最新七年级数学第二章经典题型汇总
初一数学第二章练习题

初一数学第二章练习题一、选择题(每题3分,共30分)1. 下列哪个选项是偶数?A. 3B. 5C. 2D. 72. 一个数的相反数是它本身的数是:A. 0B. 1C. -1D. 23. 若a > 0,则下列哪个选项是正确的?A. a + (-a) = 0B. a - (-a) = 2aC. a × (-a) = -a²D. a ÷ (-a) = -14. 计算下列哪个表达式的结果为正数?A. (-3) × (-2)B. (-3) × 2C. 3 × (-2)D. (-3) ÷ (-2)5. 一个数的绝对值是它本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或0D. 可以是负数或06. 一个数的绝对值是它相反数的2倍,这个数是:A. 1B. -2C. 2D. 07. 计算下列哪个表达式的结果为负数?A. (-3) + 4B. 3 + (-4)C. (-3) - 4D. 3 - (-4)8. 一个数的倒数是它本身,这个数是:A. 1B. -1C. 0D. 不存在9. 计算下列哪个表达式的结果为0?A. 0 + 5B. 0 - 5C. 5 - 5D. 5 × 010. 一个数的平方是它本身,这个数是:A. 1B. -1C. 0D. 1或-1二、填空题(每题4分,共20分)1. 一个数的绝对值是5,这个数可以是______或______。
2. 一个数的相反数是-4,这个数是______。
3. 一个数的倒数是1/2,这个数是______。
4. 计算表达式(-2) × (-3)的结果是______。
5. 计算表达式(-5) + (-3)的结果是______。
三、解答题(每题10分,共50分)1. 计算并简化下列表达式:5 + (-3) + 2 + (-6)。
2. 计算并简化下列表达式:(-4) × 3 ÷ (-2)。
人教版-七年级上册-数学-第二章-整式-的加减知识点-例题-练习题-(含答案)

七年级上册第二章整式知识点例题(含答案)第一部分:知识点与例题一.整式1.单项式:都是数字或者字母的积(单独一个数字或字母也是单项式)①单项式中的数字因数叫做这个单项式的系数②一个单项式中,所有字母的指数的和叫做这个单项式的指数。
如:10x2y3z4的指数为9,叫做九次单项式2.多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的叫做常数项;多项式里最高项的次数叫做这个多项式的项。
(这个要与单项式区分开)如:x2+x+3这个多项式有三个项,分别为x2,x和常数项3,最高次是2,所以它是一个二次三项式。
3.单项式与多项式统称整数、二.整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项,如2xy2与3 xy2是同类项练习:2xy n-2与4x m+3y2是同类项,则n=,m=2.把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
3.去括号后要注意的点:①如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同②如果括号外面的因数是负数,去括号后原括号内各项的符号与原来的符号相反4.一般地,几个整式相加减,如果有括号的要先去括号,然后再合并同类项例:(1)合并下面各式的同类项① x+y-4(x-y)② 5ab+3a2-4b2-(6b2+a2-3ab)(2)①求多项式(-x2+5+4x)-(5x-4+2x2)的值,其中x=3②求多项式13x-4(x2-12y2)+(-23x+y2)的值,其中x=-1,y=125. 设方程解决问题:(重点,难点)(1)一条河流的水流速度是2.5km/h,如果已知船在静水中的速度,则船在这条河流中顺水行驶和逆水行驶的速度分别要怎么表示?如果甲,乙两船在静水中的速度分别为20 km/h和35 km/h时,则它们在这条河流中顺水的速度和逆水的速度分别是多少km/h?练习:一种商品每件成本a元,按成本增加20%定出价格,每件售价多少元?后来因库存积压减价,按原价的85%出售,现售价多少钱?每件还能盈利多少元?(2)某村小麦种植的面积是a公顷,水稻种植面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积少5公顷,列式表示水稻,玉米种植面积,并计算水稻种植面积比玉米种植面积大多少?(3)一架飞机无风时的航速为a km/h,风速为20 km/h,从甲地飞到乙地用了3小时,从乙地飞往甲地用了4小时,求飞机的航速a?(4)礼堂第一排有a个座位,后面每排都比前一排多一个座位,第二排有多少个座位?第三排呢?用m表示n排的座位数,m是多少?当a=20,n=19时,m是多少?第二部分:练习题教师用卷:一、精心选一选1、如果与823x y 是同类项,则代数式的值为(C )A 、0B 、-1C 、+1D 、±12、如果2222324,45M x xy y N x xy y =--=+-,则2281315x xy y --等于(D )A 、2M-NB 、2M-3NC 、3M-2ND 、4M-N3、如果22x x -+的值为7,则的值为(A )A 、52B 、32C 、152D 、答案不惟一4、如果2a b -=,3c a -=,则()()234b c b c ---+的值为(C )A 、14B 、2C 、44D 、不能确定5、的值是(C )A 、±3B 、±1C 、±1或±3D 、不能确定6、商场七月份售出一种新款书包a 只,每只b 元,营业额c 元,八月份采取促销活动,优惠广大学子,售出该款书包3a 只,每只打八折,则八月份该款书包的营业额比七月份增加(B )A 、1.4c 元B 、2.4c 元C 、3.4c 元D 、4.4c 元7、一件工作,甲单独做x 天完成,乙单独做y 天完成。
(必考题)初中七年级数学上册第二章《整式的加减》经典测试(含答案解析)

1.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A .5次B .6次C .7次D .8次C解析:C【分析】 首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次. 故选C .此题考查数字的规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般.2.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且 32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、 2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004- C解析:C【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答.【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2;即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A = 所以点A 2008表示的数为: 2008÷2= 1004A 2009表示的数为:- (2009+1) ÷2=-1005故选: C .【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律.3.下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差C解析:C【分析】根据代数式的意义,可得答案.【详解】 用数学语言叙述代数式1a ﹣b 为a 的倒数与b 的差, 故选:C .【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.4.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 5.化简2a -[3b -5a -(2a -7b )]的值为( )A .9a -10bB .5a +4bC .-a -4bD .-7a +10b A解析:A【解析】 2a -[3b -5a -(2a -7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b ,故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.6.下列各代数式中,不是单项式的是( )A .2m -B .23xy -C .0D .2tD 解析:D【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【详解】 A 选项,2m -是单项式,不合题意;B 选项,23xy -是单项式,不合题意;C 选项,0是单项式,不合题意;D 选项,2t不是单项式,符合题意. 故选D .【点睛】 本题考查单项式的定义,较为简单,要准确掌握定义.7.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a A解析:A【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:根据题意得:b <a <0,且|a |<|b |,∴a -b >0,a +b <0,∴原式=a -b -a -b =-2b .故选:A .【点睛】此题主要考查了数轴以及绝对值,熟练掌握绝对值的性质是解本题的关键.8.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.9.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .32A 解析:A【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值.【详解】 ∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期∵2020÷3=673⋯⋯1,∴202012a a ==-故选:A.