(,)2(()2,2(()))1(,)2(()1,2((I I I I I I I I f f P P f f P P →∧→∧))1,1()2,2(())2,1()1,2(())1,2()2,1(())2,2()1,1((I I I I I I I I P P P P P P P P →∧→∧→∧→=01100)10()10()01()01(=∧∧∧=→∧→∧→∧→=7. 给定解释I 如下:},{b a D I =, 1),(),(==b b P a a P I I , 0),(),(==a b P b a P I I判断I 是不是以下语句的模型。
(1) ),(y x yP x ∃∀(2) ),(y x yP x ∀∀(3) ),(y x yP x ∀∃(4) ),(y x P y x ⌝∃∃(5) )),(),((x y P y x P y x →∀∀(6)),(x x xP ∀解 (1) )),((y x yP x I ∃∀1)10()01()),(),(()),(),((=∨∧∨=∨∧∨=b b P a b P b a P a a P I I I I(2) )),((y x yP x I ∀∀01001),(),(),(),(=∧∧∧=∧∧∧=b b P a b P b a P a a P I I I I(3) )),((y x yP x I ∀∃0)10()01()),(),(()),(),((=∧∨∧=∧∨∧=b b P a b P b a P a a P I I I I(4) )),((y x P y x I ⌝∃∃10110),(),(),(),(=∨∨∨=⌝∨⌝∨⌝∨⌝=b b P a b P b a P a a P I I I I(5) ))),(),(((x y P y x P y x I →∀∀)),(),(()),(),((a b P b a P a a P a a P I I I I →∧→=)),(),(()),(),((b b P b b P b a P a b P I I I I →∧→∧1)11()00()00()11(=→∧→∧→∧→=(6) 111),(),()),((=∧=∧=∀b b P a a P x x xP I I I9.写出一个语句A ,使得A 有模型,并且A 的每个模型的论域至少有三个元素。