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.10.下面去括号正确的是( )A .2()2y x y y x y +--=+-B .2(35)610a a a a --=-+C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+ B解析:B【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误;故选:B【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.11.下列判断中错误的个数有( ) (1)23a bc 与2bca -不是同类项; (2)25m n 不是整式; (3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个B解析:B【分析】 根据同类项概念和单项式的系数以及多项式的次数的概念分析判断.【详解】解:(1)23a bc 与2bca -是同类项,故错误;(2)25m n 是整式,故错; (3)单项式-x 3y 2的系数是-1,正确;(4)3x 2-y+5xy 2是3次3项式,故错误.故选:B .【点睛】本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.12.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方B .a 与b 的差的平方的倒数C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差D解析:D【分析】 说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【详解】 解:代数式21a b-的正确解释是a 的平方与b 的倒数的差. 故选:D.【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.13.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + A 解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.14.如图是按照一定规律画出的“树形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”……照此规律,图A 6比图A 2多出“树枝”( )A .32个B .56个C .60个D .64个C解析:C【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可.【详解】∵图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”,…,∴图形从第2个开始后一个与前一个的差依次是:2, 22,…, 12n -.∴第5个树枝为15+42=31,第6个树枝为:31+52=63,∴第(6)个图比第(2)个图多63−3=60个故答案为C【点睛】此题考查图形的变化类,解题关键在于找出其规律型.15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 1.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m 的值应是_______. 184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积且左上左下右上三个数是相邻的奇数据此解答【详解】由前面数字关系:135;357;579可得最后一个三个数分别为:11解析:184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的奇数.据此解答.【详解】由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,3×5-1=14;5×7-3=32;7×9-5=58;由于左上的数是11,则左下角的是13,右上角的是15,∴m=13×15-11=184.故答案为:184.【点睛】本题考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m 的值.2.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n时,最多可有的交点数m 与直线条数n之间的关系式为:m=_____.(用含n的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n条直线相交最多有1+2+3+…+(n-1)=个解析:()12 n n-【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.3.观察下列图形它们是按一定规律排列的,依照此规律,第20个图形共有________________ 个★.【分析】由排列组成的图形都是三角形找出规律即可求出答案【详解】解:根据规律可知:第一个图形中有1×3=3个★第二个图形中有2×3=6个★第三个图形中有3×3=9个★…第n个图形有3n个★∴第20个图解析:60【分析】由排列组成的图形都是三角形,找出规律,即可求出答案.【详解】解:根据规律可知:第一个图形中有1×3=3个★,第二个图形中有2×3=6个★,第三个图形中有3×3=9个★,…第n 个图形有3n 个★,∴第20个图形共有20×3=60个★.故答案为:60.【点睛】解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.本题的关键规律为第n 个图形有3n 个★.4.用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b + (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b +%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -. 【点睛】本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.5.观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.6.如图:矩形花园ABCD 中,,AB a AD b ==,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .若LM RS c ==,则花园中可绿化部分的面积为______.【分析】由长方形的面积减去PQLM 与RKTS 的面积再加上重叠部分面积即可得到结果【详解】S 矩形ABCD=AB•AD=abS 道路面积=ca+cb-c2所以可绿化面积=S 矩形ABCD-S 道路面积=ab-解析:2ab bc ac c --+【分析】由长方形的面积减去PQLM 与RKTS 的面积,再加上重叠部分面积即可得到结果.【详解】S 矩形ABCD =AB•AD=ab ,S 道路面积=ca+cb-c 2,所以可绿化面积=S 矩形ABCD -S 道路面积=ab-(ca+cb-c 2),=ab-ca-cb+c 2.故答案为:ab-bc-ac+c 2.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.7.已知5a b -=,3c d +=,则()()b c a d +--的值等于______.-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子然后代入求值即可【详解】故答案为:-2【点睛】本题考查了整式的化简求值把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键解析:-2【分析】把原式去括号转化为含有(a -b )和(c +d )的式子,然后代入求值即可.【详解】()()()()532b c a d b c a d b a c d +--=+-+=-++=-+=-.故答案为:-2.【点睛】本题考查了整式的化简求值,把原式转化为含有(a -b )和(c +d )的式子是解决此题的关键. 8.在x y +,0,21>,2a b -,210x +=中,代数式有______个.3【分析】代数式是指把数或表示数的字母用+-×÷连接起来的式子而对于带有=><等数量关系的式子则不是代数式【详解】解:是不等式不是代数式;是方程不是代数式;0是代数式共3个故答案是:3【点睛】本题考解析:3【分析】代数式是指把数或表示数的字母用+、-、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.【详解】解:21>是不等式,不是代数式;210x +=是方程,不是代数式;x y +,0,,2a b -,是代数式,共3个.故答案是:3.【点睛】本题考查了代数式的定义,理解定义是关键.9.用棋子按下列方式摆图形,依照此规律,第n 个图形比第()1n -个图形多______枚棋子. …第1个 第2个 第3个【分析】归纳总结找出第n 个图形与第(n-1)个图形中的棋子数相减即可得到结果【详解】解:第1个图形棋子的个数:1;第2个图形1+4;第3个图形1+4+7;第4个图形1+4+7+10;…第n 个图形1+ 解析:32n -【分析】归纳总结找出第n 个图形与第(n-1)个图形中的棋子数,相减即可得到结果.【详解】解:第1个图形棋子的个数:1;第2个图形,1+4;第3个图形,1+4+7;第4个图形,1+4+7+10;…第n 个图形,1+4+7+…+(3n -2);则第n 个图形比第(n-1)个图形多(3n-2)枚棋子.故答案为:3n-2【点睛】此题主要考查了图形的变化类问题,同时还考查了学生通过特例分析从而归纳总结出一般结论的能力.10.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找 解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案.【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的.11.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m +n+p =_________; 4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法. 1.计算:7ab-3a 2b 2+7+8ab 2+3a 2b 2-3-7ab .解析:8ab 2+4.【分析】原式合并同类项即可得到结果.【详解】原式=(7﹣7)ab +(﹣3+3)a 2b 2+8ab 2+(7﹣3)=8ab 2+4.【点睛】本题考查了合并同类项得法则.即系数相加作为系数,字母和字母的指数不变.2.已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4【分析】 根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2, ∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.3.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a 2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a 元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a )×90%-(a+a+12a ) =2.7a-2.5a=0.2a (元),则乙旅行社收费比甲旅行社贵0.2a 元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.4.观察下列等式.第1个等式:a 1=113⨯=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=135⨯=12×1135⎛⎫- ⎪⎝⎭;第3个等式:a 3=157⨯=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=179⨯=12×1179⎛⎫- ⎪⎝⎭; … 请解答下列问题.(1)按以上规律列出第5个等式:a 5=____=____;(2)求a 1+a 2+a 3+a 4+…+a 100的值.解析:(1)1911⨯;12×11911⎛⎫- ⎪⎝⎭;(2)100201. 【分析】(1)根据连续奇数乘积的倒数等于这两个奇数的倒数差的一半列式可得;(2)根据以上所得规律列式111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再进一步计算可得. 【详解】(1)由观察知, 左边:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1,右边:这两个奇数的倒数差的一半,∴第5个式子是:()()111115215219112911⎛⎫==⨯- ⎪⨯-⨯-⨯⎝⎭; 故答案为:1911⨯;12×11911⎛⎫- ⎪⎝⎭; (2)a 1+a 2+a 3+a 4+…+a 100 111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 111111111233557199201⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111111111233557199201⎛⎫=⨯-+-+-++- ⎪⎝⎭1112201⎛⎫=⨯- ⎪⎝⎭ 12002201=⨯ 100201=. 【点睛】本题主要考查了数字的变化规律,解题的关键是根据已知等式得出规律:连续奇数乘积的倒数等于这两个奇数的倒数差的一半.。
鞍山市七年级数学上册第二章《整式的加减》经典题(培优专题)(1)

1.代数式x2﹣1y的正确解释是()A.x与y的倒数的差的平方B.x的平方与y的倒数的差C.x的平方与y的差的倒数D.x与y的差的平方的倒数B 解析:B【分析】根据代数式的意义,可得答案.【详解】解:代数式x2﹣1y的正确解释是x的平方与y的倒数的差,故选:B.【点睛】本题考查了代数式,理解题意(代数式的意义)是解题关键.2.与(-b)-(-a)相等的式子是( )A.(+b)-(-a) B.(-b)+aC.(-b)+(-a) D.(-b)-(+a)B解析:B【分析】将各选项去括号,然后与所给代数式比较即可﹒【详解】解: (-b)-(-a)=-b+aA. (+b)-(-a)=b+a;B. (-b)+a=-b+a;C. (-b)+(-a)=-b-a;D. (-b)-(+a)=-b-a;故与(-b)-(-a)相等的式子是:(-b)+a﹒故选:B﹒【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒3.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n 个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.4.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数D 解析:D【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可.【详解】A 、根据“单价×数量=总价”可知3a 表示买a kg 葡萄的金额,此选项不符合题意;B 、由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;C 、由“售价=进价+利润”得售价为1.5a 元,则2×1.5a =3a (元),此选项不符合题意;D 、由题可知,这个两位数用字母表示为10×3+a =30+a ,此选项符合题意.故选:D .【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.5.已知132n x y 与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .5B解析:B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4,解得,n=3,故选:B.【点睛】 本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.6.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .11A解析:A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.7.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.8.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( )A .2B .﹣2C .3D .﹣3D 解析:D【分析】先将多项式合并同类型,由不含x 的二次项可列【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,∴6+2m=0,解得m =﹣3,故选:D .【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.9.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 10.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-2A 解析:A【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解.【详解】解:∵BC=2,C 点所表示的数为x ,∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数,∴A 点所表示的数是-(x-2),即-x+2.故选:A .【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.11.下列关于多项式21ab a b --的说法中,正确的是( )A .该多项式的次数是2B .该多项式是三次三项式C .该多项式的常数项是1D .该多项式的二次项系数是1-B 解析:B【分析】直接利用多项式的相关定义进而分析得出答案.【详解】A 、多项式21ab a b --次数是3,错误;B 、该多项式是三次三项式,正确;C 、常数项是-1,错误;D 、该多项式的二次项系数是1,错误;故选:B .【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键.12.式子5x x-是( ). A .一次二项式B .二次二项式C .代数式D .都不是C 解析:C根据代数式以及整式的定义即可作出判断.【详解】 式子5x x-分母中含有未知数,因而不是整式,故A 、B 错误,是代数式,故C 正确. 故选:C .【点睛】 本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.13.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-23020302222a b a b a b a a b a a b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b )=10b-10a+15a-15b=5a-5b ,则这次买卖中,张师傅赚5(a-b )元.故选C .【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.14.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.故选C .【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键. 15.多项式33x y xy +-是( )A .三次三项式B .四次二项式C .三次二项式D .四次三项式D 解析:D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D .【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关1.观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.【分析】分别从单项式的系数与次数两方面总结即可得出规律进而可得答案【详解】解:由已知单项式的排列规律可得第n 个单项式为:故答案为:【点睛】本题考查了单项式的规律探求通过所给的单项式找到规律并能准确的解析:(2)n n x -【分析】分别从单项式的系数与次数两方面总结即可得出规律,进而可得答案.【详解】解:由已知单项式的排列规律可得第n 个单项式为:(2)n nx -.故答案为:(2)n n x -.【点睛】本题考查了单项式的规律探求,通过所给的单项式找到规律,并能准确的用代数式表示是解题的关键.2.请观察下列等式的规律: 111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭,1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, …则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101【解析】试题1111++++13355799101⨯⨯⨯⨯ =111111111111)()()()23235257299101-+-+-++-( =111111111++)23355799101---++-(=111)2101-( =11002101⨯ =50101. 3.m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.0【解析】由题意m+n=0所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0【解析】由题意m+n=0,所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.4.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n个图形有6n+2根火柴棒解析:6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n个图形有6n+2根火柴棒.5.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+3×209=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律.6.将一个正方形纸片剪成如图中的四个小正方形,用同样的方法,每个小正方形又被剪成四个更小的正方形,这样连续5次后共得到______个小正方形.1024【分析】先写出前3次分割得到的正方形的个数找到规律即可得出答案【详解】由图可知分割1次得到正方形的个数为4;分割2次得到正方形的个数为个;分割3次得到正方形的个数为个;…以此类推分割5次得到解析:1024【分析】先写出前3次分割得到的正方形的个数,找到规律即可得出答案.【详解】由图可知分割1次得到正方形的个数为4;16=4个;分割2次得到正方形的个数为264=4个;分割3次得到正方形的个数为3…以此类推,分割5次得到正方形的个数为:54=1024个,故答案为:1024.【点睛】本题考查了图形规律题,仔细观察图形找到规律是解题的关键.y=,则输入的数x=________________.7.在如图所示的运算流程中,若输出的数3或【分析】由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x的值而得出结论【详解】解:由题意得当输入的数x是偶数时则y=x当解析:5或6【分析】由运算流程可以得出有两种情况,当输入的x为偶数时就有y=12x,当输入的x为奇数就有y=12(x+1),把y=3分别代入解析式就可以求出x的值而得出结论.【详解】解:由题意,得当输入的数x是偶数时,则y=12x,当输入的x为奇数时,则y=12(x+1).当y=3时,∴3=12x或3=12(x+1).∴x=6或5故答案为:5或6【点睛】本题考查了有理数的混合运算,解答此题的关键是,根据流程图,列出方程,解方程即可得出答案.8.计算7a2b﹣5ba2=_____.2a2b【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a2b【分析】根据合并同类项法则化简即可.【详解】()22227a b5ba=75a b=2a b﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.9.已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a、b、c、d.若|a﹣c|=10,|a﹣d|=12,|b﹣d|=9,则|b﹣c|=___.7【分析】根据数轴和题目中的式子可以求得c﹣b的值从而可以求得|b﹣c|的值【详解】∵|a﹣c|=10|a﹣d|=12|b﹣d|=9∴c﹣a=10d﹣a=12d﹣b=9∴(c﹣a)﹣(d﹣a)+(d解析:7【分析】根据数轴和题目中的式子可以求得c﹣b的值,从而可以求得|b﹣c|的值.【详解】∵|a﹣c|=10,|a﹣d|=12,|b﹣d|=9,∴c﹣a=10,d﹣a=12,d﹣b=9,∴(c ﹣a )﹣(d ﹣a )+(d ﹣b )=c ﹣a ﹣d +a +d ﹣b=c ﹣b=10﹣12+9=7.∵|b ﹣c |=c ﹣b ,∴|b ﹣c |=7.故答案为:7.【点睛】本题考查了数轴、绝对值以及整式的加减,解答本题的关键是明确数轴的特点,可以将绝对值符号去掉,求出相应的式子的值.10.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.11.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍.设第一堆原有a 个棋子,第二堆原有______个棋子.【分析】根据题意可得第二堆现在的棋子数是2(a-2)因此原来的棋子数为2(a-2)-2【详解】解:由题意可得:现在第二堆有2(a-2)个棋子因此原来第二堆有2(a-2)-2=2a-6个棋子故答案为:解析:()26a -【分析】根据题意可得第二堆现在的棋子数是2(a -2),因此原来的棋子数为2(a -2)-2.【详解】解:由题意可得:现在第二堆有2(a -2)个棋子,因此原来第二堆有2(a -2)-2=2a -6个棋子.故答案为:(2a -6).【点睛】本题考查了整式加减的应用,根据题意列出代数式是解决此题的关键.1.有一长方体形状的物体,它的长,宽,高分别为a ,b ,c(a>b>c),有三种不同的捆扎方式(如图所示的虚线).哪种方式用绳最少?哪种方式用绳最多?说明理由.解析:方式甲用绳最少,方式丙用绳最多.【解析】试题分析:根据长方形的对称性分别得到三种方式所需要的绳子的长度,然后将这三个代数式进行作差比较大小.试题方式甲所用绳长为4a +4b +8c ,方式乙所用绳长为4a +6b +6c ,方式丙所用绳长为6a +6b +4c ,因为a>b>c ,所以方式乙比方式甲多用绳(4a +6b +6c)-(4a +4b +8c)=2b -2c ,方式丙比方式乙多用绳(6a +6b +4c)-(4a +6b +6c)=2a -2c.因此,方式甲用绳最少,方式丙用绳最多.2.已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n )2017的值.解析:-1【分析】先把多项式进行合并同类项得(n-3)x 2+(m-1)x+3,由于关于字母x 的二次多项式-3x 2+mx+nx 2-x+3的值与x 无关,即不含x 的项,所以n-3=0,m-1=0,然后解出m 、n ,代入计算(2m-n )2017的值即可.【详解】合并同类项得(n ﹣3)x 2+(m ﹣1)x+3,根据题意得n ﹣3=0,m ﹣1=0,解得m=1,n=3,所以(2m ﹣n )2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数. 3.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a 2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a 元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a )×90%-(a+a+12a ) =2.7a-2.5a=0.2a (元),则乙旅行社收费比甲旅行社贵0.2a 元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.4.观察下列单项式:﹣x ,2x 2,﹣3x 3,…,﹣9x 9,10x 10,…从中我们可以发现: (1)系数的规律有两条:系数的符号规律是系数的绝对值规律是(2)次数的规律是(3)根据上面的归纳,可以猜想出第n 个单项式是 .解析:(1)奇数项为负,偶数项为正;与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx - 【分析】通过观察题意可得:奇数项的系数为负,偶数项的系数为正,且系数的绝对值与自然数序号相同,次数也与与自然数序号相同.由此可解出本题.【详解】(1)奇数项为负,偶数项为正,与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx -.【点睛】本题考查了单项式的有关概念.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.。
七年级数学上册第二章整式的加减知识总结例题

(名师选题)七年级数学上册第二章整式的加减知识总结例题单选题1、如果单项式−3x a+3y2与2xy b−3能合并成一项,那么ab的结果为()A.10B.−10C.−12D.12答案:B分析:根据两式能合并为一项,得到两式为同类项,求出a与b的值,原式合并后代入计算即可求出值.解:∵单项式−3x a+3y2与2xy b−3能合并成一项∴a+3=1,b-3=2,解得:a=-2,b=5,∴ab=-2×5=-10,故选:B.小提示:此题考查了整式的加减-化简求值,以及同类项,熟练掌握运算法则是解本题的关键.2、小李今年a岁,小王今年(a-15)岁,过n+1年后,他们相差()岁A.15B.n+1C.n+16D.16答案:A分析:用大李今年的年龄减去小王今年的年龄,即可求出两人的年龄差,再根据年龄差不会随着时间的变化而改变,由此即可确定再过n+1年后,大李和小王的年龄差仍然不变.解:a﹣(a﹣15)=15(岁)答:他们相差15岁.故选:A.小提示:此题考查了列代数式及年龄问题,要注意:两个人的年龄差是一个永远也不变的数值.3、按一定规律排列的单项式:2x,-3x2,4x3,-5x4,6x5,-7x6,…第n个单项式是()A.(n+1)x n B.−(n+1)x n C.(−1)n(n+1)x n D.(−1)n+1(n+1)x n答案:D分析:通过观察题意可得:奇数项的系数为正,偶数项的系数为负,且系数的绝对值是从2开始的连续整数,次数是连续整数,由此可解出本题.解:第1个单项式是2x=(-1)1+1(1+1)x1,第2个单项式是-3x2=(-1)2+1(1+2)x2,第3个单项式是4x3=(-1)3+1(1+3)x3,•••,第n个单项式是(-1)n+1(n+1)xn.故选:D.小提示:本题考查单项式规律题,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.4、下列各选项中,不是同类项的是()A.3a2b和−5ba2B.12x2y和12xy2C.6和23D.5x n和−3x n4答案:B分析:根据同类项的概念求解即可.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.解:A、3a2b和−5ba2是同类项,不符合题意;B、12x2y和12xy2不是同类项,符合题意;C、6和23是同类项,不符合题意;D、5x n和−3x n4是同类项,不符合题意.故选:B.小提示:此题考查了同类项的概念,解题的关键是熟练掌握同类项的概念.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.5、下列各组数中,是同类项的是()A.−2x2y与13yx2B.−0.5xy2与0.5x2y C.xyz与xyc D.3x与2y答案:A分析:根据同类项的概念求解.解:A.−2x2y与13yx2,字母相同,相同字母的指数也相同,是同类项,符合题意;B.−0.5xy2与0.5x2y,字母相同,相同字母的指数不相同,不是同类项不符合题意;C.xyz与xyc,字母不同,不是同类项,不符合题意;D. 3x与2y,字母不同,不是同类项,不符合题意;故选A.小提示:本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.6、将正整数按如图所示的规律排列,若用有序数对(a,b)表示第a行,从左至右第b个数,例如(4,3)表示的数是9,则(15,10)表示的数是()A.115B.114C.113D.112答案:A分析:观察图形可知,每一行的第一个数字都等于前面数字的个数再加1,即可得出(15,1)表示的数,然后得出(15,10)表示的数即可.解:因为(1,1)表示的数是:1,(2,1)表示的数是:1+1=2,(3,1)表示的数是:1+1+2=4,(4,1)表示的数是:1+1+2+3=7,(5,1)表示的数是:1+1+2+3+4=11,……所以(a,1)表示的数是:1+1+2+3+4+⋯…+(a−1)=1+[1+(a−1)](a−1)2=1+a(a−1)2=a2−a+22,所以(15,1)表示的数是:a 2−a+22=152−15+22=106,所以(15,10)表示的数是:106+10-1=115,故选A .小提示:本题考查了找图形和数字规律,从题目分析发现每一行的第一个数字都等于前面数字的个数再加1是本题的关键.7、谢尔宾斯基地毯,最早是由波兰数学家谢尔宾斯基制作出来的:把一个正三角形分成全等的4个小正三角形,挖去中间的一个小三角形;对剩下的3个小正三角形再分别重复以上做法…将这种做法继续进行下去,就得到小格子越来越多的谢尔宾斯基地毯(如图).若图1中的阴影三角形面积为1,则图5中的所有阴影三角形的面积之和是( )A .2764B .81256C .27256D .81128答案:B分析:根据题意,每次挖去等边三角形的面积的14,剩下的阴影部分面积等于原阴影部分面积的34,然后根据有理数的乘方列式计算即可得解.解:图2阴影部分面积=1−14=34,图3阴影部分面积=34×34=(34)2图4阴影部分面积=34×(34)2=(34)3 图5阴影部分面积=34×(34)3=(34)4=81256故选:B .小提示:本题是考查探索和表达规律问题,根据已知条件推算出相关数据规律是解题的切入点.8、如图,将图1中的长方形纸片前成①号、②号、③号、④号正方形和⑤号长方形,并将它们按图2的方式无重叠地放入另一个大长方形中,若需求出没有覆盖的阴影部分的周长,则下列说法中错误的是()A.只需知道图1中大长方形的周长即可B.只需知道图2中大长方形的周长即可C.只需知道③号正方形的周长即可D.只需知道⑤号长方形的周长即可答案:B分析:先设①号正方形的边长为a,②号正方形的边长为b,则③号正方形的边长为a+b,④号正方形的边长为2a+b,⑤号长方形的长为3a+b,宽为b-a,再求出阴影图形的周长6(a+b),然后分别求出图1、图2,③,⑤的周长看是否能求出a+b即可解:设①号正方形的边长为a,②号正方形的边长为b,则③号正方形的边长为a+b,④号正方形的边长为2a+b,⑤号长方形的长为3a+b,宽为b-a,如图,AD=b-a+b+a=2b,AB=a+b+2a+b-b=3a+b∴矩形ABCD的周长为2(AB+AD)=2(3a+b+2b)=6(a+b) ,∴阴影部分图形的周长=6(a+b)A.图1中大长方形的周长为:2(b+a+b+a+b+2a+b)=8(a+b),只需知道图1中大长方形的周长,可求a+b,便可求出阴影部分图形的周长=6(a+b) ,故选项A正确,不合题意;B.图2中大长方形的周长为2(b-a+b+2a+b+3a+2b)=2(4a+5b) ,只需知道图2中大长方形的周长,无法求出a+b,故选项B不正确,符合题意;C.③号正方形周长为:4(a+b),只需知道③号正方形的周长可求a+b,便可求出阴影部分图形的周长=6(a+b) ,故选项C正确,不合题意;D.⑤号正方形周长为:2(3a+b+b-a)=4(a+b),只需知道⑤号长方形的周长可求a+b,便可求出阴影部分图形的周长=6(a+b) ,故选项D正确,不合题意;所以答案是:B.小提示:此题考查整式加减的应用,解题的关键是设出未知数,列代数式表示各线段进而解决问题.9、下列去括号正确的是( )A.a2−(2a−b2)=a2−2a−b2B.−(2x−y)−(−x2+y2)=−2x−y+x2−y2C.2x2−3(x−5)=2x2−3x+5D.−a3−[−4a2+(1−3a)]=−a3+4a2−1+3a答案:D分析:根据去括号法则进行判断即可.解:A.a2−(2a−b2)=a2−2a+b2,故A错误,不符合题意;B.−(2x−y)−(−x2+y2)=−2x+y+x2−y2,故B错误,不符合题意;C.2x2−3(x−5)=2x2−3x+15,故C错误,不符合题意;D.−a3−[−4a2+(1−3a)]=−a3+4a2−1+3a,故D正确,符合题意.故选:D.小提示:本题主要考查了去括号法则,解题的关键是熟练掌握去括号法则,注意括号前面为负号的的将负号和括号去掉后,括号里面的每一项符号要发生改变.10、不改变代数式a2+2a−b+c的值,下列添括号错误的是()A.a2+(2a−b+c)B.a2−(−2a+b−c)C.a2−(2a−b+c)D.a2+2a+(−b+c)答案:C分析:将各选项代数式去括号,再与已知代数式比较即可.解:A、a2+(2a-b+c)=a2+2a-b+c,正确,此选项不符合题意;B、a2-(-2a+b-c)=a2+2a-b+c,正确,此选项不符合题意;C、a2-(2a-b+c)=a2-2a+b-c,错误,此选项符合题意;D、a2+2a+(-b+c)=a2+2a-b+c,正确,此选项不符合题意;故选:C.小提示:本题主要考查整式的加减,将各选项去括号,与题干整式比较是否一致是解题的关键.填空题11、一列有规律的数:−1,−4,7,10,−13,−16,19,22,⋯.这列数的第100个数为____.答案:298分析:观察发现,连续的两个数的绝对值相差3,符号为4次一循环,据此即可求解.解:观察一列有规律的数:−1,−4,7,10,−13,−16,19,22,⋯.第一个数为:−1=−[3×(1−1)+1],第二个数为:−4=−[3×(2−1)+1],第三个数为:+7=+[3×(3−1)+1],第四个数为:+10=+[3×(4−1)+1],……连续的两个数的绝对值相差3,符号为4次一循环,100÷4=25,第100个数为第25组第4个,符号为正,第100个数为3×(100−1)+1=298所以答案是:298小提示:本题是一道找规律问题,此类问题通常会按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,而揭示的规律,常常包含着事物的序列号. 所以解决此类问题的关键,可以把变量和序列号放在一起加以比较,从而快速找到规律.12、如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第20个图需要黑色棋子的个数为_________.答案:440分析:先观察图形得出前四个图中黑色棋子的个数,再归纳类推出一般规律,由此即可得.观察图形可知,黑色棋子的个数变化有以下两条规律:(1)正多边形的各顶点均需要1个黑色棋子(2)从第1个图开始,每个图的边上黑色棋子的个数变化依次是0,1,2,3,⋯即第1个图需要黑色棋子的个数为3+3×0第2个图需要黑色棋子的个数为4+4×1第3个图需要黑色棋子的个数为5+5×2第4个图需要黑色棋子的个数为6+6×3归纳类推得:第n个图需要黑色棋子的个数为(n+2)+(n+2)(n−1)=n(n+2),其中n为正整数则第20个图需要黑色棋子的个数为20×(20+2)=440所以答案是:440.小提示:本题考查了整式的图形规律探索题,依据图形,正确归纳类推出一般规律是解题关键.13、已知关于x的多项式(2m x2+x+1)﹣(6x2+3x)化简后不含x2项,则m的值是 _____.答案:3分析:根据整式的加减进行计算,根据题意令二次项系数为0,即可求解.(2m x2+x+1)﹣(6x2+3x)=2m x2+x+1﹣6x2﹣3x=(2m﹣6)x2﹣2x+1,由题意可以知:2m﹣6=0,∴m=3,所以答案是:3.小提示:本题考查了整式的加减,正确的计算是解题的关键.14、观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是____________.答案:49分析:根据题意可知:第1个图案中有六边形图形:1+2+1=4个,第2个图案中有六边形图形:2+3+2=7个,……由规律即可得答案.解:∵第1个图案中有六边形图形:1+2+1=4个,第2个图案中有六边形图形:2+3+2=7个,第3个图案中有六边形图形:3+4+3=10个,第4个图案中有六边形图形:4+5+4=13个,……∴第16个图案中有六边形图形:16+17+16=49个,所以答案是:49.小提示:此题考查图形的变化规律,解题的关键是找出图形之间的运算规律,利用规律解决问题.15、如果多项式4x3−2x2−(kx2+17x−6)中不含x2的项,则k的值为______答案:−2分析:先去括号,然后合并同类项,再根据“不含x2的项”列出式子求解即可得.解:4x3−2x2−(kx2+17x−6)=4x3−(2+k)x2−17x+6,∵多项式不含x2项,∴2+k=0,解得:k=−2.所以答案是:−2.小提示:此题主要考查了整式的加减,正确合并同类项是解题关键.解答题16、已知多项式A=2x2+my−12,B=nx2−3y+6.(1)若(m+2)2+|n−3|=0,化简A−B;(2)若A+B的结果中不含有x2项以及y项,求m+n+mn的值.答案:(1)−x2+y−18,(2)-5分析:(1)根据非负数的性质求出m、n,再计算A-B即可;(2)先计算A+B,再根据不含x2项以及y项,得出m、n的值,代入即可.解:(1)∵(m+2)2+|n−3|=0,∴m+2=0,n−3=0,解得,m=−2,n=3,∴A=2x2−2y−12,B=3x2−3y+6,A−B=2x2−2y−12−(3x2−3y+6),=2x2−2y−12−3x2+3y−6,=−x2+y−18.(2)A+B=2x2+my−12+(nx2−3y+6),=(2+n)x2+(m−3)y−6,∵结果中不含有x2项以及y项,∴2+n=0,m−3=0,解得,n=−2,m=3,把n=−2,m=3代入,m+n+mn=3−2+3×(−2)=−5.小提示:本题考查了非负数的性质和整式的加减以及代数式求值,解题关键是能够根据非负数的性质或多项式不含某一项确定字母系数的值,并能熟练应用整式加减的法则进行计算.17、先化简,再求值:4xy-2xy-(-3xy),其中x=2,y=-1.答案:5xy,−10分析:根据整式的加减运算化简,然后将字母的值代入即可求解.解:原式=4xy-2xy+3xy=(4−2+3)xy=5xy;当x=2,y=-1时,原式=5×2×(−1)=−10.小提示:本题考查了整式加减的化简求值,正确的计算是解题的关键.18、如图是某小区的一块长为b米、宽为2a米的长方形草地,现在在该长方形的四个顶点处分别修建一个半径为a米的扇形花台.(1)求修建后剩余草坪(阴影部分)的面积:(用含a,b的式子表示)(2)当a=10,b=40时,草坪的面积是多少平方米?(π取3.14)答案:(1)2ab﹣πa2平方米(2)486平方米分析:(1)由图可知,四个扇形的面积等于一个圆的面积,用矩形的面积减去一个圆的面积即可,(2)将a和b的值代入(1)中的式子进行计算即可.(1)修建后剩余草坪的面积为2ab−πa2(平方米).(2)当a=10,b=40时,2ab−πa2≈2×10×40−3.14×102=800﹣314=486(平方米).小提示:本题主要考查了用字母表示数,熟练掌握各个图形的面积公式是解题的关键.。
数学七年级上册第二章整式知识点题型总结及练习题

整式一、基本概念:1、用字母表示数:⑴用字母或者含有字母的式子表示一定的数量关系,而不是用复杂的语言进行描述,更易于理解。
⑴用字母表示的数,字母和数一样可以参与运算。
一个问题中相同的字母表示的数相同、意义相同,一个问题中不同的字母表示的数不相同意义不同。
⑴规范书写要求:①字母和字母、数字和字母相乘是乘号可以写作“·”或者省略不写,数字通常写在字母前。
数字和数字相乘必须写乘号。
如a×2写作2a ,3×5不可写成3·5或3 5,a×b 写作a·b 或ab②带分数和字母相乘时,要把带分数写成假分数。
如165×a 写作611a ③除法通常写成分数的形式,如5a÷4b 写作b 4a 5 ④如果这个代数式是一个带有单位的,那么一定要把整个代数式用括号括起来,将单位写在括号外。
⑤字母系数和次数是1时不写,如1a 1是错误的写法,应该写作a2、单项式⑴定义:数或字母的积,表示的式子叫做单项式。
单独的数字、字母,数字和字母的乘积都是单项式。
例5、a、4b等都是单项式(单项式中不含有加减运算,只包含乘法、乘方和分母为数字的除法)⑴单项式的系数:单项式中的数字因数叫做这个单项式的系数。
例33a的系数是33。
ab的系数是1,-xy的系数是-1(字母乘积的形式没有数字,通常看做系数为1.如果前边有负号但没有数字,看做系数是-1)⑴单项式的次数:一个单项式中,所有字母的指数得和叫做这个单项式的次数。
例33a中字母a的指数是1,33a的次数是1.ab中字母a、b的指数都是1,和是2所以ab的次数是2,a3b2中字母a的指数是3,b的指数是2,指数和是5所以a3b2的次数是5.3、多项式:⑴定义:几个单项式的和叫做多项式。
其中每个单项式叫做多项式的项,不含字母的项叫做常数项。
例多项式a+5b-5中含有a、5b、-5三个项(注意每项的正负号)其中-5为常数项。
人教版初中七年级数学上册第二章《整式的加减》经典练习题(含答案解析)

一、选择题1.(0分)下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差C 解析:C【分析】根据代数式的意义,可得答案.【详解】 用数学语言叙述代数式1a ﹣b 为a 的倒数与b 的差, 故选:C .【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.(0分)下列对代数式1a b -的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.3.(0分)如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1B解析:B【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.4.(0分)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B 解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.5.(0分)已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C 解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 6.(0分)一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( )A .1B .-1C .2020D .2020- A解析:A【分析】 首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A .【点睛】 本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 7.(0分)已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣1D 解析:D【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.8.(0分)下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯ C .126p - D .2y z ÷ A解析:A 【分析】 根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.9.(0分)若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( )A .17B .67C .-67D .0B解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 10.(0分)一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,46C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C .【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 二、填空题11.(0分)在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.12.(0分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律. 13.(0分)用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b + (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -.本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.14.(0分)观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.15.(0分)观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n 个式子为2n-1an ∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于解析:8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n 个式子为2n-1a n ,∴第8个式子为:27a 8=128a 8,故答案为:128a 8.【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.16.(0分)如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 17.(0分)如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序). 2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab ﹣b2b 时a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a2a02b 时﹣a+2a+0+2b =a+2b 故解析:2【分析】根据整式的加减尝试进行即可求解.【详解】解:当投中的目标区域内的单项式为a 、b 、﹣b 、2b 时,a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a 、2a 、0、2b 时,﹣a+2a+0+2b =a+2b .故答案为2.【点睛】本题考查了整式的加减,解题的关键是尝试进行整式的加减.18.(0分)已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.【分析】将已给的式子作恒等式进行变形表示a由于k≠0先将式子左右同时除以(-4k)再移项系数化1即可表示出a【详解】∵k≠0∴原式两边同时除以(-4x)得∴∴故答案为【点睛】本题考查的是代数式的表示解析:2248b kk+【分析】将已给的式子作恒等式进行变形表示a,由于k≠0,先将式子左右同时除以(-4k),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x)得,22 4bk a k=--∴224ba kk=+,∴2224828b k b kak k+=+=,故答案为2248b kk+.【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.19.(0分)随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n元,那么该电脑的原售价为______.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式解析:43n m+【分析】根据题意列出代数式解答即可.【详解】解:该电脑的原售价4125%3nm n m+=+-,故填:43n m+.【点睛】此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.20.(0分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m+n+p=_________;4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.三、解答题21.(0分)已知31A B x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.22.(0分)观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.23.(0分)已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.解析:13【解析】 试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n 的值,把m ,n 的值代入到m 2+n 2中,计算即可得到求解.试题根据题意得2+m +1=6,2n +2=6解得:m =3, n =2,所以m 2+n 2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.24.(0分)已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2, ∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.25.(0分)已知多项式2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,当k 为何值时,它与多项式3x 2+6xy+2y 2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,=3x 2+(4+k )xy+2y 2,因为它与多项式3x 2+6xy+2y 2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.26.(0分)已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.27.(0分)化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 28.(0分)如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。
七上数学第二章经典题型练习

一、选择题1. 若|x|=7,|y|=9,则x−y为( )A. ±2B. ±16C. −2或−16D. ±2或±162. 下列各式正确的是( )A. −|−5|=5B. −(−5)=−5C. |−5|=−5D. −(−5)=53. −123的倒数是( )A. −53B. −35C. −132D. −324. 在−1.5,125,π,0.121121112···中,有理数有( )A. 1个B. 2个C. 3个D. 4个5. 有理数a,b,c在数轴上的位置如图,则|c−a|−|a+b|+|b−c|的值为( )A. 0B. 2a−2c+2bC. −2cD. 2a6. 已知a,b两数在数轴上对应的点如图所示,在下列结论中,①b>a;②a+b>0;③a−b>0;④ab<0;⑤ba>0;正确的是( )A. ①②⑤B. ③④C. ③⑤D. ②④二、填空题7. 若|x|=5,|y|=9,则x+y=,x−y=.三、计算题8. 计算(1)(−79+56−34)×(−36);(2)−14−(1−0.5)×13×|1−(−5)2|.四、解答题(本大题共2小题,共16.0分。
解答应写出文字说明,证明过程或演算步骤)9. (本小题8.0分)小车司机蔡师傅某天下午的营运全是在东西走向的富泸公路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+14,−3,+7,−3,+11,−4,−3,+11,+6,−7,+9(1)蔡师博这天最后到达目的地时,距离下午出车时的出发地多远?(2)蔡师傅这天下午共行车多少千米?(3)若每千米耗油0.1L,则这天下午蔡师傅用了多少L油?10. (本小题8.0分)结合数轴与绝对值的知识回答下列问题:(1)表示−3和2两点之间的距离是___________;一般地,数轴上表示数m和数n的两点之间的距离等于|m−n|.如果|a+2|=3,那么a=________.(2)若数轴上表示数a的点位于−4与2之间,则|a+4|+|a−2|的值为_________;(3)利用数轴找出所有符合条件的整数点...x,使得|x+2|+|x−5|=7,这些整数点表示的数的和是__________.(4)当a=______时,|a+3|+|a−2|+|a−4|的值最小,最小值是_________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新七年级数学第二章经典题型汇总一、经典考题剖析:【备考1】下列说法不正确的是( )A .没有最大的有理数B .没有最小的有理数C .有最大的负数D .有绝对值最小的有理数【备考2】-2,3,-4,-5,6这五个数中,任取两个数相乘,得的积最大的是( ) A10 B .20. C .-30 D .18【备考3】一个数的倒数的相反数是1错误!,则这个数是() A 、错误! B 、错误! C 、错误! D 、-错误! 【备考4】如果ab< 0,a+b>0,那么这两个有理数为() A .绝对值相等的数B .符号不同的数,其中正数的绝对值较大C .符号不同的数,其中负数的绝对值较大D .以上都不正确【备考5】若|a|=7,|b|=5,a+ b >0,那么a -b 的值是() A .2或 12 B .2或-12 C .-2或-12 D .-2或 12【备考6】一个正整数a 与其倒数错误!,相反数-a ,相比较,正确的是( ) A 、-a <错误!≤a B 、-a <错误!<a C 、-a <错误!<a D 、-a <错误!<a 【备考7】若-|a|=-错误!,那么a=_______.【备考8】若a 的相反数是最大的负整数,b 是绝对值最小的数,则a +b=___________.【备考9】333322003112[()()](3)(1)22---++---【备考10】(新解法题)已知11a b +-=,求代数式 32(a+b-1)+2(a+b-1)-a-b 的值.二、针对性训练:(30 分钟) (答案:211 )1.-(-4)的相反数是_______,-(+8)是______的相反数. 2.若错误!的倒数与错误!互为相反数,则a 等于______3.观察下列数:-2,-1,2,1,-2,-1……,从左边第一个数算起,第99个数是 . 4.若|a-2|+|b+3|=0,则3a+2b= .5.(-1)2n +(-1)2n+1=______(n 为正整数). 6.在-(-5),-(-5)2,-|-5|,(-5)3中负数有( ) A 、0个 B 、1个 C 、2个 D 、3个 7.a ,b ,c 在数轴上的位置如图所示,则a+b+c 为 [ ]A.负数B.正数C.非负数D.非正数8.点M 、N 是数轴上的两点,m 、n 分别表示点M 、N 到原点O 的距离.如果n >m ,那么下列说法中正确的有( ). ① 点M 表示的数比点N 表示的数小; ② 点M 表示的数比点N 表示的数大; ③ 点M 、N 表示的数肯定不相等.A 、3个B 、2个C 、1个D 、0个9.已知有理数x 、y 满足1+2y-4+z-6=0x -,求xyz 的值.10.在数轴上a 、b 、c 、d 对应的点如图1―2―3所示,化简|a -b|+|c -b|+|c -c| +|d -b|.11.已知a 与b 互为倒数,c 和d 互为相反数,且|x|=6,求式子23ab-(c+d)+x 、23ab-(c+d)+x 的值.12.22233411110.5+(-)--2-4-(-1)()(-)2232-⨯÷计算:13.已知|x|=3,|y|=2,且xy ≠0,则 x+y 的值等于______ 14.计算12-|-18|+(-7)+(-15).15.1])2(4[)12111413(124---⨯---16.()⎪⎭⎫⎝⎛-⨯-÷-312618317.18.⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-⨯-85434219.1-2+3-4+5-6+…+99-100;–32-∣(-5)3∣×2)52(--18÷∣-(-3)2∣;-3-3)211(×92-6÷∣32-∣3;(-1)5×[324÷(-4)+)411(-×(-0.4)]÷)31(-;20.∣x ∣=8,∣y ∣=6,求x +y 的值;若∣x ∣=3,∣y ∣=5,且∣x -y ∣=y -x ,再求x +y 的值;21.若∣x +1∣+(2x -y +4)2= 0 ,求代数式x 5y +xy 5的值.22.若x= -1,y= -2,z= 1时,求()()222)(x z z y y x -+-+-的值.23.已知a 的相反数是321,b 的倒数是212-,求代数式ba b a 232+-+的值.24. 已知n 是正整数,a -2b= -1,求()()()()121212222252223+-----+-+-n n n nb a b a a b b a 的值.25.已知0)2(162=-+-b ab ,求代数式的值:①22b a -;②222b ab a --第三章:用字母表示数★基础知识及典例指津1、用字母表示数之后,可能用字母表示的有:(1)具有一定数量的数;(2)一些变化的规律;(3)数的运算法则和运算定律;(4)数量关系;(5)数学公式.2、用字母表示数的意义用字母表示数是代数的一个重要特点,它的优点在于能简明、扼要、准确地把数和数之间的关系表示出来,化特殊为一般,深刻地揭示数量之间的联系,为我们学习数学和应用数学带来方便. 3、用字母表示数学公式(1)加法、乘法的运算律;(2)平面图形的面积公式;(3)平面图形的周长公式;(4)立体图形的体积公式. 4、代数式的概念用运算符号把数和表示数的字母连接起来的式子,我们把它们叫做代数式.概念剖析:①运算符号指的是加、减、乘、除、乘方、绝对值,大中小括号以及以后要学到的开方符号,但不包括大于、小于号、等号等表示数量关系的关系符号;②单个的数字和字母也是代数式.③判断一个式子是否是代数式,只要看看它能否满足代数式的概念即可.例1、 下列的式子中那些是代数式 ①21-++y x ②n a 10⨯ ③053>+x ④n m p 111+= ⑤5822-+x x ⑥m yx x 35732--+ ⑦()[]{}22272m y x +-+ ⑧ 57 是代数式的有_________________________(只填序号); 例2、下列各式中不是代数式的是( ) A 、π B 、0 C 、yx +1D 、a+b=b+a 5、书写代数式的规定(1)数字与字母、字母与字母相乘时,乘号可以省略不写或用“·”代替,省略乘号时,数字因数应写在字母因数的前面,数字是带分数时要改写成假分数,数字与数字相乘时仍要写“×”号. (2)代数式中出现除法运算时,一般要写成分数的形式.(3)用代数式表示某一个量时,代数式后面带有单位,如果代数式是和、差形式,要用括号把代数式括起来.例3、下列个代数式中 ① a 214 ② ()c b a ÷- ③3-n 人 ④2·5 ⑤b a 25.2书写规范的有_________________________(只填序号); 6、代数式的意义代数式的意义是把代数式的数量关系翻译成用文字叙述的数量关系,即为读代数式用语言把一个代数式的数学意义表示出来时,要正确表达式中所含有代数运算以及它们运算顺序,还要注意语言的简练准确.例4、说出下列代数式的意义①n m +2 的意义是_______________________________________; ②)(2n m +的意义是_______________________________________; ③tnm +的意义是_____________________________________ __; 7、列代数式及代数式的值把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式;用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,叫代数式的值.求代数式的值要注意的问题:(1)字母的数值必须确保代数式有意义;(2)在代入数值计算之前要把代数式化到最简;(3)字母的取值保证它本身表示的数量有意义;(4)字母的取值不同,代数式的值也不同.例5:当x=2时,求x 3+x 2-x+3的值.例6:当a=3,a-b=1时,代数式a 2-ab 的值 . 例7:已知04|5|=++-y x ,求代数式(x+y)2008的值.例8:如果012=-+x x ,那么代数式2622-+x x 的值为( ) A 、64 B 、5 C 、—4 D 、—5 8、代数式的项与系数例9、①代数式z y x 253++是 项组成,每一项的系数是 ; ②221r ab π-的第二项是 ,系数是 .例10、322x π-的系数是 .9、同类项所含字母相同,并且相同字母的指数也相同的项,叫做同类项,常数项也是同类项.概念剖析:判断同类项的标准有两条:(1)所含字母相同;(2)相同字母的指数也分别相同.即:“两相同,一关系;”两相同:所含字母相同、相同字母的指数也分别相同;一关系:字母与字母之间是乘积关系.例11、指出多项式xy y x y x xy y x 213282344334+-+-里的同类项它们分别是 ; 例12、若427y x m +-与n y x 33-是同类项,则=m _______, =n ________; 例13、当=n ______时,523y x 与1322--n y x 是同类项; 10、合并同类项把多项式中的同类项合并成一项叫做合并同类项,不是同类项不能合并.合并同类项法则:(1)系数相加,所得结果作为系数;(2)字母和字母的指数不变. 例14、把多项式x x x x 321769132--++-合并同类项后得___________________;例15、当21-=a 时,求多项式36625322-+-+-a a a a 的值;例16、已知n m y x 2-与y x 231-同类项,求下列多项式的值:52746353222222+----++-n m n m n m mn n m mn n m11、去括号去括号法则:(1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项符号都不改变;(2)括号前是“ – ”号,把括号和它前面的“ – ”号去掉后,原括号里各项的符号都要改变. 例17、将下列各式的括号去掉:①)1(3-++bc ab a ②)1(3-+-bc ab a ③)72()7(3232y x xy y x -++- ④)72()7(3232y x xy y x --+- ⑤)1()3(-+--+bc ab a 例18、化简()[]{}b b a a a 25-+---- 12、化简求值化简的实质上就是去括号并合并同类项.概念剖析:运算步骤:(1)去括号;(2)判断同类项;(3)合并同类项;(4)代入求值.例19、(1)33333[6(32)]2[3(32)]x x y x x y -+--+,其中43,51==y x(2))2(3)2(8)2(8)2(222y x y x y x y x +-+++++,其中21,43=-=y x .(3)若5=-y x ,3=-xy ,求)65(6)47(xy x y xy y x -+-++的值.13、探索规律例20、观察下列算式:331=、 932=、 2733=、 8134=、 24335=、 72936=、 218737= 656138=、…… 用你发现的规律写出20083的末位数字是 ,20093的末位数字是 ;例21、将一张长方形的纸对折,如下图所示,可得到1条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得到7条折痕,那么对折4次可以得到 条折痕;如果对折n 次,可以得到 条折痕.例22、观察下列顺序排列的等式:9×0十1=1,9×1+2=11, 9×2+3=21, 9×3+4=31,9×4+5=4l ,猜想:第n 个等式应为 . 例23、如图,是用火柴棍摆出的一系列三角形图案, 按这种方式摆下去,当每边上摆20(即n=20)时,需 要的火柴棍总数为 根.。